aha/arch/blackfin/kernel/traps.c
Linus Torvalds 525995d77c Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier/blackfin
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier/blackfin: (88 commits)
  Blackfin: Convert BUG() to use unreachable()
  Blackfin: define __NR_recvmmsg
  Blackfin: drop duplicate sched_clock
  Blackfin: NOMPU: skip DMA ICPLB hole when it is redundant
  Blackfin: MPU: add missing __init markings
  Blackfin: add support for TIF_NOTIFY_RESUME
  Blackfin: kgdb_test: clean up code a bit
  Blackfin: convert kgdbtest to proc_fops
  Blackfin: convert cyc2ns() to clocksource_cyc2ns()
  Blackfin: ip0x: pull in asm/portmux.h for P_xxx defines
  Blackfin: drop unused ax88180 resources
  Blackfin: bf537-stamp: add ADF702x network driver resources
  Blackfin: bf537-stamp: add CAN resources
  Blackfin: bf537-stamp: add AD5258 i2c address
  Blackfin: bf537-stamp: add adau1761 i2c address
  Blackfin: bf537-stamp: add adau1371 i2c address
  Blackfin: bf537-stamp: add ADP8870 resources
  Blackfin: bf537-stamp: kill AD714x board-specific Kconfigs
  Blackfin: bf537-stamp: update ADP5520 resources
  Blackfin: bf537-stamp: add ADXL346 orientation sensing support
  ...
2009-12-16 10:52:35 -08:00

1331 lines
37 KiB
C

/*
* Copyright 2004-2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later
*/
#include <linux/bug.h>
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/fs.h>
#include <linux/rbtree.h>
#include <asm/traps.h>
#include <asm/cacheflush.h>
#include <asm/cplb.h>
#include <asm/dma.h>
#include <asm/blackfin.h>
#include <asm/irq_handler.h>
#include <linux/irq.h>
#include <asm/trace.h>
#include <asm/fixed_code.h>
#ifdef CONFIG_KGDB
# include <linux/kgdb.h>
# define CHK_DEBUGGER_TRAP() \
do { \
kgdb_handle_exception(trapnr, sig, info.si_code, fp); \
} while (0)
# define CHK_DEBUGGER_TRAP_MAYBE() \
do { \
if (kgdb_connected) \
CHK_DEBUGGER_TRAP(); \
} while (0)
#else
# define CHK_DEBUGGER_TRAP() do { } while (0)
# define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
#endif
#ifdef CONFIG_DEBUG_VERBOSE
#define verbose_printk(fmt, arg...) \
printk(fmt, ##arg)
#else
#define verbose_printk(fmt, arg...) \
({ if (0) printk(fmt, ##arg); 0; })
#endif
#if defined(CONFIG_DEBUG_MMRS) || defined(CONFIG_DEBUG_MMRS_MODULE)
u32 last_seqstat;
#ifdef CONFIG_DEBUG_MMRS_MODULE
EXPORT_SYMBOL(last_seqstat);
#endif
#endif
/* Initiate the event table handler */
void __init trap_init(void)
{
CSYNC();
bfin_write_EVT3(trap);
CSYNC();
}
static void decode_address(char *buf, unsigned long address)
{
#ifdef CONFIG_DEBUG_VERBOSE
struct task_struct *p;
struct mm_struct *mm;
unsigned long flags, offset;
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
struct rb_node *n;
#ifdef CONFIG_KALLSYMS
unsigned long symsize;
const char *symname;
char *modname;
char *delim = ":";
char namebuf[128];
#endif
buf += sprintf(buf, "<0x%08lx> ", address);
#ifdef CONFIG_KALLSYMS
/* look up the address and see if we are in kernel space */
symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
if (symname) {
/* yeah! kernel space! */
if (!modname)
modname = delim = "";
sprintf(buf, "{ %s%s%s%s + 0x%lx }",
delim, modname, delim, symname,
(unsigned long)offset);
return;
}
#endif
if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
/* Problem in fixed code section? */
strcat(buf, "/* Maybe fixed code section */");
return;
} else if (address < CONFIG_BOOT_LOAD) {
/* Problem somewhere before the kernel start address */
strcat(buf, "/* Maybe null pointer? */");
return;
} else if (address >= COREMMR_BASE) {
strcat(buf, "/* core mmrs */");
return;
} else if (address >= SYSMMR_BASE) {
strcat(buf, "/* system mmrs */");
return;
} else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) {
strcat(buf, "/* on-chip L1 ROM */");
return;
}
/*
* Don't walk any of the vmas if we are oopsing, it has been known
* to cause problems - corrupt vmas (kernel crashes) cause double faults
*/
if (oops_in_progress) {
strcat(buf, "/* kernel dynamic memory (maybe user-space) */");
return;
}
/* looks like we're off in user-land, so let's walk all the
* mappings of all our processes and see if we can't be a whee
* bit more specific
*/
write_lock_irqsave(&tasklist_lock, flags);
for_each_process(p) {
mm = (in_atomic ? p->mm : get_task_mm(p));
if (!mm)
continue;
for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
struct vm_area_struct *vma;
vma = rb_entry(n, struct vm_area_struct, vm_rb);
if (address >= vma->vm_start && address < vma->vm_end) {
char _tmpbuf[256];
char *name = p->comm;
struct file *file = vma->vm_file;
if (file) {
char *d_name = d_path(&file->f_path, _tmpbuf,
sizeof(_tmpbuf));
if (!IS_ERR(d_name))
name = d_name;
}
/* FLAT does not have its text aligned to the start of
* the map while FDPIC ELF does ...
