/* * Standard PCI Hot Plug Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to , * */ #include #include #include #include #include #include "shpchp.h" #ifdef DEBUG #define DBG_K_TRACE_ENTRY ((unsigned int)0x00000001) /* On function entry */ #define DBG_K_TRACE_EXIT ((unsigned int)0x00000002) /* On function exit */ #define DBG_K_INFO ((unsigned int)0x00000004) /* Info messages */ #define DBG_K_ERROR ((unsigned int)0x00000008) /* Error messages */ #define DBG_K_TRACE (DBG_K_TRACE_ENTRY|DBG_K_TRACE_EXIT) #define DBG_K_STANDARD (DBG_K_INFO|DBG_K_ERROR|DBG_K_TRACE) /* Redefine this flagword to set debug level */ #define DEBUG_LEVEL DBG_K_STANDARD #define DEFINE_DBG_BUFFER char __dbg_str_buf[256]; #define DBG_PRINT( dbg_flags, args... ) \ do { \ if ( DEBUG_LEVEL & ( dbg_flags ) ) \ { \ int len; \ len = sprintf( __dbg_str_buf, "%s:%d: %s: ", \ __FILE__, __LINE__, __FUNCTION__ ); \ sprintf( __dbg_str_buf + len, args ); \ printk( KERN_NOTICE "%s\n", __dbg_str_buf ); \ } \ } while (0) #define DBG_ENTER_ROUTINE DBG_PRINT (DBG_K_TRACE_ENTRY, "%s", "[Entry]"); #define DBG_LEAVE_ROUTINE DBG_PRINT (DBG_K_TRACE_EXIT, "%s", "[Exit]"); #else #define DEFINE_DBG_BUFFER #define DBG_ENTER_ROUTINE #define DBG_LEAVE_ROUTINE #endif /* DEBUG */ /* Slot Available Register I field definition */ #define SLOT_33MHZ 0x0000001f #define SLOT_66MHZ_PCIX 0x00001f00 #define SLOT_100MHZ_PCIX 0x001f0000 #define SLOT_133MHZ_PCIX 0x1f000000 /* Slot Available Register II field definition */ #define SLOT_66MHZ 0x0000001f #define SLOT_66MHZ_PCIX_266 0x00000f00 #define SLOT_100MHZ_PCIX_266 0x0000f000 #define SLOT_133MHZ_PCIX_266 0x000f0000 #define SLOT_66MHZ_PCIX_533 0x00f00000 #define SLOT_100MHZ_PCIX_533 0x0f000000 #define SLOT_133MHZ_PCIX_533 0xf0000000 /* Slot Configuration */ #define SLOT_NUM 0x0000001F #define FIRST_DEV_NUM 0x00001F00 #define PSN 0x07FF0000 #define UPDOWN 0x20000000 #define MRLSENSOR 0x40000000 #define ATTN_BUTTON 0x80000000 /* * Controller SERR-INT Register */ #define GLOBAL_INTR_MASK (1 << 0) #define GLOBAL_SERR_MASK (1 << 1) #define COMMAND_INTR_MASK (1 << 2) #define ARBITER_SERR_MASK (1 << 3) #define COMMAND_DETECTED (1 << 16) #define ARBITER_DETECTED (1 << 17) #define SERR_INTR_RSVDZ_MASK 0xfffc0000 /* * Logical Slot Register definitions */ #define SLOT_REG(i) (SLOT1 + (4 * i)) #define SLOT_STATE_SHIFT (0) #define SLOT_STATE_MASK (3 << 0) #define SLOT_STATE_PWRONLY (1) #define SLOT_STATE_ENABLED (2) #define SLOT_STATE_DISABLED (3) #define PWR_LED_STATE_SHIFT (2) #define PWR_LED_STATE_MASK (3 << 2) #define ATN_LED_STATE_SHIFT (4) #define ATN_LED_STATE_MASK (3 << 4) #define ATN_LED_STATE_ON (1) #define ATN_LED_STATE_BLINK (2) #define ATN_LED_STATE_OFF (3) #define POWER_FAULT (1 << 6) #define ATN_BUTTON (1 << 7) #define MRL_SENSOR (1 << 8) #define MHZ66_CAP (1 << 9) #define PRSNT_SHIFT (10) #define PRSNT_MASK (3 << 10) #define PCIX_CAP_SHIFT (12) #define PCIX_CAP_MASK_PI1 (3 << 12) #define PCIX_CAP_MASK_PI2 (7 << 12) #define PRSNT_CHANGE_DETECTED (1 << 16) #define ISO_PFAULT_DETECTED (1 << 17) #define BUTTON_PRESS_DETECTED (1 << 18) #define MRL_CHANGE_DETECTED (1 << 19) #define CON_PFAULT_DETECTED (1 << 20) #define PRSNT_CHANGE_INTR_MASK (1 << 24) #define ISO_PFAULT_INTR_MASK (1 << 25) #define BUTTON_PRESS_INTR_MASK (1 << 26) #define MRL_CHANGE_INTR_MASK (1 << 27) #define CON_PFAULT_INTR_MASK (1 << 28) #define MRL_CHANGE_SERR_MASK (1 << 29) #define CON_PFAULT_SERR_MASK (1 << 30) #define SLOT_REG_RSVDZ_MASK (1 << 15) | (7 << 21) /* SHPC 'write' operations/commands */ /* Slot operation - 0x00h to 0x3Fh */ #define NO_CHANGE 0x00 /* Slot state - Bits 0 & 1 of controller command register */ #define SET_SLOT_PWR 0x01 #define SET_SLOT_ENABLE 0x02 #define SET_SLOT_DISABLE 0x03 /* Power indicator state - Bits 2 & 3 of controller command register*/ #define SET_PWR_ON 0x04 #define SET_PWR_BLINK 0x08 #define SET_PWR_OFF 0x0C /* Attention indicator state - Bits 4 & 5 of controller command register*/ #define SET_ATTN_ON 0x010 #define SET_ATTN_BLINK 0x020 #define SET_ATTN_OFF 0x030 /* Set bus speed/mode A - 0x40h to 0x47h */ #define SETA_PCI_33MHZ 0x40 #define SETA_PCI_66MHZ 0x41 #define SETA_PCIX_66MHZ 0x42 #define SETA_PCIX_100MHZ 0x43 #define SETA_PCIX_133MHZ 0x44 #define RESERV_1 0x45 #define RESERV_2 0x46 #define RESERV_3 0x47 /* Set bus speed/mode B - 0x50h to 0x5fh */ #define SETB_PCI_33MHZ 0x50 #define SETB_PCI_66MHZ 0x51 #define SETB_PCIX_66MHZ_PM 0x52 #define SETB_PCIX_100MHZ_PM 0x53 #define SETB_PCIX_133MHZ_PM 0x54 #define SETB_PCIX_66MHZ_EM 0x55 #define SETB_PCIX_100MHZ_EM 0x56 #define SETB_PCIX_133MHZ_EM 0x57 #define SETB_PCIX_66MHZ_266 0x58 #define SETB_PCIX_100MHZ_266 0x59 #define SETB_PCIX_133MHZ_266 0x5a #define SETB_PCIX_66MHZ_533 0x5b #define SETB_PCIX_100MHZ_533 0x5c #define SETB_PCIX_133MHZ_533 0x5d /* Power-on all slots - 0x48h */ #define SET_PWR_ON_ALL 0x48 /* Enable all slots - 0x49h */ #define SET_ENABLE_ALL 0x49 /* SHPC controller command error code */ #define SWITCH_OPEN 0x1 #define INVALID_CMD 0x2 #define INVALID_SPEED_MODE 0x4 /* For accessing SHPC Working Register Set */ #define DWORD_SELECT 0x2 #define DWORD_DATA 0x4 #define BASE_OFFSET 0x0 /* Field Offset in Logical Slot Register - byte boundary */ #define SLOT_EVENT_LATCH 0x2 #define SLOT_SERR_INT_MASK 0x3 static spinlock_t hpc_event_lock; DEFINE_DBG_BUFFER /* Debug string buffer for entire HPC defined here */ static struct php_ctlr_state_s *php_ctlr_list_head; /* HPC state linked list */ static int ctlr_seq_num = 0; /* Controller sequenc # */ static spinlock_t list_lock; static atomic_t shpchp_num_controllers = ATOMIC_INIT(0); static irqreturn_t shpc_isr(int IRQ, void *dev_id, struct pt_regs *regs); static void start_int_poll_timer(struct php_ctlr_state_s *php_ctlr, int seconds); static int hpc_check_cmd_status(struct controller *ctrl); static inline u8 shpc_readb(struct controller *ctrl, int reg) { return readb(ctrl->hpc_ctlr_handle->creg + reg); } static inline void shpc_writeb(struct controller *ctrl, int reg, u8 val) { writeb(val, ctrl->hpc_ctlr_handle->creg + reg); } static inline u16 shpc_readw(struct controller *ctrl, int reg) { return readw(ctrl->hpc_ctlr_handle->creg + reg); } static inline void shpc_writew(struct controller *ctrl, int reg, u16 val) { writew(val, ctrl->hpc_ctlr_handle->creg + reg); } static inline u32 shpc_readl(struct controller *ctrl, int reg) { return readl(ctrl->hpc_ctlr_handle->creg + reg); } static inline void shpc_writel(struct controller *ctrl, int reg, u32 val) { writel(val, ctrl->hpc_ctlr_handle->creg + reg); } static inline int shpc_indirect_read(struct controller *ctrl, int index, u32 *value) { int rc; u32 cap_offset = ctrl->cap_offset; struct pci_dev *pdev = ctrl->pci_dev; rc = pci_write_config_byte(pdev, cap_offset + DWORD_SELECT, index); if (rc) return rc; return pci_read_config_dword(pdev, cap_offset + DWORD_DATA, value); } /* This is the interrupt polling timeout function. */ static void int_poll_timeout(unsigned long lphp_ctlr) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *)lphp_ctlr; DBG_ENTER_ROUTINE if ( !php_ctlr ) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return; } /* Poll for interrupt events. regs == NULL => polling */ shpc_isr( 0, (void *)php_ctlr, NULL ); init_timer(&php_ctlr->int_poll_timer); if (!shpchp_poll_time) shpchp_poll_time = 2; /* reset timer to poll in 2 secs if user doesn't specify at module installation*/ start_int_poll_timer(php_ctlr, shpchp_poll_time); return; } /* This function starts the interrupt polling timer. */ static void start_int_poll_timer(struct php_ctlr_state_s *php_ctlr, int seconds) { if (!php_ctlr) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return; } if ( ( seconds <= 0 ) || ( seconds > 60 ) ) seconds = 2; /* Clamp to sane value */ php_ctlr->int_poll_timer.function = &int_poll_timeout; php_ctlr->int_poll_timer.data = (unsigned long)php_ctlr; /* Instance data */ php_ctlr->int_poll_timer.expires = jiffies + seconds * HZ; add_timer(&php_ctlr->int_poll_timer); return; } static inline int shpc_wait_cmd(struct controller *ctrl) { int retval = 0; unsigned int timeout_msec = shpchp_poll_mode ? 