/* * Copyright (C) 1994-1998 Linus Torvalds & authors (see below) * Copyright (C) 2005, 2007 Bartlomiej Zolnierkiewicz */ /* * Mostly written by Mark Lord * and Gadi Oxman * and Andre Hedrick * * See linux/MAINTAINERS for address of current maintainer. * * This is the IDE probe module, as evolved from hd.c and ide.c. * * -- increase WAIT_PIDENTIFY to avoid CD-ROM locking at boot * by Andrea Arcangeli */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static ide_hwif_t ide_hwifs[MAX_HWIFS]; /* master data repository */ /** * generic_id - add a generic drive id * @drive: drive to make an ID block for * * Add a fake id field to the drive we are passed. This allows * use to skip a ton of NULL checks (which people always miss) * and make drive properties unconditional outside of this file */ static void generic_id(ide_drive_t *drive) { drive->id->cyls = drive->cyl; drive->id->heads = drive->head; drive->id->sectors = drive->sect; drive->id->cur_cyls = drive->cyl; drive->id->cur_heads = drive->head; drive->id->cur_sectors = drive->sect; } static void ide_disk_init_chs(ide_drive_t *drive) { struct hd_driveid *id = drive->id; /* Extract geometry if we did not already have one for the drive */ if (!drive->cyl || !drive->head || !drive->sect) { drive->cyl = drive->bios_cyl = id->cyls; drive->head = drive->bios_head = id->heads; drive->sect = drive->bios_sect = id->sectors; } /* Handle logical geometry translation by the drive */ if ((id->field_valid & 1) && id->cur_cyls && id->cur_heads && (id->cur_heads <= 16) && id->cur_sectors) { drive->cyl = id->cur_cyls; drive->head = id->cur_heads; drive->sect = id->cur_sectors; } /* Use physical geometry if what we have still makes no sense */ if (drive->head > 16 && id->heads && id->heads <= 16) { drive->cyl = id->cyls; drive->head = id->heads; drive->sect = id->sectors; } } static void ide_disk_init_mult_count(ide_drive_t *drive) { struct hd_driveid *id = drive->id; drive->mult_count = 0; if (id->max_multsect) { #ifdef CONFIG_IDEDISK_MULTI_MODE id->multsect = ((id->max_multsect/2) > 1) ? id->max_multsect : 0; id->multsect_valid = id->multsect ? 1 : 0; drive->mult_req = id->multsect_valid ? id->max_multsect : 0; drive->special.b.set_multmode = drive->mult_req ? 1 : 0; #else /* original, pre IDE-NFG, per request of AC */ drive->mult_req = 0; if (drive->mult_req > id->max_multsect) drive->mult_req = id->max_multsect; if (drive->mult_req || ((id->multsect_valid & 1) && id->multsect)) drive->special.b.set_multmode = 1; #endif } } /** * do_identify - identify a drive * @drive: drive to identify * @cmd: command used * * Called when we have issued a drive identify command to * read and parse the results. This function is run with * interrupts disabled. */ static inline void do_identify (ide_drive_t *drive, u8 cmd) { ide_hwif_t *hwif = HWIF(drive); int bswap = 1; struct hd_driveid *id; id = drive->id; /* read 512 bytes of id info */ hwif->input_data(drive, NULL, id, SECTOR_SIZE); drive->id_read = 1; local_irq_enable(); #ifdef DEBUG printk(KERN_INFO "%s: dumping identify data\n", drive->name); ide_dump_identify((u8 *)id); #endif ide_fix_driveid(id); #if defined (CONFIG_SCSI_EATA_PIO) || defined (CONFIG_SCSI_EATA) /* * EATA SCSI controllers do a hardware ATA emulation: * Ignore them if there is a driver for them available. */ if ((id->model[0] == 'P' && id->model[1] == 'M') || (id->model[0] == 'S' && id->model[1] == 'K')) { printk("%s: EATA SCSI HBA %.10s\n", drive->name, id->model); goto err_misc; } #endif /* CONFIG_SCSI_EATA || CONFIG_SCSI_EATA_PIO */ /* * WIN_IDENTIFY returns little-endian info, * WIN_PIDENTIFY *usually* returns little-endian info. */ if (cmd == WIN_PIDENTIFY) { if ((id->model[0] == 'N' && id->model[1] == 'E') /* NEC */ || (id->model[0] == 'F' && id->model[1] == 'X') /* Mitsumi */ || (id->model[0] == 'P' && id->model[1] == 'i'))/* Pioneer */ /* Vertos drives may still be weird */ bswap ^= 1; } ide_fixstring(id->model, sizeof(id->model), bswap); ide_fixstring(id->fw_rev, sizeof(id->fw_rev), bswap); ide_fixstring(id->serial_no, sizeof(id->serial_no), bswap); /* we depend on this a lot! */ id->model[sizeof(id->model)-1] = '\0'; if (strstr(id->model, "E X A B Y T E N E S T")) goto err_misc; printk("%s: %s, ", drive->name, id->model); drive->present = 1; drive->dead = 0; /* * Check for an ATAPI device */ if (cmd == WIN_PIDENTIFY) { u8 type = (id->config >> 8) & 0x1f; printk("ATAPI "); switch (type) { case ide_floppy: if (!strstr(id->model, "CD-ROM")) { if (!strstr(id->model, "oppy") && !strstr(id->model, "poyp") && !strstr(id->model, "ZIP")) printk("cdrom or floppy?, assuming "); if (drive->media != ide_cdrom) { printk ("FLOPPY"); drive->removable = 1; break; } } /* Early cdrom models used zero */ type = ide_cdrom; case ide_cdrom: drive->removable = 1; #ifdef CONFIG_PPC /* kludge for Apple PowerBook internal zip */ if (!strstr(id->model, "CD-ROM") && strstr(id->model, "ZIP")) { printk ("FLOPPY"); type = ide_floppy; break; } #endif printk ("CD/DVD-ROM"); break; case ide_tape: printk ("TAPE"); break; case ide_optical: printk ("OPTICAL"); drive->removable = 1; break; default: printk("UNKNOWN (type %d)", type); break; } printk (" drive\n"); drive->media = type; /* an ATAPI device ignores DRDY */ drive->ready_stat = 0; return; } /* * Not an ATAPI device: looks like a "regular" hard disk */ /* * 0x848a = CompactFlash device * These are *not* removable in Linux definition of the term */ if ((id->config != 0x848a) && (id->config & (1<<7))) drive->removable = 1; drive->media = ide_disk; printk("%s DISK drive\n", (id->config == 0x848a) ? "CFA" : "ATA" ); return; err_misc: kfree(id); drive->present = 0; return; } /** * actual_try_to_identify - send ata/atapi identify * @drive: drive to identify * @cmd: command to use * * try_to_identify() sends an ATA(PI) IDENTIFY request to a drive * and waits for a response. It also monitors irqs while this is * happening, in hope of automatically determining which one is * being used by the interface. * * Returns: 0 device was identified * 1 device timed-out (no response to identify request) * 2 device aborted the command (refused to identify itself) */ static int actual_try_to_identify (ide_drive_t *drive, u8 cmd) { ide_hwif_t *hwif = HWIF(drive); struct ide_io_ports *io_ports = &hwif->io_ports; int use_altstatus = 0, rc; unsigned long timeout; u8 s = 0, a = 0; /* take a deep breath */ msleep(50); if (io_ports->ctl_addr) { a = ide_read_altstatus(drive); s = ide_read_status(drive); if ((a ^ s) & ~INDEX_STAT) /* ancient Seagate drives, broken interfaces */ printk(KERN_INFO "%s: probing with STATUS(0x%02x) " "instead of ALTSTATUS(0x%02x)\n", drive->name, s, a); else /* use non-intrusive polling */ use_altstatus = 1; } /* set features register for atapi * identify command to be sure of reply */ if ((cmd == WIN_PIDENTIFY)) /* disable dma & overlap */ hwif->OUTB(0, io_ports->feature_addr); /* ask drive for ID */ hwif->OUTBSYNC(hwif, cmd, hwif->io_ports.command_addr); timeout = ((cmd == WIN_IDENTIFY) ? WAIT_WORSTCASE : WAIT_PIDENTIFY) / 2; timeout += jiffies; do { if (time_after(jiffies, timeout)) { /* drive timed-out */ return 1; } /* give drive a breather */ msleep(50); s = use_altstatus ? ide_read_altstatus(drive) : ide_read_status(drive); } while (s & BUSY_STAT); /* wait for IRQ and DRQ_STAT */ msleep(50); s = ide_read_status(drive); if (OK_STAT(s, DRQ_STAT, BAD_R_STAT)) { unsigned long flags; /* local CPU only; some systems need this */ local_irq_save(flags); /* drive returned ID */ do_identify(drive, cmd); /* drive responded with ID */ rc = 0; /* clear drive IRQ */ (void)ide_read_status(drive); local_irq_restore(flags); } else { /* drive refused ID */ rc = 2; } return rc; } /** * try_to_identify - try to identify a drive * @drive: drive to probe * @cmd: command to use * * Issue the identify command and then do IRQ probing to * complete the identification when needed by finding the * IRQ the drive is attached to */ static int try_to_identify (ide_drive_t *drive, u8 cmd) { ide_hwif_t *hwif = HWIF(drive); int retval; int autoprobe = 0; unsigned long cookie = 0; /* * Disable device irq unless we need to * probe for it. Otherwise we'll get spurious * interrupts during the identify-phase that * the irq handler isn't expecting. */ if (hwif->io_ports.ctl_addr) { if (!hwif->irq) { autoprobe = 1; cookie = probe_irq_on(); } ide_set_irq(drive, autoprobe); } retval = actual_try_to_identify(drive, cmd); if (autoprobe) { int irq; ide_set_irq(drive, 0); /* clear drive IRQ */ (void)ide_read_status(drive); udelay(5); irq = probe_irq_off(cookie); if (!hwif->irq) { if (irq > 0) { hwif->irq = irq; } else { /* Mmmm.. multiple IRQs.. * don't know which was ours */ printk("%s: IRQ probe failed (0x%lx)\n", drive->name, cookie); } } } return retval; } static int ide_busy_sleep(ide_hwif_t *hwif) { unsigned long timeout = jiffies + WAIT_WORSTCASE; u8 stat; do { msleep(50); stat = hwif->INB(hwif->io_ports.status_addr); if ((stat & BUSY_STAT) == 0) return 0; } while (time_before(jiffies, timeout)); return 1; } /** * do_probe - probe an IDE device * @drive: drive to probe * @cmd: command to use * * do_probe() has the difficult job of finding a drive if it exists, * without getting hung up if it doesn't exist, without trampling on * ethernet cards, and without leaving any IRQs dangling to haunt us later. * * If a drive is "known" to exist (from CMOS or kernel parameters), * but does not respond right away, the probe will "hang in there" * for the maximum wait time (about 30 seconds), otherwise it will * exit much more quickly. * * Returns: 0 device was identified * 1 device timed-out (no response to identify request) * 2 device aborted the command (refused to identify itself) * 3 bad status from device (possible for ATAPI drives) * 4 probe was not attempted because failure was obvious */ static int do_probe (ide_drive_t *drive, u8 cmd) { ide_hwif_t *hwif = HWIF(drive); struct ide_io_ports *io_ports = &hwif->io_ports; int rc; u8 stat; if (drive->present) { /* avoid waiting for inappropriate probes */ if ((drive->media != ide_disk) && (cmd == WIN_IDENTIFY)) return 4; } #ifdef DEBUG printk("probing for %s: present=%d, media=%d, probetype=%s\n", drive->name, drive->present, drive->media, (cmd == WIN_IDENTIFY) ? "ATA" : "ATAPI"); #endif /* needed for some systems * (e.g. crw9624 as drive0 with disk as slave) */ msleep(50); SELECT_DRIVE(drive); msleep(50); if (hwif->INB(io_ports->device_addr) != drive->select.all && !drive->present) { if (drive->select.b.unit != 0) { /* exit with drive0 selected */ SELECT_DRIVE(&hwif->drives[0]); /* allow BUSY_STAT to assert & clear */ msleep(50); } /* no i/f present: mmm.. this should be a 4 -ml */ return 3; } stat = ide_read_status(drive); if (OK_STAT(stat, READY_STAT, BUSY_STAT) || drive->present || cmd == WIN_PIDENTIFY) { /* send cmd and wait */ if ((rc = try_to_identify(drive, cmd))) { /* failed: try again */ rc = try_to_identify(drive,cmd); } stat = ide_read_status(drive); if (stat == (BUSY_STAT | READY_STAT)) return 4; if (rc == 1 && cmd == WIN_PIDENTIFY) { printk(KERN_ERR "%s: no response (status = 0x%02x), " "resetting drive\n", drive->name, stat); msleep(50); SELECT_DRIVE(drive); msleep(50); hwif->OUTBSYNC(hwif, WIN_SRST, io_ports->command_addr); (void)ide_busy_sleep(hwif); rc = try_to_identify(drive, cmd); } /* ensure drive IRQ is clear */ stat = ide_read_status(drive); if (rc == 1) printk(KERN_ERR "%s: no response (status = 0x%02x)\n", drive->name, stat); } else { /* not present or maybe ATAPI */ rc = 3; } if (drive->select.b.unit != 0) { /* exit with drive0 selected */ SELECT_DRIVE(&hwif->drives[0]); msleep(50); /* ensure drive irq is clear */ (void)ide_read_status(drive); } return rc; } /* * */ static void enable_nest (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 stat; printk("%s: enabling %s -- ", hwif->name, drive->id->model); SELECT_DRIVE(drive); msleep(50); hwif->OUTBSYNC(hwif, EXABYTE_ENABLE_NEST, hwif->io_ports.command_addr); if (ide_busy_sleep(hwif)) { printk(KERN_CONT "failed (timeout)\n"); return; } msleep(50); stat = ide_read_status(drive); if (!OK_STAT(stat, 0, BAD_STAT)) printk(KERN_CONT "failed (status = 0x%02x)\n", stat); else printk(KERN_CONT "success\n"); /* if !(success||timed-out) */ if (do_probe(drive, WIN_IDENTIFY) >= 2) { /* look for ATAPI device */ (void) do_probe(drive, WIN_PIDENTIFY); } } /** * probe_for_drives - upper level drive probe * @drive: drive to probe for * * probe_for_drive() tests for existence of a given drive using do_probe() * and presents things to the user as needed. * * Returns: 0 no device was found * 1 device was found (note: drive->present might * still be 0) */ static inline u8 probe_for_drive (ide_drive_t *drive) { /* * In order to keep things simple we have an id * block for all drives at all times. If the device * is pre ATA or refuses ATA/ATAPI identify we * will add faked data to this. * * Also note that 0 everywhere means "can't do X" */ drive->id = kzalloc(SECTOR_WORDS *4, GFP_KERNEL); drive->id_read = 0; if(drive->id == NULL) { printk(KERN_ERR "ide: out of memory for id data.\n"); return 0; } strcpy(drive->id->model, "UNKNOWN"); /* skip probing? */ if (!drive->noprobe) { /* if !(success||timed-out) */ if (do_probe(drive, WIN_IDENTIFY) >= 2) { /* look for ATAPI device */ (void) do_probe(drive, WIN_PIDENTIFY); } if (!drive->present) /* drive not found */ return 0; if (strstr(drive->id->model, "E X A B Y T E N E S T")) enable_nest(drive); /* identification failed? */ if (!drive->id_read) { if (drive->media == ide_disk) { printk(KERN_INFO "%s: non-IDE drive, CHS=%d/%d/%d\n", drive->name, drive->cyl, drive->head, drive->sect); } else if (drive->media == ide_cdrom) { printk(KERN_INFO "%s: ATAPI cdrom (?)\n", drive->name); } else { /* nuke it */ printk(KERN_WARNING "%s: Unknown device on bus refused identification. Ignoring.