*/
/* before we can check flat/fdpic, we need to
* make sure current is valid
*/
if ((unsigned long)current >= FIXED_CODE_START &&
!((unsigned long)current & 0x3)) {
if (current->mm &&
(address > current->mm->start_code) &&
(address < current->mm->end_code))
offset = address - current->mm->start_code;
else
offset = (address - vma->vm_start) +
(vma->vm_pgoff << PAGE_SHIFT);
sprintf(buf, "[ %s + 0x%lx ]", name, offset);
} else
sprintf(buf, "[ %s vma:0x%lx-0x%lx]",
name, vma->vm_start, vma->vm_end);
if (!in_atomic)
mmput(mm);
if (buf[0] == '\0')
sprintf(buf, "[ %s ] dynamic memory", name);
goto done;
}
}
if (!in_atomic)
mmput(mm);
}
/* we were unable to find this address anywhere */
sprintf(buf, "/* kernel dynamic memory */");
done:
write_unlock_irqrestore(&tasklist_lock, flags);
#else
sprintf(buf, " ");
#endif
}
asmlinkage void double_fault_c(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int j;
trace_buffer_save(j);
#endif
console_verbose();
oops_in_progress = 1;
#ifdef CONFIG_DEBUG_VERBOSE
printk(KERN_EMERG "Double Fault\n");
#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) == VEC_UNCOV) {
unsigned int cpu = raw_smp_processor_id();
char buf[150];
decode_address(buf, cpu_pda[cpu].retx_doublefault);
printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
(unsigned int)cpu_pda[cpu].seqstat_doublefault & SEQSTAT_EXCAUSE, buf);
decode_address(buf, cpu_pda[cpu].dcplb_doublefault_addr);
printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %s\n", buf);
decode_address(buf, cpu_pda[cpu].icplb_doublefault_addr);
printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %s\n", buf);
decode_address(buf, fp->retx);
printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
} else
#endif
{
dump_bfin_process(fp);
dump_bfin_mem(fp);
show_regs(fp);
dump_bfin_trace_buffer();
}
#endif
panic("Double Fault - unrecoverable event");
}
static int kernel_mode_regs(struct pt_regs *regs)
{
return regs->ipend & 0xffc0;
}
asmlinkage notrace void trap_c(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int j;
#endif
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
unsigned int cpu = raw_smp_processor_id();
#endif
const char *strerror = NULL;
int sig = 0;
siginfo_t info;
unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
trace_buffer_save(j);
#if defined(CONFIG_DEBUG_MMRS) || defined(CONFIG_DEBUG_MMRS_MODULE)
last_seqstat = (u32)fp->seqstat;
#endif
/* Important - be very careful dereferncing pointers - will lead to
* double faults if the stack has become corrupt
*/
/* trap_c() will be called for exceptions. During exceptions
* processing, the pc value should be set with retx value.