2000 : 1000; unsigned long timeout = msecs_to_jiffies(timeout_msec); int rc = wait_event_interruptible_timeout(ctrl->queue, !ctrl->cmd_busy, timeout); if (!rc) { retval = -EIO; err("Command not completed in %d msec\n", timeout_msec); } else if (rc < 0) { retval = -EINTR; info("Command was interrupted by a signal\n"); } ctrl->cmd_busy = 0; return retval; } static int shpc_write_cmd(struct slot *slot, u8 t_slot, u8 cmd) { struct controller *ctrl = slot->ctrl; u16 cmd_status; int retval = 0; u16 temp_word; int i; DBG_ENTER_ROUTINE mutex_lock(&slot->ctrl->cmd_lock); for (i = 0; i < 10; i++) { cmd_status = shpc_readw(ctrl, CMD_STATUS); if (!(cmd_status & 0x1)) break; /* Check every 0.1 sec for a total of 1 sec*/ msleep(100); } cmd_status = shpc_readw(ctrl, CMD_STATUS); if (cmd_status & 0x1) { /* After 1 sec and and the controller is still busy */ err("%s : Controller is still busy after 1 sec.\n", __FUNCTION__); retval = -EBUSY; goto out; } ++t_slot; temp_word = (t_slot << 8) | (cmd & 0xFF); dbg("%s: t_slot %x cmd %x\n", __FUNCTION__, t_slot, cmd); /* To make sure the Controller Busy bit is 0 before we send out the * command. */ slot->ctrl->cmd_busy = 1; shpc_writew(ctrl, CMD, temp_word); /* * Wait for command completion. */ retval = shpc_wait_cmd(slot->ctrl); if (retval) goto out; cmd_status = hpc_check_cmd_status(slot->ctrl); if (cmd_status) { err("%s: Failed to issued command 0x%x (error code = %d)\n", __FUNCTION__, cmd, cmd_status); retval = -EIO; } out: mutex_unlock(&slot->ctrl->cmd_lock); DBG_LEAVE_ROUTINE return retval; } static int hpc_check_cmd_status(struct controller *ctrl) { u16 cmd_status; int retval = 0; DBG_ENTER_ROUTINE cmd_status = shpc_readw(ctrl, CMD_STATUS) & 0x000F; switch (cmd_status >> 1) { case 0: retval = 0; break; case 1: retval = SWITCH_OPEN; err("%s: Switch opened!\n", __FUNCTION__); break; case 2: retval = INVALID_CMD; err("%s: Invalid HPC command!\n", __FUNCTION__); break; case 4: retval = INVALID_SPEED_MODE; err("%s: Invalid bus speed/mode!\n", __FUNCTION__); break; default: retval = cmd_status; } DBG_LEAVE_ROUTINE return retval; } static int hpc_get_attention_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg; u8 state; DBG_ENTER_ROUTINE slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); state = (slot_reg & ATN_LED_STATE_MASK) >> ATN_LED_STATE_SHIFT; switch (state) { case ATN_LED_STATE_ON: *status = 1; /* On */ break; case ATN_LED_STATE_BLINK: *status = 2; /* Blink */ break; case ATN_LED_STATE_OFF: *status = 0; /* Off */ break; default: *status = 0xFF; /* Reserved */ break; } DBG_LEAVE_ROUTINE return 0; } static int hpc_get_power_status(struct slot * slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg; u8 state; DBG_ENTER_ROUTINE slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); state = (slot_reg & SLOT_STATE_MASK) >> SLOT_STATE_SHIFT; switch (state) { case SLOT_STATE_PWRONLY: *status = 2; /* Powered only */ break; case SLOT_STATE_ENABLED: *status = 1; /* Enabled */ break; case SLOT_STATE_DISABLED: *status = 0; /* Disabled */ break; default: *status = 0xFF; /* Reserved */ break; } DBG_LEAVE_ROUTINE return 0; } static int hpc_get_latch_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg; DBG_ENTER_ROUTINE slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); *status = !!(slot_reg & MRL_SENSOR); /* 0 -> close; 1 -> open */ DBG_LEAVE_ROUTINE return 0; } static int hpc_get_adapter_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg; u8 state; DBG_ENTER_ROUTINE slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); state = (slot_reg & PRSNT_MASK) >> PRSNT_SHIFT; *status = (state != 0x3) ? 1 : 0; DBG_LEAVE_ROUTINE return 0; } static int hpc_get_prog_int(struct slot *slot, u8 *prog_int) { struct controller *ctrl = slot->ctrl; DBG_ENTER_ROUTINE *prog_int = shpc_readb(ctrl, PROG_INTERFACE); DBG_LEAVE_ROUTINE return 0; } static int hpc_get_adapter_speed(struct slot *slot, enum pci_bus_speed *value) { int retval = 0; struct controller *ctrl = slot->ctrl; u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); u8 m66_cap = !!