aha/drivers/net/chelsio/pm3393.c
Divy Le Ray 4c14fe91d0 cxgb - revert file mode changes.
revert inavertant file mode changes

Signed-off-by: Divy Le Ray <divy@chelsio.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-12-04 14:52:58 -05:00

792 lines
30 KiB
C

/*****************************************************************************
* *
* File: pm3393.c *
* $Revision: 1.16 $ *
* $Date: 2005/05/14 00:59:32 $ *
* Description: *
* PMC/SIERRA (pm3393) MAC-PHY functionality. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include "regs.h"
#include "gmac.h"
#include "elmer0.h"
#include "suni1x10gexp_regs.h"
#include <linux/crc32.h>
#define OFFSET(REG_ADDR) ((REG_ADDR) << 2)
/* Max frame size PM3393 can handle. Includes Ethernet header and CRC. */
#define MAX_FRAME_SIZE 9600
#define IPG 12
#define TXXG_CONF1_VAL ((IPG << SUNI1x10GEXP_BITOFF_TXXG_IPGT) | \
SUNI1x10GEXP_BITMSK_TXXG_32BIT_ALIGN | SUNI1x10GEXP_BITMSK_TXXG_CRCEN | \
SUNI1x10GEXP_BITMSK_TXXG_PADEN)
#define RXXG_CONF1_VAL (SUNI1x10GEXP_BITMSK_RXXG_PUREP | 0x14 | \
SUNI1x10GEXP_BITMSK_RXXG_FLCHK | SUNI1x10GEXP_BITMSK_RXXG_CRC_STRIP)
/* Update statistics every 15 minutes */
#define STATS_TICK_SECS (15 * 60)
enum { /* RMON registers */
RxOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_1_LOW,
RxUnicastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_4_LOW,
RxMulticastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_5_LOW,
RxBroadcastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_6_LOW,
RxPAUSEMACCtrlFramesReceived = SUNI1x10GEXP_REG_MSTAT_COUNTER_8_LOW,
RxFrameCheckSequenceErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_10_LOW,
RxFramesLostDueToInternalMACErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_11_LOW,
RxSymbolErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_12_LOW,
RxInRangeLengthErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_13_LOW,
RxFramesTooLongErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_15_LOW,
RxJabbers = SUNI1x10GEXP_REG_MSTAT_COUNTER_16_LOW,
RxFragments = SUNI1x10GEXP_REG_MSTAT_COUNTER_17_LOW,
RxUndersizedFrames = SUNI1x10GEXP_REG_MSTAT_COUNTER_18_LOW,
RxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_25_LOW,
RxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_26_LOW,
TxOctetsTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_33_LOW,
TxFramesLostDueToInternalMACTransmissionError = SUNI1x10GEXP_REG_MSTAT_COUNTER_35_LOW,
TxTransmitSystemError = SUNI1x10GEXP_REG_MSTAT_COUNTER_36_LOW,
TxUnicastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_38_LOW,
TxMulticastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_40_LOW,
TxBroadcastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_42_LOW,
TxPAUSEMACCtrlFramesTransmitted = SUNI1x10GEXP_REG_MSTAT_COUNTER_43_LOW,
TxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_51_LOW,
TxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_52_LOW
};
struct _cmac_instance {
u8 enabled;
u8 fc;
u8 mac_addr[6];
};
static int pmread(struct cmac *cmac, u32 reg, u32 * data32)
{
t1_tpi_read(cmac->adapter, OFFSET(reg), data32);
return 0;
}
static int pmwrite(struct cmac *cmac, u32 reg, u32 data32)
{
t1_tpi_write(cmac->adapter, OFFSET(reg), data32);
return 0;
}
/* Port reset. */
static int pm3393_reset(struct cmac *cmac)
{
return 0;
}
/*
* Enable interrupts for the PM3393
*
* 1. Enable PM3393 BLOCK interrupts.
* 2. Enable PM3393 Master Interrupt bit(INTE)
* 3. Enable ELMER's PM3393 bit.
* 4. Enable Terminator external interrupt.