* With this change we can cleanup some code in signal.c- TODO
*/
fp->orig_pc = fp->retx;
/* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
trapnr, fp->ipend, fp->pc, fp->retx); */
/* send the appropriate signal to the user program */
switch (trapnr) {
/* This table works in conjuction with the one in ./mach-common/entry.S
* Some exceptions are handled there (in assembly, in exception space)
* Some are handled here, (in C, in interrupt space)
* Some, like CPLB, are handled in both, where the normal path is
* handled in assembly/exception space, and the error path is handled
* here
*/
/* 0x00 - Linux Syscall, getting here is an error */
/* 0x01 - userspace gdb breakpoint, handled here */
case VEC_EXCPT01:
info.si_code = TRAP_ILLTRAP;
sig = SIGTRAP;
CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a breakpoint in kernel space */
if (kernel_mode_regs(fp))
goto traps_done;
else
break;
/* 0x03 - User Defined, userspace stack overflow */
case VEC_EXCPT03:
info.si_code = SEGV_STACKFLOW;
sig = SIGSEGV;
strerror = KERN_NOTICE EXC_0x03(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x02 - KGDB initial connection and break signal trap */
case VEC_EXCPT02:
#ifdef CONFIG_KGDB
info.si_code = TRAP_ILLTRAP;
sig = SIGTRAP;
CHK_DEBUGGER_TRAP();
goto traps_done;
#endif
/* 0x04 - User Defined */
/* 0x05 - User Defined */
/* 0x06 - User Defined */
/* 0x07 - User Defined */
/* 0x08 - User Defined */
/* 0x09 - User Defined */
/* 0x0A - User Defined */
/* 0x0B - User Defined */
/* 0x0C - User Defined */
/* 0x0D - User Defined */
/* 0x0E - User Defined */
/* 0x0F - User Defined */
/* If we got here, it is most likely that someone was trying to use a
* custom exception handler, and it is not actually installed properly
*/
case VEC_EXCPT04 ... VEC_EXCPT15:
info.si_code = ILL_ILLPARAOP;
sig = SIGILL;
strerror = KERN_NOTICE EXC_0x04(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x10 HW Single step, handled here */
case VEC_STEP:
info.si_code = TRAP_STEP;
sig = SIGTRAP;
CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a single step in kernel space */
if (kernel_mode_regs(fp))
goto traps_done;
else
break;
/* 0x11 - Trace Buffer Full, handled here */
case VEC_OVFLOW:
info.si_code = TRAP_TRACEFLOW;
sig = SIGTRAP;
strerror = KERN_NOTICE EXC_0x11(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x12 - Reserved, Caught by default */
/* 0x13 - Reserved, Caught by default */
/* 0x14 - Reserved, Caught by default */
/* 0x15 - Reserved, Caught by default */
/* 0x16 - Reserved, Caught by default */
/* 0x17 - Reserved, Caught by default */
/* 0x18 - Reserved, Caught by default */
/* 0x19 - Reserved, Caught by default */
/* 0x1A - Reserved, Caught by default */
/* 0x1B - Reserved, Caught by default */
/* 0x1C - Reserved, Caught by default */
/* 0x1D - Reserved, Caught by default */
/* 0x1E - Reserved, Caught by default */
/* 0x1F - Reserved, Caught by default */
/* 0x20 - Reserved, Caught by default */
/* 0x21 - Undefined Instruction, handled here */
case VEC_UNDEF_I:
#ifdef CONFIG_BUG
if (kernel_mode_regs(fp)) {
switch (report_bug(fp->pc, fp)) {
case BUG_TRAP_TYPE_NONE:
break;
case BUG_TRAP_TYPE_WARN:
dump_bfin_trace_buffer();
fp->pc += 2;
goto traps_done;
case BUG_TRAP_TYPE_BUG:
/* call to panic() will dump trace, and it is
* off at this point, so it won't be clobbered
*/
panic("BUG()");
}
}
#endif
info.si_code = ILL_ILLOPC;
sig = SIGILL;
strerror = KERN_NOTICE EXC_0x21(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x22 - Illegal Instruction Combination, handled here */
case VEC_ILGAL_I:
info.si_code = ILL_ILLPARAOP;
sig = SIGILL;
strerror = KERN_NOTICE EXC_0x22(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x23 - Data CPLB protection violation, handled here */
case VEC_CPLB_VL:
info.si_code = ILL_CPLB_VI;
sig = SIGSEGV;
strerror = KERN_NOTICE EXC_0x23(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x24 - Data access misaligned, handled here */
case VEC_MISALI_D:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
strerror = KERN_NOTICE EXC_0x24(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x25 - Unrecoverable Event, handled here */
case VEC_UNCOV:
info.si_code = ILL_ILLEXCPT;
sig = SIGILL;
strerror = KERN_NOTICE EXC_0x25(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
error case is handled here */
case VEC_CPLB_M:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
strerror = KERN_NOTICE EXC_0x26(KERN_NOTICE);
break;
/* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
case VEC_CPLB_MHIT:
info.si_code = ILL_CPLB_MULHIT;
sig = SIGSEGV;
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