(slot_reg & MHZ66_CAP); u8 pi, pcix_cap; DBG_ENTER_ROUTINE if ((retval = hpc_get_prog_int(slot, &pi))) return retval; switch (pi) { case 1: pcix_cap = (slot_reg & PCIX_CAP_MASK_PI1) >> PCIX_CAP_SHIFT; break; case 2: pcix_cap = (slot_reg & PCIX_CAP_MASK_PI2) >> PCIX_CAP_SHIFT; break; default: return -ENODEV; } dbg("%s: slot_reg = %x, pcix_cap = %x, m66_cap = %x\n", __FUNCTION__, slot_reg, pcix_cap, m66_cap); switch (pcix_cap) { case 0x0: *value = m66_cap ? PCI_SPEED_66MHz : PCI_SPEED_33MHz; break; case 0x1: *value = PCI_SPEED_66MHz_PCIX; break; case 0x3: *value = PCI_SPEED_133MHz_PCIX; break; case 0x4: *value = PCI_SPEED_133MHz_PCIX_266; break; case 0x5: *value = PCI_SPEED_133MHz_PCIX_533; break; case 0x2: default: *value = PCI_SPEED_UNKNOWN; retval = -ENODEV; break; } dbg("Adapter speed = %d\n", *value); DBG_LEAVE_ROUTINE return retval; } static int hpc_get_mode1_ECC_cap(struct slot *slot, u8 *mode) { struct controller *ctrl = slot->ctrl; u16 sec_bus_status; u8 pi; int retval = 0; DBG_ENTER_ROUTINE pi = shpc_readb(ctrl, PROG_INTERFACE); sec_bus_status = shpc_readw(ctrl, SEC_BUS_CONFIG); if (pi == 2) { *mode = (sec_bus_status & 0x0100) >> 8; } else { retval = -1; } dbg("Mode 1 ECC cap = %d\n", *mode); DBG_LEAVE_ROUTINE return retval; } static int hpc_query_power_fault(struct slot * slot) { struct controller *ctrl = slot->ctrl; u32 slot_reg; DBG_ENTER_ROUTINE slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); DBG_LEAVE_ROUTINE /* Note: Logic 0 => fault */ return !(slot_reg & POWER_FAULT); } static int hpc_set_attention_status(struct slot *slot, u8 value) { u8 slot_cmd = 0; switch (value) { case 0 : slot_cmd = 0x30; /* OFF */ break; case 1: slot_cmd = 0x10; /* ON */ break; case 2: slot_cmd = 0x20; /* BLINK */ break; default: return -1; } return shpc_write_cmd(slot, slot->hp_slot, slot_cmd); } static void hpc_set_green_led_on(struct slot *slot) { shpc_write_cmd(slot, slot->hp_slot, 0x04); } static void hpc_set_green_led_off(struct slot *slot) { shpc_write_cmd(slot, slot->hp_slot, 0x0c); } static void hpc_set_green_led_blink(struct slot *slot) { shpc_write_cmd(slot, slot->hp_slot, 0x08); } int shpc_get_ctlr_slot_config(struct controller *ctrl, int *num_ctlr_slots, /* number of slots in this HPC */ int *first_device_num, /* PCI dev num of the first slot in this SHPC */ int *physical_slot_num, /* phy slot num of the first slot in this SHPC */ int *updown, /* physical_slot_num increament: 1 or -1 */ int *flags) { u32 slot_config; DBG_ENTER_ROUTINE slot_config = shpc_readl(ctrl, SLOT_CONFIG); *first_device_num = (slot_config & FIRST_DEV_NUM) >> 8; *num_ctlr_slots = slot_config & SLOT_NUM; *physical_slot_num = (slot_config & PSN) >> 16; *updown = ((slot_config & UPDOWN) >> 29) ? 1 : -1; dbg("%s: physical_slot_num = %x\n", __FUNCTION__, *physical_slot_num); DBG_LEAVE_ROUTINE return 0; } static void hpc_release_ctlr(struct controller *ctrl) { struct php_ctlr_state_s *php_ctlr = ctrl->hpc_ctlr_handle; struct php_ctlr_state_s *p, *p_prev; int i; u32 slot_reg, serr_int; DBG_ENTER_ROUTINE /* * Mask event interrupts and SERRs of all slots */ for (i = 0; i < ctrl->num_slots; i++) { slot_reg = shpc_readl(ctrl, SLOT_REG(i)); slot_reg |= (PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK | BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK | CON_PFAULT_INTR_MASK | MRL_CHANGE_SERR_MASK | CON_PFAULT_SERR_MASK); slot_reg &= ~SLOT_REG_RSVDZ_MASK; shpc_writel(ctrl, SLOT_REG(i), slot_reg); } cleanup_slots(ctrl); /* * Mask SERR and System Interrut generation */ serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE); serr_int |= (GLOBAL_INTR_MASK | GLOBAL_SERR_MASK | COMMAND_INTR_MASK | ARBITER_SERR_MASK); serr_int &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int); if (shpchp_poll_mode) { del_timer(&php_ctlr->int_poll_timer); } else { if (php_ctlr->irq) { free_irq(php_ctlr->irq, ctrl); php_ctlr->irq = 0; pci_disable_msi(php_ctlr->pci_dev); } } if (php_ctlr->pci_dev) { iounmap(php_ctlr->creg); release_mem_region(ctrl->mmio_base, ctrl->mmio_size); php_ctlr->pci_dev = NULL; } spin_lock(&list_lock); p = php_ctlr_list_head; p_prev = NULL; while (p) { if (p == php_ctlr) { if (p_prev) p_prev->pnext = p->pnext; else php_ctlr_list_head = p->pnext; break; } else { p_prev = p; p = p->pnext; } } spin_unlock(&list_lock); kfree(php_ctlr); /* * If this is the last controller to be released, destroy the * shpchpd work queue */ if (atomic_dec_and_test(&shpchp_num_controllers)) destroy_workqueue(shpchp_wq); DBG_LEAVE_ROUTINE } static int hpc_power_on_slot(struct slot * slot) { int retval; DBG_ENTER_ROUTINE retval = shpc_write_cmd(slot, slot->hp_slot, 0x01); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return retval; } DBG_LEAVE_ROUTINE return 0; } static int hpc_slot_enable(struct slot * slot) { int retval; DBG_ENTER_ROUTINE /* 3A => Slot - Enable, Power Indicator - Blink, Attention Indicator - Off */ retval = shpc_write_cmd(slot, slot->hp_slot, 0x3a); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return retval; } DBG_LEAVE_ROUTINE return 0; } static int hpc_slot_disable(struct slot * slot) { int retval; DBG_ENTER_ROUTINE /* 1F => Slot - Disable, Power Indicator - Off, Attention Indicator - On */ retval = shpc_write_cmd(slot, slot->hp_slot, 0x1f); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return retval; } DBG_LEAVE_ROUTINE return 0; } static int hpc_set_bus_speed_mode(struct slot * slot, enum pci_bus_speed value) { int retval; struct controller *ctrl = slot->ctrl; u8 pi, cmd; DBG_ENTER_ROUTINE pi = shpc_readb(ctrl, PROG_INTERFACE); if ((pi == 1) && (value > PCI_SPEED_133MHz_PCIX)) return -EINVAL; switch (value) { case PCI_SPEED_33MHz: cmd = SETA_PCI_33MHZ; break; case PCI_SPEED_66MHz: cmd = SETA_PCI_66MHZ; break; case PCI_SPEED_66MHz_PCIX: cmd = SETA_PCIX_66MHZ; break; case PCI_SPEED_100MHz_PCIX: cmd = SETA_PCIX_100MHZ; break; case PCI_SPEED_133MHz_PCIX: cmd = SETA_PCIX_133MHZ; break; case PCI_SPEED_66MHz_PCIX_ECC: cmd = SETB_PCIX_66MHZ_EM; break; case PCI_SPEED_100MHz_PCIX_ECC: cmd = SETB_PCIX_100MHZ_EM; break; case PCI_SPEED_133MHz_PCIX_ECC: cmd = SETB_PCIX_133MHZ_EM; break; case PCI_SPEED_66MHz_PCIX_266: cmd = SETB_PCIX_66MHZ_266; break; case PCI_SPEED_100MHz_PCIX_266: cmd = SETB_PCIX_100MHZ_266; break; case PCI_SPEED_133MHz_PCIX_266: cmd = SETB_PCIX_133MHZ_266; break; case PCI_SPEED_66MHz_PCIX_533: cmd = SETB_PCIX_66MHZ_533; break; case PCI_SPEED_100MHz_PCIX_533: cmd = SETB_PCIX_100MHZ_533; break; case PCI_SPEED_133MHz_PCIX_533: cmd = SETB_PCIX_133MHZ_533; break; default: return -EINVAL; } retval = shpc_write_cmd(slot, 0, cmd); if (retval) err("%s: Write command failed!\n", __FUNCTION__); DBG_LEAVE_ROUTINE return retval; } static irqreturn_t shpc_isr(int IRQ, void *dev_id, struct pt_regs *regs) { struct controller *ctrl = NULL; struct php_ctlr_state_s *php_ctlr; u8 schedule_flag = 0; u32 temp_dword, intr_loc, intr_loc2; int hp_slot; if (!dev_id) return IRQ_NONE; if (!shpchp_poll_mode) { ctrl = (struct controller *)dev_id; php_ctlr = ctrl->hpc_ctlr_handle; } else { php_ctlr = (struct php_ctlr_state_s *) dev_id; ctrl = (struct controller *)php_ctlr->callback_instance_id; } if (!ctrl) return IRQ_NONE; if (!php_ctlr || !php_ctlr->creg) return IRQ_NONE; /* Check to see if it was our interrupt */ intr_loc = shpc_readl(ctrl, INTR_LOC); if (!intr_loc) return IRQ_NONE; dbg("%s: intr_loc = %x\n",__FUNCTION__, intr_loc); if(!shpchp_poll_mode) { /* Mask Global Interrupt Mask - see implementation note on p. 139 */ /* of SHPC spec rev 1.0*/ temp_dword = shpc_readl(ctrl, SERR_INTR_ENABLE); temp_dword |= GLOBAL_INTR_MASK; temp_dword &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, temp_dword); intr_loc2 = shpc_readl(ctrl, INTR_LOC); dbg("%s: intr_loc2 = %x\n",__FUNCTION__, intr_loc2); } if (intr_loc & 0x0001) { /* * Command Complete Interrupt Pending * RO only - clear by writing 1 