\n", drive->name); drive->present = 0; } } /* drive was found */ } if(!drive->present) return 0; /* The drive wasn't being helpful. Add generic info only */ if (drive->id_read == 0) { generic_id(drive); return 1; } if (drive->media == ide_disk) { ide_disk_init_chs(drive); ide_disk_init_mult_count(drive); } return drive->present; } static void hwif_release_dev (struct device *dev) { ide_hwif_t *hwif = container_of(dev, ide_hwif_t, gendev); complete(&hwif->gendev_rel_comp); } static int ide_register_port(ide_hwif_t *hwif) { int ret; /* register with global device tree */ strlcpy(hwif->gendev.bus_id,hwif->name,BUS_ID_SIZE); hwif->gendev.driver_data = hwif; if (hwif->gendev.parent == NULL) { if (hwif->dev) hwif->gendev.parent = hwif->dev; else /* Would like to do = &device_legacy */ hwif->gendev.parent = NULL; } hwif->gendev.release = hwif_release_dev; ret = device_register(&hwif->gendev); if (ret < 0) { printk(KERN_WARNING "IDE: %s: device_register error: %d\n", __func__, ret); goto out; } hwif->portdev = device_create_drvdata(ide_port_class, &hwif->gendev, MKDEV(0, 0), hwif, hwif->name); if (IS_ERR(hwif->portdev)) { ret = PTR_ERR(hwif->portdev); device_unregister(&hwif->gendev); } out: return ret; } /** * ide_port_wait_ready - wait for port to become ready * @hwif: IDE port * * This is needed on some PPCs and a bunch of BIOS-less embedded * platforms. Typical cases are: * * - The firmware hard reset the disk before booting the kernel, * the drive is still doing it's poweron-reset sequence, that * can take up to 30 seconds. * * - The firmware does nothing (or no firmware), the device is * still in POST state (same as above actually). * * - Some CD/DVD/Writer combo drives tend to drive the bus during * their reset sequence even when they are non-selected slave * devices, thus preventing discovery of the main HD. * * Doing this wait-for-non-busy should not harm any existing * configuration and fix some issues like the above. * * BenH. * * Returns 0 on success, error code (< 0) otherwise. */ static int ide_port_wait_ready(ide_hwif_t *hwif) { int unit, rc; printk(KERN_DEBUG "Probing IDE interface %s...\n", hwif->name); /* Let HW settle down a bit from whatever init state we * come from */ mdelay(2); /* Wait for BSY bit to go away, spec timeout is 30 seconds, * I know of at least one disk who takes 31 seconds, I use 35 * here to be safe */ rc = ide_wait_not_busy(hwif, 35000); if (rc) return rc; /* Now make sure both master & slave are ready */ for (unit = 0; unit < MAX_DRIVES; unit++) { ide_drive_t *drive = &hwif->drives[unit]; /* Ignore disks that we will not probe for later. */ if (!drive->noprobe || drive->present) { SELECT_DRIVE(drive); ide_set_irq(drive, 1); mdelay(2); rc = ide_wait_not_busy(hwif, 35000); if (rc) goto out; } else printk(KERN_DEBUG "%s: ide_wait_not_busy() skipped\n", drive->name); } out: /* Exit function with master reselected (let's be sane) */ if (unit) SELECT_DRIVE(&hwif->drives[0]); return rc; } /** * ide_undecoded_slave - look for bad CF adapters * @drive1: drive * * Analyse the drives on the interface and attempt to decide if we * have the same drive viewed twice. This occurs with crap CF adapters * and PCMCIA sometimes. */ void ide_undecoded_slave(ide_drive_t *drive1) { ide_drive_t *drive0 = &drive1->hwif->drives[0]; if ((drive1->dn & 1) == 0 || drive0->present == 0) return; /* If the models don't match they are not the same product */ if (strcmp(drive0->id->model, drive1->id->model)) return; /* Serial numbers do not match */ if (strncmp(drive0->id->serial_no, drive1->id->serial_no, 20)) return; /* No serial number, thankfully very rare for CF */ if (drive0->id->serial_no[0] == 0) return; /* Appears to be an IDE flash adapter with decode bugs */ printk(KERN_WARNING "ide-probe: ignoring undecoded slave\n"); drive1->present = 0; } EXPORT_SYMBOL_GPL(ide_undecoded_slave); static int ide_probe_port(ide_hwif_t *hwif) { unsigned long flags; unsigned int irqd; int unit, rc = -ENODEV; BUG_ON(hwif->present); if (hwif->drives[0].noprobe && hwif->drives[1].noprobe) return -EACCES; /* * We must always disable IRQ, as probe_for_drive will assert IRQ, but * we'll install our IRQ driver much later... */ irqd = hwif->irq; if (irqd) disable_irq(hwif->irq); local_irq_set(flags); if (ide_port_wait_ready(hwif) == -EBUSY) printk(KERN_DEBUG "%s: Wait for ready failed before probe !\n", hwif->name); /* * Second drive should only exist if first drive was found, * but a lot of cdrom drives are configured as single slaves. */ for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; drive->dn = (hwif->channel ? 2 : 0) + unit; (void) probe_for_drive(drive); if (drive->present) rc = 0; } local_irq_restore(flags); /* * Use cached IRQ number. It might be (and is...) changed by probe * code above */ if (irqd) enable_irq(irqd); return rc; } static void ide_port_tune_devices(ide_hwif_t *hwif) { const struct ide_port_ops *port_ops = hwif->port_ops; int unit; for (unit = 0; unit < MAX_DRIVES; unit++) { ide_drive_t *drive = &hwif->drives[unit]; if (drive->present && port_ops && port_ops->quirkproc) port_ops->quirkproc(drive); } for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; if (drive->present) { ide_set_max_pio(drive); drive->nice1 = 1; if (hwif->dma_ops) ide_set_dma(drive); } } for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; if (hwif->host_flags & IDE_HFLAG_NO_IO_32BIT) drive->no_io_32bit = 1; else drive->no_io_32bit = drive->id->dword_io ? 