strerror = KERN_NOTICE "NULL pointer access\n";
else
#endif
strerror = KERN_NOTICE EXC_0x27(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x28 - Emulation Watchpoint, handled here */
case VEC_WATCH:
info.si_code = TRAP_WATCHPT;
sig = SIGTRAP;
pr_debug(EXC_0x28(KERN_DEBUG));
CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a watchpoint in kernel space */
if (kernel_mode_regs(fp))
goto traps_done;
else
break;
#ifdef CONFIG_BF535
/* 0x29 - Instruction fetch access error (535 only) */
case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */
info.si_code = BUS_OPFETCH;
sig = SIGBUS;
strerror = KERN_NOTICE "BF535: VEC_ISTRU_VL\n";
CHK_DEBUGGER_TRAP_MAYBE();
break;
#else
/* 0x29 - Reserved, Caught by default */
#endif
/* 0x2A - Instruction fetch misaligned, handled here */
case VEC_MISALI_I:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
strerror = KERN_NOTICE EXC_0x2A(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2B - Instruction CPLB protection violation, handled here */
case VEC_CPLB_I_VL:
info.si_code = ILL_CPLB_VI;
sig = SIGBUS;
strerror = KERN_NOTICE EXC_0x2B(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
case VEC_CPLB_I_M:
info.si_code = ILL_CPLB_MISS;
sig = SIGBUS;
strerror = KERN_NOTICE EXC_0x2C(KERN_NOTICE);
break;
/* 0x2D - Instruction CPLB Multiple Hits, handled here */
case VEC_CPLB_I_MHIT:
info.si_code = ILL_CPLB_MULHIT;
sig = SIGSEGV;
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
strerror = KERN_NOTICE "Jump to NULL address\n";
else
#endif
strerror = KERN_NOTICE EXC_0x2D(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2E - Illegal use of Supervisor Resource, handled here */
case VEC_ILL_RES:
info.si_code = ILL_PRVOPC;
sig = SIGILL;
strerror = KERN_NOTICE EXC_0x2E(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE();
break;
/* 0x2F - Reserved, Caught by default */
/* 0x30 - Reserved, Caught by default */
/* 0x31 - Reserved, Caught by default */
/* 0x32 - Reserved, Caught by default */
/* 0x33 - Reserved, Caught by default */
/* 0x34 - Reserved, Caught by default */
/* 0x35 - Reserved, Caught by default */
/* 0x36 - Reserved, Caught by default */
/* 0x37 - Reserved, Caught by default */
/* 0x38 - Reserved, Caught by default */
/* 0x39 - Reserved, Caught by default */
/* 0x3A - Reserved, Caught by default */
/* 0x3B - Reserved, Caught by default */
/* 0x3C - Reserved, Caught by default */
/* 0x3D - Reserved, Caught by default */
/* 0x3E - Reserved, Caught by default */
/* 0x3F - Reserved, Caught by default */
case VEC_HWERR:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
/* System MMR Error */
case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
info.si_code = BUS_ADRALN;
sig = SIGBUS;
strerror = KERN_NOTICE HWC_x2(KERN_NOTICE);
break;
/* External Memory Addressing Error */
case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
if (ANOMALY_05000310) {
static unsigned long anomaly_rets;
if ((fp->pc >= (L1_CODE_START + L1_CODE_LENGTH - 512)) &&
(fp->pc < (L1_CODE_START + L1_CODE_LENGTH))) {
/*
* A false hardware error will happen while fetching at
* the L1 instruction SRAM boundary. Ignore it.
*/
anomaly_rets = fp->rets;
goto traps_done;
} else if (fp->rets == anomaly_rets) {
/*
* While boundary code returns to a function, at the ret
* point, a new false hardware error might occur too based
* on tests. Ignore it too.
*/
goto traps_done;
} else if ((fp->rets >= (L1_CODE_START + L1_CODE_LENGTH - 512)) &&
(fp->rets < (L1_CODE_START + L1_CODE_LENGTH))) {
/*
* If boundary code calls a function, at the entry point,
* a new false hardware error maybe happen based on tests.
* Ignore it too.
*/
goto traps_done;
} else
anomaly_rets = 0;
}
info.si_code = BUS_ADRERR;
sig = SIGBUS;
strerror = KERN_NOTICE HWC_x3(KERN_NOTICE);
break;
/* Performance Monitor Overflow */
case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
strerror = KERN_NOTICE HWC_x12(KERN_NOTICE);
break;
/* RAISE 5 instruction */
case (SEQSTAT_HWERRCAUSE_RAISE_5):
printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
break;
default: /* Reserved */
printk(KERN_NOTICE HWC_default(KERN_NOTICE));
break;
}
CHK_DEBUGGER_TRAP_MAYBE();
break;
/*
* We should be handling all known exception types above,
* if we get here we hit a reserved one, so panic
*/
default:
info.si_code = ILL_ILLPARAOP;
sig = SIGILL;
verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
(fp->seqstat & SEQSTAT_EXCAUSE));
CHK_DEBUGGER_TRAP_MAYBE();
break;
}
BUG_ON(sig == 0);
/* If the fault was caused by a kernel thread, or interrupt handler
* we will kernel panic, so the system reboots.