*/
static int pm3393_interrupt_enable(struct cmac *cmac)
{
u32 pl_intr;
/* PM3393 - Enabling all hardware block interrupts.
*/
pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0xffff);
/* Don't interrupt on statistics overflow, we are polling */
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0xffff);
/* PM3393 - Global interrupt enable
*/
/* TBD XXX Disable for now until we figure out why error interrupts keep asserting. */
pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE,
0 /*SUNI1x10GEXP_BITMSK_TOP_INTE */ );
/* TERMINATOR - PL_INTERUPTS_EXT */
pl_intr = readl(cmac->adapter->regs + A_PL_ENABLE);
pl_intr |= F_PL_INTR_EXT;
writel(pl_intr, cmac->adapter->regs + A_PL_ENABLE);
return 0;
}
static int pm3393_interrupt_disable(struct cmac *cmac)
{
u32 elmer;
/* PM3393 - Enabling HW interrupt blocks. */
pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0);
/* PM3393 - Global interrupt enable */
pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0);
/* ELMER - External chip interrupts. */
t1_tpi_read(cmac->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer &= ~ELMER0_GP_BIT1;
t1_tpi_write(cmac->adapter, A_ELMER0_INT_ENABLE, elmer);
/* TERMINATOR - PL_INTERUPTS_EXT */
/* DO NOT DISABLE TERMINATOR's EXTERNAL INTERRUPTS. ANOTHER CHIP
* COULD WANT THEM ENABLED. We disable PM3393 at the ELMER level.
*/
return 0;
}
static int pm3393_interrupt_clear(struct cmac *cmac)
{
u32 elmer;
u32 pl_intr;
u32 val32;
/* PM3393 - Clearing HW interrupt blocks. Note, this assumes
* bit WCIMODE=0 for a clear-on-read.
*/
pmread(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_RXXG_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_TXXG_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_INDICATION,
&val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_CHANGE, &val32);
/* PM3393 - Global interrupt status
*/
pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &val32);
/* ELMER - External chip interrupts.
*/
t1_tpi_read(cmac->adapter, A_ELMER0_INT_CAUSE, &elmer);
elmer |= ELMER0_GP_BIT1;
t1_tpi_write(cmac->adapter, A_ELMER0_INT_CAUSE, elmer);
/* TERMINATOR - PL_INTERUPTS_EXT
*/
pl_intr = readl(cmac->adapter->regs + A_PL_CAUSE);
pl_intr |= F_PL_INTR_EXT;
writel(pl_intr, cmac->adapter->regs + A_PL_CAUSE);
return 0;
}
/* Interrupt handler */
static int pm3393_interrupt_handler(struct cmac *cmac)
{
u32 master_intr_status;
/* Read the master interrupt status register. */
pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS,
&master_intr_status);
CH_DBG(cmac->adapter, INTR, "PM3393 intr cause 0x%x\n",
master_intr_status);
/* TBD XXX Lets just clear everything for now */
pm3393_interrupt_clear(cmac);
return 0;
}
static int pm3393_enable(struct cmac *cmac, int which)
{
if (which & MAC_DIRECTION_RX)
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1,
(RXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_RXXG_RXEN));
if (which & MAC_DIRECTION_TX) {
u32 val = TXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_TXXG_TXEN0;
if (cmac->instance->fc & PAUSE_RX)
val |= SUNI1x10GEXP_BITMSK_TXXG_FCRX;
if (cmac->instance->fc & PAUSE_TX)
val |= SUNI1x10GEXP_BITMSK_TXXG_FCTX;
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, val);
}
cmac->instance->enabled |= which;
return 0;
}
static int pm3393_enable_port(struct cmac *cmac, int which)
{
/* Clear port statistics */
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
SUNI1x10GEXP_BITMSK_MSTAT_CLEAR);
udelay(2);
memset(&cmac->stats, 0, sizeof(struct cmac_statistics));
pm3393_enable(cmac, which);
/*
* XXX This should be done by the PHY and preferrably not at all.
* The PHY doesn't give us link status indication on its own so have
* the link management code query it instead.