1 : 0; } } #if MAX_HWIFS > 1 /* * save_match() is used to simplify logic in init_irq() below. * * A loophole here is that we may not know about a particular * hwif's irq until after that hwif is actually probed/initialized.. * This could be a problem for the case where an hwif is on a * dual interface that requires serialization (eg. cmd640) and another * hwif using one of the same irqs is initialized beforehand. * * This routine detects and reports such situations, but does not fix them. */ static void save_match(ide_hwif_t *hwif, ide_hwif_t *new, ide_hwif_t **match) { ide_hwif_t *m = *match; if (m && m->hwgroup && m->hwgroup != new->hwgroup) { if (!new->hwgroup) return; printk("%s: potential irq problem with %s and %s\n", hwif->name, new->name, m->name); } if (!m || m->irq != hwif->irq) /* don't undo a prior perfect match */ *match = new; } #endif /* MAX_HWIFS > 1 */ /* * init request queue */ static int ide_init_queue(ide_drive_t *drive) { struct request_queue *q; ide_hwif_t *hwif = HWIF(drive); int max_sectors = 256; int max_sg_entries = PRD_ENTRIES; /* * Our default set up assumes the normal IDE case, * that is 64K segmenting, standard PRD setup * and LBA28. Some drivers then impose their own * limits and LBA48 we could raise it but as yet * do not. */ q = blk_init_queue_node(do_ide_request, &ide_lock, hwif_to_node(hwif)); if (!q) return 1; q->queuedata = drive; blk_queue_segment_boundary(q, 0xffff); if (hwif->rqsize < max_sectors) max_sectors = hwif->rqsize; blk_queue_max_sectors(q, max_sectors); #ifdef CONFIG_PCI /* When we have an IOMMU, we may have a problem where pci_map_sg() * creates segments that don't completely match our boundary * requirements and thus need to be broken up again. Because it * doesn't align properly either, we may actually have to break up * to more segments than what was we got in the first place, a max * worst case is twice as many. * This will be fixed once we teach pci_map_sg() about our boundary * requirements, hopefully soon. *FIXME* */ if (!PCI_DMA_BUS_IS_PHYS) max_sg_entries >>= 1; #endif /* CONFIG_PCI */ blk_queue_max_hw_segments(q, max_sg_entries); blk_queue_max_phys_segments(q, max_sg_entries); /* assign drive queue */ drive->queue = q; /* needs drive->queue to be set */ ide_toggle_bounce(drive, 1); return 0; } static void ide_add_drive_to_hwgroup(ide_drive_t *drive) { ide_hwgroup_t *hwgroup = drive->hwif->hwgroup; spin_lock_irq(&ide_lock); if (!hwgroup->drive) { /* first drive for hwgroup. */ drive->next = drive; hwgroup->drive = drive; hwgroup->hwif = HWIF(hwgroup->drive); } else { drive->next = hwgroup->drive->next; hwgroup->drive->next = drive; } spin_unlock_irq(&ide_lock); } /* * For any present drive: * - allocate the block device queue * - link drive into the hwgroup */ static void ide_port_setup_devices(ide_hwif_t *hwif) { int i; mutex_lock(&ide_cfg_mtx); for (i = 0; i < MAX_DRIVES; i++) { ide_drive_t *drive = &hwif->drives[i]; if (!drive->present) continue; if (ide_init_queue(drive)) { printk(KERN_ERR "ide: failed to init %s\n", drive->name); continue; } ide_add_drive_to_hwgroup(drive); } mutex_unlock(&ide_cfg_mtx); } /* * This routine sets up the irq for an ide interface, and creates a new * hwgroup for the irq/hwif if none was previously assigned. * * Much of the code is for correctly detecting/handling irq sharing * and irq serialization situations. This is somewhat complex because * it handles static as well as dynamic (PCMCIA) IDE interfaces. */ static int init_irq (ide_hwif_t *hwif) { struct ide_io_ports *io_ports = &hwif->io_ports; unsigned int index; ide_hwgroup_t *hwgroup; ide_hwif_t *match = NULL; BUG_ON(in_interrupt()); BUG_ON(irqs_disabled()); BUG_ON(hwif == NULL); mutex_lock(&ide_cfg_mtx); hwif->hwgroup = NULL; #if MAX_HWIFS > 1 /* * Group up with any other hwifs that share our irq(s). */ for (index = 0; index < MAX_HWIFS; index++) { ide_hwif_t *h = &ide_hwifs[index]; if (h->hwgroup) { /* scan only initialized hwif's */ if (hwif->irq == h->irq) { hwif->sharing_irq = h->sharing_irq = 1; if (hwif->chipset != ide_pci || h->chipset != ide_pci) { save_match(hwif, h, &match); } } if (hwif->serialized) { if (hwif->mate && hwif->mate->irq == h->irq) save_match(hwif, h, &match); } if (h->serialized) { if (h->mate && hwif->irq == h->mate->irq) save_match(hwif, h, &match); } } } #endif /* MAX_HWIFS > 1 */ /* * If we are still without a hwgroup, then form a new one */ if (match) { hwgroup = match->hwgroup; hwif->hwgroup = hwgroup; /* * Link us into the hwgroup. * This must be done