*/
if (kernel_mode_regs(fp) || (current && !current->mm)) {
console_verbose();
oops_in_progress = 1;
}
if (sig != SIGTRAP) {
if (strerror)
verbose_printk(strerror);
dump_bfin_process(fp);
dump_bfin_mem(fp);
show_regs(fp);
/* Print out the trace buffer if it makes sense */
#ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
verbose_printk(KERN_NOTICE "No trace since you do not have "
"CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n\n");
else
#endif
dump_bfin_trace_buffer();
if (oops_in_progress) {
/* Dump the current kernel stack */
verbose_printk(KERN_NOTICE "Kernel Stack\n");
show_stack(current, NULL);
print_modules();
#ifndef CONFIG_ACCESS_CHECK
verbose_printk(KERN_EMERG "Please turn on "
"CONFIG_ACCESS_CHECK\n");
#endif
panic("Kernel exception");
} else {
#ifdef CONFIG_DEBUG_VERBOSE
unsigned long *stack;
/* Dump the user space stack */
stack = (unsigned long *)rdusp();
verbose_printk(KERN_NOTICE "Userspace Stack\n");
show_stack(NULL, stack);
#endif
}
}
#ifdef CONFIG_IPIPE
if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp))
#endif
{
info.si_signo = sig;
info.si_errno = 0;
info.si_addr = (void __user *)fp->pc;
force_sig_info(sig, &info, current);
}
if ((ANOMALY_05000461 && trapnr == VEC_HWERR && !access_ok(VERIFY_READ, fp->pc, 8)) ||
(ANOMALY_05000281 && trapnr == VEC_HWERR) ||
(ANOMALY_05000189 && (trapnr == VEC_CPLB_I_VL || trapnr == VEC_CPLB_VL)))
fp->pc = SAFE_USER_INSTRUCTION;
traps_done:
trace_buffer_restore(j);
}
/* Typical exception handling routines */
#define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
/*
* Similar to get_user, do some address checking, then dereference
* Return true on success, false on bad address
*/
static bool get_instruction(unsigned short *val, unsigned short *address)
{
unsigned long addr = (unsigned long)address;
/* Check for odd addresses */
if (addr & 0x1)
return false;
/* MMR region will never have instructions */
if (addr >= SYSMMR_BASE)
return false;
switch (bfin_mem_access_type(addr, 2)) {
case BFIN_MEM_ACCESS_CORE:
case BFIN_MEM_ACCESS_CORE_ONLY:
*val = *address;
return true;
case BFIN_MEM_ACCESS_DMA:
dma_memcpy(val, address, 2);
return true;
case BFIN_MEM_ACCESS_ITEST:
isram_memcpy(val, address, 2);
return true;
default: /* invalid access */
return false;
}
}
/*
* decode the instruction if we are printing out the trace, as it
* makes things easier to follow, without running it through objdump
* These are the normal instructions which cause change of flow, which
* would be at the source of the trace buffer
*/
#if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
static void decode_instruction(unsigned short *address)
{
unsigned short opcode;
if (get_instruction(&opcode, address)) {
if (opcode == 0x0010)
verbose_printk("RTS");
else if (opcode == 0x0011)
verbose_printk("RTI");
else if (opcode == 0x0012)
verbose_printk("RTX");
else if (opcode == 0x0013)
verbose_printk("RTN");
else if (opcode == 0x0014)
verbose_printk("RTE");
else if (opcode == 0x0025)
verbose_printk("EMUEXCPT");
else if (opcode == 0x0040 && opcode <= 0x0047)
verbose_printk("STI R%i", opcode & 7);
else if (opcode >= 0x0050 && opcode <= 0x0057)
verbose_printk("JUMP (P%i)", opcode & 7);
else if (opcode >= 0x0060 && opcode <= 0x0067)
verbose_printk("CALL (P%i)", opcode & 7);
else if (opcode >= 0x0070 && opcode <= 0x0077)
verbose_printk("CALL (PC+P%i)", opcode & 7);
else if (opcode >= 0x0080 && opcode <= 0x0087)
verbose_printk("JUMP (PC+P%i)", opcode & 7);
else if (opcode >= 0x0090 && opcode <= 0x009F)
verbose_printk("RAISE 0x%x", opcode & 0xF);
else if (opcode >= 0x00A0 && opcode <= 0x00AF)
verbose_printk("EXCPT 0x%x", opcode & 0xF);
else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
verbose_printk("IF !CC JUMP");
else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
verbose_printk("IF CC JUMP");
else if (opcode >= 0x2000 && opcode <= 0x2fff)
verbose_printk("JUMP.S");
else if (opcode >= 0xe080 && opcode <= 0xe0ff)
verbose_printk("LSETUP");
else if (opcode >= 0xe200 && opcode <= 0xe2ff)
verbose_printk("JUMP.L");
else if (opcode >= 0xe300 && opcode <= 0xe3ff)
verbose_printk("CALL pcrel");
else
verbose_printk("0x%04x", opcode);
}
}
#endif
void dump_bfin_trace_buffer(void)
{
#ifdef CONFIG_DEBUG_VERBOSE
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int tflags, i = 0;
char buf[150];
unsigned short *addr;
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
int j, index;
#endif
trace_buffer_save(tflags);
printk(KERN_NOTICE "Hardware Trace:\n");
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
#endif
if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
decode_address(buf, (unsigned long)bfin_read_TBUF());
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
addr = (unsigned short *)bfin_read_TBUF();