*/
t1_link_changed(cmac->adapter, 0);
return 0;
}
static int pm3393_disable(struct cmac *cmac, int which)
{
if (which & MAC_DIRECTION_RX)
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, RXXG_CONF1_VAL);
if (which & MAC_DIRECTION_TX)
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, TXXG_CONF1_VAL);
/*
* The disable is graceful. Give the PM3393 time. Can't wait very
* long here, we may be holding locks.
*/
udelay(20);
cmac->instance->enabled &= ~which;
return 0;
}
static int pm3393_loopback_enable(struct cmac *cmac)
{
return 0;
}
static int pm3393_loopback_disable(struct cmac *cmac)
{
return 0;
}
static int pm3393_set_mtu(struct cmac *cmac, int mtu)
{
int enabled = cmac->instance->enabled;
/* MAX_FRAME_SIZE includes header + FCS, mtu doesn't */
mtu += 14 + 4;
if (mtu > MAX_FRAME_SIZE)
return -EINVAL;
/* Disable Rx/Tx MAC before configuring it. */
if (enabled)
pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MAX_FRAME_LENGTH, mtu);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_MAX_FRAME_SIZE, mtu);
if (enabled)
pm3393_enable(cmac, enabled);
return 0;
}
static int pm3393_set_rx_mode(struct cmac *cmac, struct t1_rx_mode *rm)
{
int enabled = cmac->instance->enabled & MAC_DIRECTION_RX;
u32 rx_mode;
/* Disable MAC RX before reconfiguring it */
if (enabled)
pm3393_disable(cmac, MAC_DIRECTION_RX);
pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, &rx_mode);
rx_mode &= ~(SUNI1x10GEXP_BITMSK_RXXG_PMODE |
SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2,
(u16)rx_mode);
if (t1_rx_mode_promisc(rm)) {
/* Promiscuous mode. */
rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_PMODE;
}
if (t1_rx_mode_allmulti(rm)) {
/* Accept all multicast. */
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, 0xffff);
rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
} else if (t1_rx_mode_mc_cnt(rm)) {
/* Accept one or more multicast(s). */
u8 *addr;
int bit;
u16 mc_filter[4] = { 0, };
while ((addr = t1_get_next_mcaddr(rm))) {
bit = (ether_crc(ETH_ALEN, addr) >> 23) & 0x3f; /* bit[23:28] */
mc_filter[bit >> 4] |= 1 << (bit & 0xf);
}
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, mc_filter[0]);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, mc_filter[1]);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, mc_filter[2]);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, mc_filter[3]);
rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
}
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode);
if (enabled)
pm3393_enable(cmac, MAC_DIRECTION_RX);
return 0;
}
static int pm3393_get_speed_duplex_fc(struct cmac *cmac, int *speed,
int *duplex, int *fc)
{
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
if (fc)
*fc = cmac->instance->fc;
return 0;
}
static int pm3393_set_speed_duplex_fc(struct cmac *cmac, int speed, int duplex,
int fc)
{
if (speed >= 0 && speed != SPEED_10000)
return -1;
if (duplex >= 0 && duplex != DUPLEX_FULL)
return -1;
if (fc & ~(PAUSE_TX | PAUSE_RX))
return -1;
if (fc != cmac->instance->fc) {
cmac->instance->fc = (u8) fc;
if (cmac->instance->enabled & MAC_DIRECTION_TX)
pm3393_enable(cmac, MAC_DIRECTION_TX);
}
return 0;
}
#define RMON_UPDATE(mac, name, stat_name) \
{ \
t1_tpi_read((mac)->adapter, OFFSET(name), &val0); \
t1_tpi_read((mac)->adapter, OFFSET((name)+1), &val1); \
t1_tpi_read((mac)->adapter, OFFSET((name)+2), &val2); \
(mac)->stats.stat_name = (u64)(val0 & 0xffff) | \
((u64)(val1 & 0xffff) << 16) | \
((u64)(val2 & 0xff) << 32) | \
((mac)->stats.stat_name & \
0xffffff0000000000ULL); \
if (ro & \
(1ULL << ((name - SUNI1x10GEXP_REG_MSTAT_COUNTER_0_LOW) >> 2))) \
(mac)->stats.stat_name += 1ULL << 40; \