early, do ensure that unexpected_intr * can find the hwif and prevent irq storms. * No drives are attached to the new hwif, choose_drive * can't do anything stupid (yet). * Add ourself as the 2nd entry to the hwgroup->hwif * linked list, the first entry is the hwif that owns * hwgroup->handler - do not change that. */ spin_lock_irq(&ide_lock); hwif->next = hwgroup->hwif->next; hwgroup->hwif->next = hwif; BUG_ON(hwif->next == hwif); spin_unlock_irq(&ide_lock); } else { hwgroup = kmalloc_node(sizeof(*hwgroup), GFP_KERNEL|__GFP_ZERO, hwif_to_node(hwif)); if (hwgroup == NULL) goto out_up; hwif->hwgroup = hwgroup; hwgroup->hwif = hwif->next = hwif; init_timer(&hwgroup->timer); hwgroup->timer.function = &ide_timer_expiry; hwgroup->timer.data = (unsigned long) hwgroup; } /* * Allocate the irq, if not already obtained for another hwif */ if (!match || match->irq != hwif->irq) { int sa = 0; #if defined(__mc68000__) sa = IRQF_SHARED; #endif /* __mc68000__ */ if (IDE_CHIPSET_IS_PCI(hwif->chipset)) sa = IRQF_SHARED; if (io_ports->ctl_addr) /* clear nIEN */ hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS, io_ports->ctl_addr); if (request_irq(hwif->irq,&ide_intr,sa,hwif->name,hwgroup)) goto out_unlink; } if (!hwif->rqsize) { if ((hwif->host_flags & IDE_HFLAG_NO_LBA48) || (hwif->host_flags & IDE_HFLAG_NO_LBA48_DMA)) hwif->rqsize = 256; else hwif->rqsize = 65536; } #if !defined(__mc68000__) printk("%s at 0x%03lx-0x%03lx,0x%03lx on irq %d", hwif->name, io_ports->data_addr, io_ports->status_addr, io_ports->ctl_addr, hwif->irq); #else printk("%s at 0x%08lx on irq %d", hwif->name, io_ports->data_addr, hwif->irq); #endif /* __mc68000__ */ if (match) printk(" (%sed with %s)", hwif->sharing_irq ? "shar" : "serializ", match->name); printk("\n"); mutex_unlock(&ide_cfg_mtx); return 0; out_unlink: ide_remove_port_from_hwgroup(hwif); out_up: mutex_unlock(&ide_cfg_mtx); return 1; } static int ata_lock(dev_t dev, void *data) { /* FIXME: we want to pin hwif down */ return 0; } static struct kobject *ata_probe(dev_t dev, int *part, void *data) { ide_hwif_t *hwif = data; int unit = *part >> PARTN_BITS; ide_drive_t *drive = &hwif->drives[unit]; if (!drive->present) return NULL; if (drive->media == ide_disk) request_module("ide-disk"); if (drive->scsi) request_module("ide-scsi"); if (drive->media == ide_cdrom || drive->media == ide_optical) request_module("ide-cd"); if (drive->media == ide_tape) request_module("ide-tape"); if (drive->media == ide_floppy) request_module("ide-floppy"); return NULL; } static struct kobject *exact_match(dev_t dev, int *part, void *data) { struct gendisk *p = data; *part &= (1 << PARTN_BITS) - 1; return &p->dev.kobj; } static int exact_lock(dev_t dev, void *data) { struct gendisk *p = data; if (!get_disk(p)) return -1; return 0; } void ide_register_region(struct gendisk *disk) { blk_register_region(MKDEV(disk->major, disk->first_minor), disk->minors, NULL, exact_match, exact_lock, disk); } EXPORT_SYMBOL_GPL(ide_register_region); void ide_unregister_region(struct gendisk *disk) { blk_unregister_region(MKDEV(disk->major, disk->first_minor), disk->minors); } EXPORT_SYMBOL_GPL(ide_unregister_region); void ide_init_disk(struct gendisk *disk, ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; unsigned int unit = (drive->select.all >> 4) & 1; disk->major = hwif->major; disk->first_minor = unit << PARTN_BITS; sprintf(disk->disk_name, "hd%c", 'a' + hwif->index * MAX_DRIVES + unit); disk->queue = drive->queue; } EXPORT_SYMBOL_GPL(ide_init_disk); static void ide_remove_drive_from_hwgroup(ide_drive_t *drive) { ide_hwgroup_t *hwgroup = drive->hwif->hwgroup; if (drive == drive->next) { /* special case: last drive from hwgroup. */ BUG_ON(hwgroup->drive != drive); hwgroup->drive = NULL; } else { ide_drive_t *walk; walk = hwgroup->drive; while (walk->next != drive) walk = walk->next; walk->next = drive->next; if (hwgroup->drive == drive) { hwgroup->drive = drive->next; hwgroup->hwif = hwgroup->drive->hwif; } } BUG_ON(hwgroup->drive == drive); } static void drive_release_dev (struct device *dev) { ide_drive_t *drive = container_of(dev, ide_drive_t, gendev); ide_proc_unregister_device(drive); spin_lock_irq(&ide_lock); ide_remove_drive_from_hwgroup(drive); kfree(drive->id); drive->id = NULL; drive->present = 0; /* Messed up locking ... */ spin_unlock_irq(&ide_lock); blk_cleanup_queue(drive->queue); spin_lock_irq(&ide_lock); drive->queue = NULL; spin_unlock_irq(&ide_lock); complete(&drive->gendev_rel_comp); } static int hwif_init(ide_hwif_t *hwif) { int old_irq; if (!hwif->irq) { hwif->irq = __ide_default_irq(hwif->io_ports.data_addr); if (!hwif->irq) { printk("%s: DISABLED, NO IRQ\n", hwif->name); return 0; } } if (register_blkdev(hwif->major, hwif->name)) return 0; if (!hwif->sg_max_nents) hwif->sg_max_nents = PRD_ENTRIES; hwif->sg_table = kmalloc(sizeof(struct scatterlist)*hwif->sg_max_nents, GFP_KERNEL); if (!hwif->sg_table) { printk(KERN_ERR "%s: unable to allocate SG table.