to the Command Completion * Detect bit in Controller SERR-INT register */ temp_dword = shpc_readl(ctrl, SERR_INTR_ENABLE); temp_dword &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, temp_dword); ctrl->cmd_busy = 0; wake_up_interruptible(&ctrl->queue); } if ((intr_loc = (intr_loc >> 1)) == 0) goto out; for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) { /* To find out which slot has interrupt pending */ if ((intr_loc >> hp_slot) & 0x01) { temp_dword = shpc_readl(ctrl, SLOT_REG(hp_slot)); dbg("%s: Slot %x with intr, slot register = %x\n", __FUNCTION__, hp_slot, temp_dword); if ((php_ctlr->switch_change_callback) && (temp_dword & MRL_CHANGE_DETECTED)) schedule_flag += php_ctlr->switch_change_callback( hp_slot, php_ctlr->callback_instance_id); if ((php_ctlr->attention_button_callback) && (temp_dword & BUTTON_PRESS_DETECTED)) schedule_flag += php_ctlr->attention_button_callback( hp_slot, php_ctlr->callback_instance_id); if ((php_ctlr->presence_change_callback) && (temp_dword & PRSNT_CHANGE_DETECTED)) schedule_flag += php_ctlr->presence_change_callback( hp_slot , php_ctlr->callback_instance_id); if ((php_ctlr->power_fault_callback) && (temp_dword & (ISO_PFAULT_DETECTED | CON_PFAULT_DETECTED))) schedule_flag += php_ctlr->power_fault_callback( hp_slot, php_ctlr->callback_instance_id); /* Clear all slot events */ temp_dword &= ~SLOT_REG_RSVDZ_MASK; shpc_writel(ctrl, SLOT_REG(hp_slot), temp_dword); intr_loc2 = shpc_readl(ctrl, INTR_LOC); dbg("%s: intr_loc2 = %x\n",__FUNCTION__, intr_loc2); } } out: if (!shpchp_poll_mode) { /* Unmask Global Interrupt Mask */ temp_dword = shpc_readl(ctrl, SERR_INTR_ENABLE); temp_dword &= ~(GLOBAL_INTR_MASK | SERR_INTR_RSVDZ_MASK); shpc_writel(ctrl, SERR_INTR_ENABLE, temp_dword); } return IRQ_HANDLED; } static int hpc_get_max_bus_speed (struct slot *slot, enum pci_bus_speed *value) { int retval = 0; struct controller *ctrl = slot->ctrl; enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN; u8 pi = shpc_readb(ctrl, PROG_INTERFACE); u32 slot_avail1 = shpc_readl(ctrl, SLOT_AVAIL1); u32 slot_avail2 = shpc_readl(ctrl, SLOT_AVAIL2); DBG_ENTER_ROUTINE if (pi == 2) { if (slot_avail2 & SLOT_133MHZ_PCIX_533) bus_speed = PCI_SPEED_133MHz_PCIX_533; else if (slot_avail2 & SLOT_100MHZ_PCIX_533) bus_speed = PCI_SPEED_100MHz_PCIX_533; else if (slot_avail2 & SLOT_66MHZ_PCIX_533) bus_speed = PCI_SPEED_66MHz_PCIX_533; else if (slot_avail2 & SLOT_133MHZ_PCIX_266) bus_speed = PCI_SPEED_133MHz_PCIX_266; else if (slot_avail2 & SLOT_100MHZ_PCIX_266) bus_speed = PCI_SPEED_100MHz_PCIX_266; else if (slot_avail2 & SLOT_66MHZ_PCIX_266) bus_speed = PCI_SPEED_66MHz_PCIX_266; } if (bus_speed == PCI_SPEED_UNKNOWN) { if (slot_avail1 & SLOT_133MHZ_PCIX) bus_speed = PCI_SPEED_133MHz_PCIX; else if (slot_avail1 & SLOT_100MHZ_PCIX) bus_speed = PCI_SPEED_100MHz_PCIX; else if (slot_avail1 & SLOT_66MHZ_PCIX) bus_speed = PCI_SPEED_66MHz_PCIX; else if (slot_avail2 & SLOT_66MHZ) bus_speed = PCI_SPEED_66MHz; else if (slot_avail1 & SLOT_33MHZ) bus_speed = PCI_SPEED_33MHz; else retval = -ENODEV; } *value = bus_speed; dbg("Max bus speed = %d\n", bus_speed); DBG_LEAVE_ROUTINE return retval; } static int hpc_get_cur_bus_speed (struct slot *slot, enum pci_bus_speed *value) { int retval = 0; struct controller *ctrl = slot->ctrl; enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN; u16 sec_bus_reg = shpc_readw(ctrl, SEC_BUS_CONFIG); u8 pi = shpc_readb(ctrl, PROG_INTERFACE); u8 speed_mode = (pi == 2) ? (sec_bus_reg & 0xF) : (sec_bus_reg & 0x7); DBG_ENTER_ROUTINE if ((pi == 1) && (speed_mode > 4)) { *value = PCI_SPEED_UNKNOWN; return -ENODEV; } switch (speed_mode) { case 0x0: *value = PCI_SPEED_33MHz; break; case 0x1: *value = PCI_SPEED_66MHz; break; case 0x2: *value = PCI_SPEED_66MHz_PCIX; break; case 0x3: *value = PCI_SPEED_100MHz_PCIX; break; case 0x4: *value = PCI_SPEED_133MHz_PCIX; break; case 0x5: *value = PCI_SPEED_66MHz_PCIX_ECC; break; case 0x6: *value = PCI_SPEED_100MHz_PCIX_ECC; break; case 0x7: *value = PCI_SPEED_133MHz_PCIX_ECC; break; case 0x8: *value = PCI_SPEED_66MHz_PCIX_266; break; case 0x9: *value = PCI_SPEED_100MHz_PCIX_266; break; case 0xa: *value = PCI_SPEED_133MHz_PCIX_266; break; case 0xb: *value = PCI_SPEED_66MHz_PCIX_533; break; case 0xc: *value = PCI_SPEED_100MHz_PCIX_533; break; case 0xd: *value = PCI_SPEED_133MHz_PCIX_533; break; default: *value = PCI_SPEED_UNKNOWN; retval = -ENODEV; break; } dbg("Current bus speed = %d\n", bus_speed); DBG_LEAVE_ROUTINE return retval; } static struct hpc_ops shpchp_hpc_ops = { .power_on_slot = hpc_power_on_slot, .slot_enable = hpc_slot_enable, .slot_disable = hpc_slot_disable, .set_bus_speed_mode = hpc_set_bus_speed_mode, .set_attention_status = hpc_set_attention_status, .get_power_status = hpc_get_power_status, .get_attention_status = hpc_get_attention_status, .get_latch_status = hpc_get_latch_status, .get_adapter_status = hpc_get_adapter_status, .get_max_bus_speed = hpc_get_max_bus_speed, .get_cur_bus_speed = hpc_get_cur_bus_speed, .get_adapter_speed = hpc_get_adapter_speed, .get_mode1_ECC_cap = hpc_get_mode1_ECC_cap, .get_prog_int = hpc_get_prog_int, .query_power_fault = hpc_query_power_fault, .green_led_on = hpc_set_green_led_on, .green_led_off = hpc_set_green_led_off, .green_led_blink = hpc_set_green_led_blink, .release_ctlr = hpc_release_ctlr, }; int shpc_init(struct controller * ctrl, struct pci_dev * pdev) { struct php_ctlr_state_s *php_ctlr, *p; void *instance_id = ctrl; int rc, num_slots = 0; u8 hp_slot; static int first = 1; u32 shpc_base_offset; u32 tempdword, slot_reg, slot_config; u8 i; DBG_ENTER_ROUTINE ctrl->pci_dev = pdev; /* pci_dev of the P2P bridge */ spin_lock_init(&list_lock); php_ctlr = kzalloc(sizeof(*php_ctlr), GFP_KERNEL); if (!php_ctlr) { /* allocate controller state data */ err("%s: HPC controller memory allocation error!\n", __FUNCTION__); goto abort; } php_ctlr->pci_dev = pdev; /* save pci_dev in context */ if ((pdev->vendor == PCI_VENDOR_ID_AMD) || (pdev->device == PCI_DEVICE_ID_AMD_GOLAM_7450)) { /* amd shpc driver doesn't use Base Offset; assume 0 */ ctrl->mmio_base = pci_resource_start(pdev, 0); ctrl->mmio_size = pci_resource_len(pdev, 0); } else { ctrl->cap_offset = pci_find_capability(pdev, PCI_CAP_ID_SHPC); if (!ctrl->cap_offset) { err("%s : cap_offset == 0\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: cap_offset = %x\n", __FUNCTION__, ctrl->cap_offset); rc = shpc_indirect_read(ctrl, 0, &shpc_base_offset); if (rc) { err("%s: cannot read base_offset\n", __FUNCTION__); goto abort_free_ctlr; } rc = shpc_indirect_read(ctrl, 3, &tempdword); if (rc) { err("%s: cannot read slot config\n", __FUNCTION__); goto abort_free_ctlr; } num_slots = tempdword & SLOT_NUM; dbg("%s: num_slots (indirect) %x\n", __FUNCTION__, num_slots); for (i = 0; i < 9 + num_slots; i++) { rc = shpc_indirect_read(ctrl, i, &tempdword); if (rc) { err("%s: cannot read creg (index = %d)\n", __FUNCTION__, i); goto abort_free_ctlr; } dbg("%s: offset %d: value %x\n", __FUNCTION__,i, tempdword); } ctrl->mmio_base = pci_resource_start(pdev, 0) + shpc_base_offset; ctrl->mmio_size = 0x24 + 0x4 * num_slots; } if (first) { spin_lock_init(&hpc_event_lock); first = 0; } info("HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); if (pci_enable_device(pdev)) goto abort_free_ctlr; if (!request_mem_region(ctrl->mmio_base, ctrl->mmio_size, MY_NAME)) { err("%s: cannot reserve MMIO region\n", __FUNCTION__); goto abort_free_ctlr; } php_ctlr->creg = ioremap(ctrl->mmio_base, ctrl->mmio_size); if (!php_ctlr->creg) { err("%s: cannot remap MMIO region %lx @ %lx\n", __FUNCTION__, ctrl->mmio_size, ctrl->mmio_base); release_mem_region(ctrl->mmio_base, ctrl->mmio_size); goto abort_free_ctlr; } dbg("%s: php_ctlr->creg %p\n", __FUNCTION__, php_ctlr->creg); mutex_init(&ctrl->crit_sect); mutex_init(&ctrl->cmd_lock); /* Setup wait queue */ init_waitqueue_head(&ctrl->queue); /* Find the IRQ */ php_ctlr->irq = pdev->irq; php_ctlr->attention_button_callback = shpchp_handle_attention_button, php_ctlr->switch_change_callback = shpchp_handle_switch_change; php_ctlr->presence_change_callback = shpchp_handle_presence_change; php_ctlr->power_fault_callback = shpchp_handle_power_fault; php_ctlr->callback_instance_id = instance_id; ctrl->hpc_ctlr_handle = php_ctlr; ctrl->hpc_ops = &shpchp_hpc_ops; /* Return PCI Controller Info */ slot_config = shpc_readl(ctrl, SLOT_CONFIG); php_ctlr->slot_device_offset = (slot_config & FIRST_DEV_NUM) >> 8; php_ctlr->num_slots = slot_config & SLOT_NUM; dbg("%s: slot_device_offset %x\n", __FUNCTION__, php_ctlr->slot_device_offset); dbg("%s: num_slots %x\n", __FUNCTION__, php_ctlr->num_slots); /* Mask Global Interrupt Mask & Command Complete Interrupt Mask */ tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword); tempdword |= (GLOBAL_INTR_MASK | GLOBAL_SERR_MASK | COMMAND_INTR_MASK | ARBITER_SERR_MASK); tempdword &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, tempdword); tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword); /* Mask the MRL sensor SERR Mask of individual slot in * Slot SERR-INT Mask & clear all the existing event if any */ for (hp_slot = 0; hp_slot < php_ctlr->num_slots; hp_slot++) { slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot)); dbg("%s: Default Logical Slot Register %d value %x\n", __FUNCTION__, hp_slot, slot_reg); slot_reg |= (PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK | BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK | CON_PFAULT_INTR_MASK | MRL_CHANGE_SERR_MASK | CON_PFAULT_SERR_MASK); slot_reg &= ~SLOT_REG_RSVDZ_MASK; shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg); } if (shpchp_poll_mode) {/* Install interrupt polling code */ /* Install and start the interrupt polling timer */ init_timer(&php_ctlr->int_poll_timer); start_int_poll_timer( php_ctlr, 10 ); /* start with 10 second delay */ } else { /* Installs the interrupt handler */ rc = pci_enable_msi(pdev); if (rc) { info("Can't get msi for the hotplug controller\n"); info("Use INTx for the hotplug controller\n"); } else php_ctlr->irq = pdev->irq; rc = request_irq(php_ctlr->irq, shpc_isr, SA_SHIRQ, MY_NAME, (void *) ctrl); dbg("%s: request_irq %d for hpc%d (returns %d)\n", __FUNCTION__, php_ctlr->irq, ctlr_seq_num, rc); if (rc) { err("Can't get irq %d for the hotplug controller\n", php_ctlr->irq); goto abort_free_ctlr; } } dbg("%s: HPC at b:d:f:irq=0x%x:%x:%x:%x\n", __FUNCTION__, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pdev->irq); get_hp_hw_control_from_firmware(pdev); /* Add this HPC instance into the HPC list */ spin_lock(&list_lock); if (php_ctlr_list_head == 0) { php_ctlr_list_head = php_ctlr; p = php_ctlr_list_head; p->pnext = NULL; } else { p = php_ctlr_list_head; while (p->pnext) p = p->pnext; p->pnext = php_ctlr; } spin_unlock(&list_lock); ctlr_seq_num++; /* * If this is the first controller to be initialized, * initialize the shpchpd work queue */ if (atomic_add_return(1, &shpchp_num_controllers) == 1) { shpchp_wq = create_singlethread_workqueue("shpchpd"); if (!shpchp_wq) return -ENOMEM; } /* * Unmask all event interrupts of all slots */ for (hp_slot = 0; hp_slot < php_ctlr->num_slots; hp_slot++) { slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot)); dbg("%s: Default Logical Slot Register %d value %x\n", __FUNCTION__, hp_slot, slot_reg); slot_reg &= ~(PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK | BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK | CON_PFAULT_INTR_MASK | SLOT_REG_RSVDZ_MASK); shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg); } if (!shpchp_poll_mode) { /* Unmask all general input interrupts and SERR */ tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); tempdword &= ~(GLOBAL_INTR_MASK | COMMAND_INTR_MASK | SERR_INTR_RSVDZ_MASK); shpc_writel(ctrl, SERR_INTR_ENABLE, tempdword); tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword); } DBG_LEAVE_ROUTINE return 0; /* We end up here for the many possible ways to fail this API. */ abort_free_ctlr: kfree(php_ctlr); abort: DBG_LEAVE_ROUTINE return -1; }