}
static const struct cmac_statistics *pm3393_update_statistics(struct cmac *mac,
int flag)
{
u64 ro;
u32 val0, val1, val2, val3;
/* Snap the counters */
pmwrite(mac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
SUNI1x10GEXP_BITMSK_MSTAT_SNAP);
/* Counter rollover, clear on read */
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_0, &val0);
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_1, &val1);
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_2, &val2);
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_3, &val3);
ro = ((u64)val0 & 0xffff) | (((u64)val1 & 0xffff) << 16) |
(((u64)val2 & 0xffff) << 32) | (((u64)val3 & 0xffff) << 48);
/* Rx stats */
RMON_UPDATE(mac, RxOctetsReceivedOK, RxOctetsOK);
RMON_UPDATE(mac, RxUnicastFramesReceivedOK, RxUnicastFramesOK);
RMON_UPDATE(mac, RxMulticastFramesReceivedOK, RxMulticastFramesOK);
RMON_UPDATE(mac, RxBroadcastFramesReceivedOK, RxBroadcastFramesOK);
RMON_UPDATE(mac, RxPAUSEMACCtrlFramesReceived, RxPauseFrames);
RMON_UPDATE(mac, RxFrameCheckSequenceErrors, RxFCSErrors);
RMON_UPDATE(mac, RxFramesLostDueToInternalMACErrors,
RxInternalMACRcvError);
RMON_UPDATE(mac, RxSymbolErrors, RxSymbolErrors);
RMON_UPDATE(mac, RxInRangeLengthErrors, RxInRangeLengthErrors);
RMON_UPDATE(mac, RxFramesTooLongErrors , RxFrameTooLongErrors);
RMON_UPDATE(mac, RxJabbers, RxJabberErrors);
RMON_UPDATE(mac, RxFragments, RxRuntErrors);
RMON_UPDATE(mac, RxUndersizedFrames, RxRuntErrors);
RMON_UPDATE(mac, RxJumboFramesReceivedOK, RxJumboFramesOK);
RMON_UPDATE(mac, RxJumboOctetsReceivedOK, RxJumboOctetsOK);
/* Tx stats */
RMON_UPDATE(mac, TxOctetsTransmittedOK, TxOctetsOK);
RMON_UPDATE(mac, TxFramesLostDueToInternalMACTransmissionError,
TxInternalMACXmitError);
RMON_UPDATE(mac, TxTransmitSystemError, TxFCSErrors);
RMON_UPDATE(mac, TxUnicastFramesTransmittedOK, TxUnicastFramesOK);
RMON_UPDATE(mac, TxMulticastFramesTransmittedOK, TxMulticastFramesOK);
RMON_UPDATE(mac, TxBroadcastFramesTransmittedOK, TxBroadcastFramesOK);
RMON_UPDATE(mac, TxPAUSEMACCtrlFramesTransmitted, TxPauseFrames);
RMON_UPDATE(mac, TxJumboFramesReceivedOK, TxJumboFramesOK);
RMON_UPDATE(mac, TxJumboOctetsReceivedOK, TxJumboOctetsOK);
return &mac->stats;
}
static int pm3393_macaddress_get(struct cmac *cmac, u8 mac_addr[6])
{
memcpy(mac_addr, cmac->instance->mac_addr, 6);
return 0;
}
static int pm3393_macaddress_set(struct cmac *cmac, u8 ma[6])
{
u32 val, lo, mid, hi, enabled = cmac->instance->enabled;
/*
* MAC addr: 00:07:43:00:13:09
*
* ma[5] = 0x09
* ma[4] = 0x13
* ma[3] = 0x00
* ma[2] = 0x43
* ma[1] = 0x07
* ma[0] = 0x00
*
* The PM3393 requires byte swapping and reverse order entry
* when programming MAC addresses:
*
* low_bits[15:0] = ma[1]:ma[0]
* mid_bits[31:16] = ma[3]:ma[2]
* high_bits[47:32] = ma[5]:ma[4]
*/
/* Store local copy */
memcpy(cmac->instance->mac_addr, ma, 6);
lo = ((u32) ma[1] << 8) | (u32) ma[0];
mid = ((u32) ma[3] << 8) | (u32) ma[2];
hi = ((u32) ma[5] << 8) | (u32) ma[4];
/* Disable Rx/Tx MAC before configuring it. */
if (enabled)
pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
/* Set RXXG Station Address */
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_15_0, lo);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_31_16, mid);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_47_32, hi);
/* Set TXXG Station Address */
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_15_0, lo);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_31_16, mid);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_47_32, hi);
/* Setup Exact Match Filter 1 with our MAC address
*
* Must disable exact match filter before configuring it.