decode_address(buf, (unsigned long)addr);
printk(KERN_NOTICE " Source : %s ", buf);
decode_instruction(addr);
printk("\n");
}
}
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
if (trace_buff_offset)
index = trace_buff_offset / 4;
else
index = EXPAND_LEN;
j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
while (j) {
decode_address(buf, software_trace_buff[index]);
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
index -= 1;
if (index < 0 )
index = EXPAND_LEN;
decode_address(buf, software_trace_buff[index]);
printk(KERN_NOTICE " Source : %s ", buf);
decode_instruction((unsigned short *)software_trace_buff[index]);
printk("\n");
index -= 1;
if (index < 0)
index = EXPAND_LEN;
j--;
i++;
}
#endif
trace_buffer_restore(tflags);
#endif
#endif
}
EXPORT_SYMBOL(dump_bfin_trace_buffer);
#ifdef CONFIG_BUG
int is_valid_bugaddr(unsigned long addr)
{
unsigned short opcode;
if (!get_instruction(&opcode, (unsigned short *)addr))
return 0;
return opcode == BFIN_BUG_OPCODE;
}
#endif
/*
* Checks to see if the address pointed to is either a
* 16-bit CALL instruction, or a 32-bit CALL instruction
*/
static bool is_bfin_call(unsigned short *addr)
{
unsigned short opcode = 0, *ins_addr;
ins_addr = (unsigned short *)addr;
if (!get_instruction(&opcode, ins_addr))
return false;
if ((opcode >= 0x0060 && opcode <= 0x0067) ||
(opcode >= 0x0070 && opcode <= 0x0077))
return true;
ins_addr--;
if (!get_instruction(&opcode, ins_addr))
return false;
if (opcode >= 0xE300 && opcode <= 0xE3FF)
return true;
return false;
}
void show_stack(struct task_struct *task, unsigned long *stack)
{
#ifdef CONFIG_PRINTK
unsigned int *addr, *endstack, *fp = 0, *frame;
unsigned short *ins_addr;
char buf[150];
unsigned int i, j, ret_addr, frame_no = 0;
/*
* If we have been passed a specific stack, use that one otherwise
* if we have been passed a task structure, use that, otherwise
* use the stack of where the variable "stack" exists
*/
if (stack == NULL) {
if (task) {
/* We know this is a kernel stack, so this is the start/end */
stack = (unsigned long *)task->thread.ksp;
endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
} else {
/* print out the existing stack info */
stack = (unsigned long *)&stack;
endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
}
} else
endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
printk(KERN_NOTICE "Stack info:\n");
decode_address(buf, (unsigned int)stack);
printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
if (!access_ok(VERIFY_READ, stack, (unsigned int)endstack - (unsigned int)stack)) {
printk(KERN_NOTICE "Invalid stack pointer\n");
return;
}
/* First thing is to look for a frame pointer */
for (addr = (unsigned int *)((unsigned int)stack & ~0xF); addr < endstack; addr++) {
if (*addr & 0x1)
continue;
ins_addr = (unsigned short *)*addr;
ins_addr--;
if (is_bfin_call(ins_addr))
fp = addr - 1;
if (fp) {
/* Let's check to see if it is a frame pointer */
while (fp >= (addr - 1) && fp < endstack
&& fp && ((unsigned int) fp & 0x3) == 0)
fp = (unsigned int *)*fp;
if (fp == 0 || fp == endstack) {
fp = addr - 1;
break;
}
fp = 0;
}
}
if (fp) {
frame = fp;
printk(KERN_NOTICE " FP: (0x%p)\n", fp);
} else
frame = 0;
/*
* Now that we think we know where things are, we
* walk the stack again, this time printing things out
* incase there is no frame pointer, we still look for
* valid return addresses
*/
/* First time print out data, next time, print out symbols */
for (j = 0; j <= 1; j++) {
if (j)
printk(KERN_NOTICE "Return addresses in stack:\n");
else
printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
fp = frame;
frame_no = 0;
for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
addr < endstack; addr++, i++) {
ret_addr = 0;
if (!j && i % 8 == 0)
printk(KERN_NOTICE "%p:",addr);
/* if it is an odd address, or zero, just skip it */
if (*addr & 0x1 || !*addr)
goto print;
ins_addr = (unsigned short *)*addr;
/* Go back one instruction, and see if it is a CALL */
ins_addr--;
ret_addr = is_bfin_call(ins_addr);
print:
if (!j && stack == (unsigned long *)addr)
printk("[%08x]", *addr);
else if (ret_addr)
if (j) {
decode_address(buf, (unsigned int)*addr);
if (frame == addr) {
printk(KERN_NOTICE " frame %2i : %s\n", frame_no, buf);
continue;
}
printk(KERN_NOTICE " address : %s\n", buf);
} else
printk("<%08x>", *addr);
else if (fp == addr) {
if (j)
frame = addr+1;
else
printk("(%08x)", *addr);
fp = (unsigned int *)*addr;
frame_no++;
} else if (!j)
printk(" %08x ", *addr);
}
if (!j)
printk("\n");
}
#endif
}
EXPORT_SYMBOL(show_stack);
void dump_stack(void)
{
unsigned long stack;
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int tflags;
#endif
trace_buffer_save(tflags);
dump_bfin_trace_buffer();
show_stack(current, &stack);