\n", hwif->name); goto out; } sg_init_table(hwif->sg_table, hwif->sg_max_nents); if (init_irq(hwif) == 0) goto done; old_irq = hwif->irq; /* * It failed to initialise. Find the default IRQ for * this port and try that. */ hwif->irq = __ide_default_irq(hwif->io_ports.data_addr); if (!hwif->irq) { printk("%s: Disabled unable to get IRQ %d.\n", hwif->name, old_irq); goto out; } if (init_irq(hwif)) { printk("%s: probed IRQ %d and default IRQ %d failed.\n", hwif->name, old_irq, hwif->irq); goto out; } printk("%s: probed IRQ %d failed, using default.\n", hwif->name, hwif->irq); done: blk_register_region(MKDEV(hwif->major, 0), MAX_DRIVES << PARTN_BITS, THIS_MODULE, ata_probe, ata_lock, hwif); return 1; out: unregister_blkdev(hwif->major, hwif->name); return 0; } static void hwif_register_devices(ide_hwif_t *hwif) { unsigned int i; for (i = 0; i < MAX_DRIVES; i++) { ide_drive_t *drive = &hwif->drives[i]; struct device *dev = &drive->gendev; int ret; if (!drive->present) continue; ide_add_generic_settings(drive); snprintf(dev->bus_id, BUS_ID_SIZE, "%u.%u", hwif->index, i); dev->parent = &hwif->gendev; dev->bus = &ide_bus_type; dev->driver_data = drive; dev->release = drive_release_dev; ret = device_register(dev); if (ret < 0) printk(KERN_WARNING "IDE: %s: device_register error: " "%d\n", __func__, ret); } } static void ide_port_init_devices(ide_hwif_t *hwif) { const struct ide_port_ops *port_ops = hwif->port_ops; int i; for (i = 0; i < MAX_DRIVES; i++) { ide_drive_t *drive = &hwif->drives[i]; if (hwif->host_flags & IDE_HFLAG_IO_32BIT) drive->io_32bit = 1; if (hwif->host_flags & IDE_HFLAG_UNMASK_IRQS) drive->unmask = 1; if (hwif->host_flags & IDE_HFLAG_NO_UNMASK_IRQS) drive->no_unmask = 1; if (port_ops && port_ops->init_dev) port_ops->init_dev(drive); } } static void ide_init_port(ide_hwif_t *hwif, unsigned int port, const struct ide_port_info *d) { hwif->channel = port; if (d->chipset) hwif->chipset = d->chipset; if (d->init_iops) d->init_iops(hwif); if ((!hwif->irq && (d->host_flags & IDE_HFLAG_LEGACY_IRQS)) || (d->host_flags & IDE_HFLAG_FORCE_LEGACY_IRQS)) hwif->irq = port ? 15 : 14; /* ->host_flags may be set by ->init_iops (or even earlier...) */ hwif->host_flags |= d->host_flags; hwif->pio_mask = d->pio_mask; /* ->set_pio_mode for DTC2278 is currently limited to port 0 */ if (hwif->chipset != ide_dtc2278 || hwif->channel == 0) hwif->port_ops = d->port_ops; hwif->swdma_mask = d->swdma_mask; hwif->mwdma_mask = d->mwdma_mask; hwif->ultra_mask = d->udma_mask; if ((d->host_flags & IDE_HFLAG_NO_DMA) == 0) { int rc; if (d->init_dma) rc = d->init_dma(hwif, d); else rc = ide_hwif_setup_dma(hwif, d); if (rc < 0) { printk(KERN_INFO "%s: DMA disabled\n", hwif->name); hwif->dma_base = 0; hwif->swdma_mask = 0; hwif->mwdma_mask = 0; hwif->ultra_mask = 0; } else if (d->dma_ops) hwif->dma_ops = d->dma_ops; } if ((d->host_flags & IDE_HFLAG_SERIALIZE) || ((d->host_flags & IDE_HFLAG_SERIALIZE_DMA) && hwif->dma_base)) { if (hwif->mate) hwif->mate->serialized = hwif->serialized = 1; } if (d->host_flags & IDE_HFLAG_RQSIZE_256) hwif->rqsize = 256; /* call chipset specific routine for each enabled port */ if (d->init_hwif) d->init_hwif(hwif); } static void ide_port_cable_detect(ide_hwif_t *hwif) { const struct ide_port_ops *port_ops = hwif->port_ops; if (port_ops && port_ops->cable_detect && (hwif->ultra_mask & 0x78)) { if (hwif->cbl != ATA_CBL_PATA40_SHORT) hwif->cbl = port_ops->cable_detect(hwif); } } static ssize_t store_delete_devices(struct device *portdev, struct device_attribute *attr, const char *buf, size_t n) { ide_hwif_t *hwif = dev_get_drvdata(portdev); if (strncmp(buf, "1", n)) return -EINVAL; ide_port_unregister_devices(hwif); return n; }; static DEVICE_ATTR(delete_devices, S_IWUSR, NULL, store_delete_devices); static ssize_t store_scan(struct device *portdev, struct device_attribute *attr, const char *buf, size_t n) { ide_hwif_t *hwif = dev_get_drvdata(portdev); if (strncmp(buf, "1", n)) return -EINVAL; ide_port_unregister_devices(hwif); ide_port_scan(hwif); return n; }; static DEVICE_ATTR(scan, S_IWUSR, NULL, store_scan); static struct device_attribute *ide_port_attrs[] = { &dev_attr_delete_devices, &dev_attr_scan, NULL }; static int ide_sysfs_register_port(ide_hwif_t *hwif) { int i, rc; for (i = 0; ide_port_attrs[i]; i++) { rc = device_create_file(hwif->portdev, ide_port_attrs[i]); if (rc) break; } return rc; } /** * ide_find_port_slot - find free ide_hwifs[] slot * @d: IDE port info * * Return the new hwif. If we are out of free slots return NULL. */ ide_hwif_t *ide_find_port_slot(const struct ide_port_info *d) { ide_hwif_t *hwif; int i; u8 bootable = (d && (d->host_flags & IDE_HFLAG_NON_BOOTABLE)) ? 