*/
pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, &val);
val &= 0xff0f;
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_LOW, lo);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_MID, mid);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_HIGH, hi);
val |= 0x0090;
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
if (enabled)
pm3393_enable(cmac, enabled);
return 0;
}
static void pm3393_destroy(struct cmac *cmac)
{
kfree(cmac);
}
static struct cmac_ops pm3393_ops = {
.destroy = pm3393_destroy,
.reset = pm3393_reset,
.interrupt_enable = pm3393_interrupt_enable,
.interrupt_disable = pm3393_interrupt_disable,
.interrupt_clear = pm3393_interrupt_clear,
.interrupt_handler = pm3393_interrupt_handler,
.enable = pm3393_enable_port,
.disable = pm3393_disable,
.loopback_enable = pm3393_loopback_enable,
.loopback_disable = pm3393_loopback_disable,
.set_mtu = pm3393_set_mtu,
.set_rx_mode = pm3393_set_rx_mode,
.get_speed_duplex_fc = pm3393_get_speed_duplex_fc,
.set_speed_duplex_fc = pm3393_set_speed_duplex_fc,
.statistics_update = pm3393_update_statistics,
.macaddress_get = pm3393_macaddress_get,
.macaddress_set = pm3393_macaddress_set
};
static struct cmac *pm3393_mac_create(adapter_t *adapter, int index)
{
struct cmac *cmac;
cmac = kzalloc(sizeof(*cmac) + sizeof(cmac_instance), GFP_KERNEL);
if (!cmac)
return NULL;
cmac->ops = &pm3393_ops;
cmac->instance = (cmac_instance *) (cmac + 1);
cmac->adapter = adapter;
cmac->instance->fc = PAUSE_TX | PAUSE_RX;
t1_tpi_write(adapter, OFFSET(0x0001), 0x00008000);
t1_tpi_write(adapter, OFFSET(0x0001), 0x00000000);
t1_tpi_write(adapter, OFFSET(0x2308), 0x00009800);
t1_tpi_write(adapter, OFFSET(0x2305), 0x00001001); /* PL4IO Enable */
t1_tpi_write(adapter, OFFSET(0x2320), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2321), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2322), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2323), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2324), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2325), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2326), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2327), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2328), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2329), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232a), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232b), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232c), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232d), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232e), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232f), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x230d), 0x00009c00);
t1_tpi_write(adapter, OFFSET(0x2304), 0x00000202); /* PL4IO Calendar Repetitions */
t1_tpi_write(adapter, OFFSET(0x3200), 0x00008080); /* EFLX Enable */
t1_tpi_write(adapter, OFFSET(0x3210), 0x00000000); /* EFLX Channel Deprovision */
t1_tpi_write(adapter, OFFSET(0x3203), 0x00000000); /* EFLX Low Limit */