trace_buffer_restore(tflags);
}
EXPORT_SYMBOL(dump_stack);
void dump_bfin_process(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_VERBOSE
/* We should be able to look at fp->ipend, but we don't push it on the
* stack all the time, so do this until we fix that */
unsigned int context = bfin_read_IPEND();
if (oops_in_progress)
verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
verbose_printk(KERN_NOTICE "HW Error context\n");
else if (context & 0x0020)
verbose_printk(KERN_NOTICE "Deferred Exception context\n");
else if (context & 0x3FC0)
verbose_printk(KERN_NOTICE "Interrupt context\n");
else if (context & 0x4000)
verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
else if (context & 0x8000)
verbose_printk(KERN_NOTICE "Kernel process context\n");
/* Because we are crashing, and pointers could be bad, we check things
* pretty closely before we use them
*/
if ((unsigned long)current >= FIXED_CODE_START &&
!((unsigned long)current & 0x3) && current->pid) {
verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
if (current->comm >= (char *)FIXED_CODE_START)
verbose_printk(KERN_NOTICE "COMM=%s PID=%d",
current->comm, current->pid);
else
verbose_printk(KERN_NOTICE "COMM= invalid");
printk(KERN_CONT " CPU=%d\n", current_thread_info()->cpu);
if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
verbose_printk(KERN_NOTICE
"TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n"
" BSS = 0x%p-0x%p USER-STACK = 0x%p\n\n",
(void *)current->mm->start_code,
(void *)current->mm->end_code,
(void *)current->mm->start_data,
(void *)current->mm->end_data,
(void *)current->mm->end_data,
(void *)current->mm->brk,
(void *)current->mm->start_stack);
else
verbose_printk(KERN_NOTICE "invalid mm\n");
} else
verbose_printk(KERN_NOTICE
"No Valid process in current context\n");
#endif
}
void dump_bfin_mem(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_VERBOSE
unsigned short *addr, *erraddr, val = 0, err = 0;
char sti = 0, buf[6];
erraddr = (void *)fp->pc;
verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
addr++) {
if (!((unsigned long)addr & 0xF))
verbose_printk(KERN_NOTICE "0x%p: ", addr);
if (!get_instruction(&val, addr)) {
val = 0;
sprintf(buf, "????");
} else
sprintf(buf, "%04x", val);
if (addr == erraddr) {
verbose_printk("[%s]", buf);
err = val;
} else
verbose_printk(" %s ", buf);
/* Do any previous instructions turn on interrupts? */
if (addr <= erraddr && /* in the past */
((val >= 0x0040 && val <= 0x0047) || /* STI instruction */
val == 0x017b)) /* [SP++] = RETI */
sti = 1;
}
verbose_printk("\n");
/* Hardware error interrupts can be deferred */
if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
oops_in_progress)){
verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
#ifndef CONFIG_DEBUG_HWERR
verbose_printk(KERN_NOTICE
"The remaining message may be meaningless\n"
"You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n");
#else
/* If we are handling only one peripheral interrupt
* and current mm and pid are valid, and the last error
* was in that user space process's text area
* print it out - because that is where the problem exists
*/
if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
(current->pid && current->mm)) {
/* And the last RETI points to the current userspace context */
if ((fp + 1)->pc >= current->mm->start_code &&
(fp + 1)->pc <= current->mm->end_code) {
verbose_printk(KERN_NOTICE "It might be better to look around here : \n");
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
show_regs(fp + 1);
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
}
}
#endif
}
#endif
}
void show_regs(struct pt_regs *fp)
{
#ifdef CONFIG_DEBUG_VERBOSE
char buf [150];
struct irqaction *action;
unsigned int i;
unsigned long flags = 0;
unsigned int cpu = raw_smp_processor_id();
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
verbose_printk(KERN_NOTICE "\n");
if (CPUID != bfin_cpuid())
verbose_printk(KERN_NOTICE "Compiled for cpu family 0x%04x (Rev %d), "
"but running on:0x%04x (Rev %d)\n",
CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid());
verbose_printk(KERN_NOTICE "ADSP-%s-0.%d",
CPU, bfin_compiled_revid());
if (bfin_compiled_revid() != bfin_revid())
verbose_printk("(Detected 0.%d)", bfin_revid());
verbose_printk(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n",
get_cclk()/1000000, get_sclk()/1000000,
#ifdef CONFIG_MPU
"mpu on"
#else
"mpu off"
#endif
);
verbose_printk(KERN_NOTICE "%s", linux_banner);
verbose_printk(KERN_NOTICE "\nSEQUENCER STATUS:\t\t%s\n", print_tainted());
verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx IMASK: %04lx SYSCFG: %04lx\n",
(long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg);
if (fp->ipend & EVT_IRPTEN)
verbose_printk(KERN_NOTICE " Global Interrupts Disabled (IPEND[4])\n");