0 : 1; /* * Claim an unassigned slot. * * Give preference to claiming other slots before claiming ide0/ide1, * just in case there's another interface yet-to-be-scanned * which uses ports 0x1f0/0x170 (the ide0/ide1 defaults). * * Unless there is a bootable card that does not use the standard * ports 0x1f0/0x170 (the ide0/ide1 defaults). */ if (bootable) { i = (d && (d->host_flags & IDE_HFLAG_QD_2ND_PORT)) ? 1 : 0; for (; i < MAX_HWIFS; i++) { hwif = &ide_hwifs[i]; if (hwif->chipset == ide_unknown) goto out_found; } } else { for (i = 2; i < MAX_HWIFS; i++) { hwif = &ide_hwifs[i]; if (hwif->chipset == ide_unknown) goto out_found; } for (i = 0; i < 2 && i < MAX_HWIFS; i++) { hwif = &ide_hwifs[i]; if (hwif->chipset == ide_unknown) goto out_found; } } printk(KERN_ERR "%s: no free slot for interface\n", d ? d->name : "ide"); return NULL; out_found: ide_init_port_data(hwif, i); return hwif; } EXPORT_SYMBOL_GPL(ide_find_port_slot); int ide_device_add_all(u8 *idx, const struct ide_port_info *d, hw_regs_t **hws) { ide_hwif_t *hwif, *mate = NULL; int i, rc = 0; for (i = 0; i < MAX_HWIFS; i++) { if (idx[i] == 0xff) { mate = NULL; continue; } hwif = &ide_hwifs[idx[i]]; ide_init_port_hw(hwif, hws[i]); ide_port_apply_params(hwif); if (d == NULL) { mate = NULL; continue; } if ((i & 1) && mate) { hwif->mate = mate; mate->mate = hwif; } mate = (i & 1) ? NULL : hwif; ide_init_port(hwif, i & 1, d); ide_port_cable_detect(hwif); ide_port_init_devices(hwif); } for (i = 0; i < MAX_HWIFS; i++) { if (idx[i] == 0xff) continue; hwif = &ide_hwifs[idx[i]]; if (ide_probe_port(hwif) == 0) hwif->present = 1; if (hwif->chipset != ide_4drives || !hwif->mate || !hwif->mate->present) ide_register_port(hwif); if (hwif->present) ide_port_tune_devices(hwif); } for (i = 0; i < MAX_HWIFS; i++) { if (idx[i] == 0xff) continue; hwif = &ide_hwifs[idx[i]]; if (hwif_init(hwif) == 0) { printk(KERN_INFO "%s: failed to initialize IDE " "interface\n", hwif->name); hwif->present = 0; rc = -1; continue; } if (hwif->present) ide_port_setup_devices(hwif); ide_acpi_init(hwif); if (hwif->present) ide_acpi_port_init_devices(hwif); } for (i = 0; i < MAX_HWIFS; i++) { if (idx[i] == 0xff) continue; hwif = &ide_hwifs[idx[i]]; if (hwif->chipset == ide_unknown) hwif->chipset = ide_generic; if (hwif->present) hwif_register_devices(hwif); } for (i = 0; i < MAX_HWIFS; i++) { if (idx[i] == 0xff) continue; hwif = &ide_hwifs[idx[i]]; ide_sysfs_register_port(hwif); ide_proc_register_port(hwif); if (hwif->present) ide_proc_port_register_devices(hwif); } return rc; } EXPORT_SYMBOL_GPL(ide_device_add_all); int ide_device_add(u8 *idx, const struct ide_port_info *d, hw_regs_t **hws) { hw_regs_t *hws_all[MAX_HWIFS]; u8 idx_all[MAX_HWIFS]; int i; for (i = 0; i < MAX_HWIFS; i++) { hws_all[i] = (i < 4) ? hws[i] : NULL; idx_all[i] = (i < 4) ? idx[i] : 0xff; } return ide_device_add_all(idx_all, d, hws_all); } EXPORT_SYMBOL_GPL(ide_device_add); void ide_port_scan(ide_hwif_t *hwif) { ide_port_apply_params(hwif); ide_port_cable_detect(hwif); ide_port_init_devices(hwif); if (ide_probe_port(hwif) < 0) return; hwif->present = 1; ide_port_tune_devices(hwif); ide_acpi_port_init_devices(hwif); ide_port_setup_devices(hwif); hwif_register_devices(hwif); ide_proc_port_register_devices(hwif); } EXPORT_SYMBOL_GPL(ide_port_scan); static void ide_legacy_init_one(u8 *idx, hw_regs_t **hws, hw_regs_t *hw, u8 port_no, const struct ide_port_info *d, unsigned long config) { ide_hwif_t *hwif; unsigned long base, ctl; int irq; if (port_no == 0) { base = 0x1f0; ctl = 0x3f6; irq = 14; } else { base = 0x170; ctl = 0x376; irq = 15; } if (!request_region(base, 8, d->name)) { printk(KERN_ERR "%s: I/O resource 0x%lX-0x%lX not free.\n", d->name, base, base + 7); return; } if (!request_region(ctl, 1, d->name)) { printk(KERN_ERR "%s: I/O resource 0x%lX not free.\n", d->name, ctl); release_region(base, 8); return; } ide_std_init_ports(hw, base, ctl); hw->irq = irq; hw->chipset = d->chipset; hwif = ide_find_port_slot(d); if (hwif) { hwif->chipset = hw->chipset; if (config) hwif->config_data = config; hws[port_no] = hw; idx[port_no] = hwif->index; } } int ide_legacy_device_add(const struct ide_port_info *d, unsigned long config) { u8 idx[4] = { 0xff, 0xff, 0xff, 0xff }; hw_regs_t hw[2], *hws[] = { NULL, NULL, NULL, NULL }; memset(&hw, 0, sizeof(hw)); if ((d->host_flags & IDE_HFLAG_QD_2ND_PORT) == 0) ide_legacy_init_one(idx, hws, &hw[0], 0, d, config); ide_legacy_init_one(idx, hws, &hw[1], 1, d, config); if (idx[0] == 0xff && idx[1] == 0xff && (d->host_flags & IDE_HFLAG_SINGLE)) return -ENOENT; ide_device_add(idx, d, hws); return 0; } EXPORT_SYMBOL_GPL(ide_legacy_device_add);