t1_tpi_write(adapter, OFFSET(0x3204), 0x00000040); /* EFLX High Limit */
t1_tpi_write(adapter, OFFSET(0x3205), 0x000002cc); /* EFLX Almost Full */
t1_tpi_write(adapter, OFFSET(0x3206), 0x00000199); /* EFLX Almost Empty */
t1_tpi_write(adapter, OFFSET(0x3207), 0x00000240); /* EFLX Cut Through Threshold */
t1_tpi_write(adapter, OFFSET(0x3202), 0x00000000); /* EFLX Indirect Register Update */
t1_tpi_write(adapter, OFFSET(0x3210), 0x00000001); /* EFLX Channel Provision */
t1_tpi_write(adapter, OFFSET(0x3208), 0x0000ffff); /* EFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x320a), 0x0000ffff); /* EFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x320c), 0x0000ffff); /* EFLX enable overflow interrupt The other bit are undocumented */
t1_tpi_write(adapter, OFFSET(0x320e), 0x0000ffff); /* EFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x2200), 0x0000c000); /* IFLX Configuration - enable */
t1_tpi_write(adapter, OFFSET(0x2201), 0x00000000); /* IFLX Channel Deprovision */
t1_tpi_write(adapter, OFFSET(0x220e), 0x00000000); /* IFLX Low Limit */
t1_tpi_write(adapter, OFFSET(0x220f), 0x00000100); /* IFLX High Limit */
t1_tpi_write(adapter, OFFSET(0x2210), 0x00000c00); /* IFLX Almost Full Limit */
t1_tpi_write(adapter, OFFSET(0x2211), 0x00000599); /* IFLX Almost Empty Limit */
t1_tpi_write(adapter, OFFSET(0x220d), 0x00000000); /* IFLX Indirect Register Update */
t1_tpi_write(adapter, OFFSET(0x2201), 0x00000001); /* IFLX Channel Provision */
t1_tpi_write(adapter, OFFSET(0x2203), 0x0000ffff); /* IFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x2205), 0x0000ffff); /* IFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x2209), 0x0000ffff); /* IFLX Enable overflow interrupt. The other bit are undocumented */
t1_tpi_write(adapter, OFFSET(0x2241), 0xfffffffe); /* PL4MOS Undocumented */
t1_tpi_write(adapter, OFFSET(0x2242), 0x0000ffff); /* PL4MOS Undocumented */
t1_tpi_write(adapter, OFFSET(0x2243), 0x00000008); /* PL4MOS Starving Burst Size */
t1_tpi_write(adapter, OFFSET(0x2244), 0x00000008); /* PL4MOS Hungry Burst Size */
t1_tpi_write(adapter, OFFSET(0x2245), 0x00000008); /* PL4MOS Transfer Size */
t1_tpi_write(adapter, OFFSET(0x2240), 0x00000005); /* PL4MOS Disable */
t1_tpi_write(adapter, OFFSET(0x2280), 0x00002103); /* PL4ODP Training Repeat and SOP rule */
t1_tpi_write(adapter, OFFSET(0x2284), 0x00000000); /* PL4ODP MAX_T setting */
t1_tpi_write(adapter, OFFSET(0x3280), 0x00000087); /* PL4IDU Enable data forward, port state machine. Set ALLOW_NON_ZERO_OLB */
t1_tpi_write(adapter, OFFSET(0x3282), 0x0000001f); /* PL4IDU Enable Dip4 check error interrupts */
t1_tpi_write(adapter, OFFSET(0x3040), 0x0c32); /* # TXXG Config */
/* For T1 use timer based Mac flow control. */
t1_tpi_write(adapter, OFFSET(0x304d), 0x8000);
t1_tpi_write(adapter, OFFSET(0x2040), 0x059c); /* # RXXG Config */
t1_tpi_write(adapter, OFFSET(0x2049), 0x0001); /* # RXXG Cut Through */
t1_tpi_write(adapter, OFFSET(0x2070), 0x0000); /* # Disable promiscuous mode */
/* Setup Exact Match Filter 0 to allow broadcast packets.