if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 |
EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR)))
verbose_printk(KERN_NOTICE " Peripheral interrupts masked off\n");
if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14)))
verbose_printk(KERN_NOTICE " Kernel interrupts masked off\n");
if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n",
(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
#ifdef EBIU_ERRMST
/* If the error was from the EBIU, print it out */
if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n",
bfin_read_EBIU_ERRMST());
verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n",
bfin_read_EBIU_ERRADD());
}
#endif
}
verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n",
fp->seqstat & SEQSTAT_EXCAUSE);
for (i = 2; i <= 15 ; i++) {
if (fp->ipend & (1 << i)) {
if (i != 4) {
decode_address(buf, bfin_read32(EVT0 + 4*i));
verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf);
} else
verbose_printk(KERN_NOTICE " interrupts disabled\n");
}
}
/* if no interrupts are going off, don't print this out */
if (fp->ipend & ~0x3F) {
for (i = 0; i < (NR_IRQS - 1); i++) {
if (!in_atomic)
raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto unlock;
decode_address(buf, (unsigned int)action->handler);
verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf);
for (action = action->next; action; action = action->next) {
decode_address(buf, (unsigned int)action->handler);
verbose_printk(", %s", buf);
}
verbose_printk("\n");
unlock:
if (!in_atomic)
raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
}
}
decode_address(buf, fp->rete);
verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
decode_address(buf, fp->retn);
verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
decode_address(buf, fp->retx);
verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
decode_address(buf, fp->rets);
verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
decode_address(buf, fp->pc);
verbose_printk(KERN_NOTICE " PC : %s\n", buf);
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
(((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
}
verbose_printk(KERN_NOTICE "PROCESSOR STATE:\n");
verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
fp->r0, fp->r1, fp->r2, fp->r3);
verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
fp->r4, fp->r5, fp->r6, fp->r7);
verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n",
fp->p0, fp->p1, fp->p2, fp->p3);
verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n",
fp->p4, fp->p5, fp->fp, (long)fp);
verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n",
fp->lb0, fp->lt0, fp->lc0);
verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n",
fp->lb1, fp->lt1, fp->lc1);
verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n",
fp->b0, fp->l0, fp->m0, fp->i0);
verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n",
fp->b1, fp->l1, fp->m1, fp->i1);
verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n",
fp->b2, fp->l2, fp->m2, fp->i2);
verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n",
fp->b3, fp->l3, fp->m3, fp->i3);
verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n",
fp->a0w, fp->a0x, fp->a1w, fp->a1x);
verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n",
rdusp(), fp->astat);
verbose_printk(KERN_NOTICE "\n");
#endif
}
#ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
#endif
static DEFINE_SPINLOCK(bfin_spinlock_lock);
asmlinkage int sys_bfin_spinlock(int *p)
{
int ret, tmp = 0;
spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */
ret = get_user(tmp, p);
if (likely(ret == 0)) {
if (unlikely(tmp))
ret = 1;
else
put_user(1, p);
}
spin_unlock(&bfin_spinlock_lock);
return ret;
}
int bfin_request_exception(unsigned int exception, void (*handler)(void))
{
void (*curr_handler)(void);
if (exception > 0x3F)
return -EINVAL;
curr_handler = ex_table[exception];
if (curr_handler != ex_replaceable)
return -EBUSY;
ex_table[exception] = handler;
return 0;
}
EXPORT_SYMBOL(bfin_request_exception);
int bfin_free_exception(unsigned int exception, void (*handler)(void))
{
void (*curr_handler)(void);
if (exception > 0x3F)
return -EINVAL;
curr_handler = ex_table[exception];
if (curr_handler != handler)
return -EBUSY;
ex_table[exception] = ex_replaceable;
return 0;
}
EXPORT_SYMBOL(bfin_free_exception);
void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
{
switch (cplb_panic) {
case CPLB_NO_UNLOCKED:
printk(KERN_EMERG "All CPLBs are locked\n");
break;
case CPLB_PROT_VIOL:
return;
case CPLB_NO_ADDR_MATCH:
return;
case CPLB_UNKNOWN_ERR:
printk(KERN_EMERG "Unknown CPLB Exception\n");
break;
}
oops_in_progress = 1;
dump_bfin_process(fp);
dump_bfin_mem(fp);
show_regs(fp);
dump_stack();
panic("Unrecoverable event");
}