*/
t1_tpi_write(adapter, OFFSET(0x206e), 0x0000); /* # Disable Match Enable bit */
t1_tpi_write(adapter, OFFSET(0x204a), 0xffff); /* # low addr */
t1_tpi_write(adapter, OFFSET(0x204b), 0xffff); /* # mid addr */
t1_tpi_write(adapter, OFFSET(0x204c), 0xffff); /* # high addr */
t1_tpi_write(adapter, OFFSET(0x206e), 0x0009); /* # Enable Match Enable bit */
t1_tpi_write(adapter, OFFSET(0x0003), 0x0000); /* # NO SOP/ PAD_EN setup */
t1_tpi_write(adapter, OFFSET(0x0100), 0x0ff0); /* # RXEQB disabled */
t1_tpi_write(adapter, OFFSET(0x0101), 0x0f0f); /* # No Preemphasis */
return cmac;
}
static int pm3393_mac_reset(adapter_t * adapter)
{
u32 val;
u32 x;
u32 is_pl4_reset_finished;
u32 is_pl4_outof_lock;
u32 is_xaui_mabc_pll_locked;
u32 successful_reset;
int i;
/* The following steps are required to properly reset
* the PM3393. This information is provided in the
* PM3393 datasheet (Issue 2: November 2002)
* section 13.1 -- Device Reset.
*
* The PM3393 has three types of components that are
* individually reset:
*
* DRESETB - Digital circuitry
* PL4_ARESETB - PL4 analog circuitry
* XAUI_ARESETB - XAUI bus analog circuitry
*
* Steps to reset PM3393 using RSTB pin:
*
* 1. Assert RSTB pin low ( write 0 )
* 2. Wait at least 1ms to initiate a complete initialization of device.
* 3. Wait until all external clocks and REFSEL are stable.
* 4. Wait minimum of 1ms. (after external clocks and REFEL are stable)
* 5. De-assert RSTB ( write 1 )
* 6. Wait until internal timers to expires after ~14ms.
* - Allows analog clock synthesizer(PL4CSU) to stabilize to
* selected reference frequency before allowing the digital
* portion of the device to operate.
* 7. Wait at least 200us for XAUI interface to stabilize.
* 8. Verify the PM3393 came out of reset successfully.
* Set successful reset flag if everything worked else try again
* a few more times.
*/
successful_reset = 0;
for (i = 0; i < 3 && !successful_reset; i++) {
/* 1 */
t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val &= ~1;
t1_tpi_write(adapter, A_ELMER0_GPO, val);
/* 2 */
msleep(1);
/* 3 */
msleep(1);
/* 4 */
msleep(2 /*1 extra ms for safety */ );
/* 5 */
val |= 1;
t1_tpi_write(adapter, A_ELMER0_GPO, val);
/* 6 */
msleep(15 /*1 extra ms for safety */ );
/* 7 */
msleep(1);
/* 8 */
/* Has PL4 analog block come out of reset correctly? */
t1_tpi_read(adapter, OFFSET(SUNI1x10GEXP_REG_DEVICE_STATUS), &val);
is_pl4_reset_finished = (val & SUNI1x10GEXP_BITMSK_TOP_EXPIRED);
/* TBD XXX SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL gets locked later in the init sequence
* figure out why? */
/* Have all PL4 block clocks locked? */
x = (SUNI1x10GEXP_BITMSK_TOP_PL4_ID_DOOL
/*| SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL */ |
SUNI1x10GEXP_BITMSK_TOP_PL4_ID_ROOL |
SUNI1x10GEXP_BITMSK_TOP_PL4_IS_ROOL |
SUNI1x10GEXP_BITMSK_TOP_PL4_OUT_ROOL);
is_pl4_outof_lock = (val & x);
/* ??? If this fails, might be able to software reset the XAUI part
* and try to recover... thus saving us from doing another HW reset */
/* Has the XAUI MABC PLL circuitry stablized? */
is_xaui_mabc_pll_locked =
(val & SUNI1x10GEXP_BITMSK_TOP_SXRA_EXPIRED);
successful_reset = (is_pl4_reset_finished && !is_pl4_outof_lock
&& is_xaui_mabc_pll_locked);
CH_DBG(adapter, HW,
"PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, "
"is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n",
i, is_pl4_reset_finished, val, is_pl4_outof_lock,
is_xaui_mabc_pll_locked);
}
return successful_reset ? 0 : 1;
}
const struct gmac t1_pm3393_ops = {
.stats_update_period = STATS_TICK_SECS,
.create = pm3393_mac_create,
.reset = pm3393_mac_reset,
};