/* * Copyright IBM Corp. 2007 * Author(s): Heiko Carstens */ #include #include #include #include #include #include #include #include #include #include #include #include #define CPU_BITS 64 #define NR_MAG 6 #define PTF_HORIZONTAL (0UL) #define PTF_VERTICAL (1UL) #define PTF_CHECK (2UL) struct tl_cpu { unsigned char reserved0[4]; unsigned char :6; unsigned char pp:2; unsigned char reserved1; unsigned short origin; unsigned long mask[CPU_BITS / BITS_PER_LONG]; }; struct tl_container { unsigned char reserved[8]; }; union tl_entry { unsigned char nl; struct tl_cpu cpu; struct tl_container container; }; struct tl_info { unsigned char reserved0[2]; unsigned short length; unsigned char mag[NR_MAG]; unsigned char reserved1; unsigned char mnest; unsigned char reserved2[4]; union tl_entry tle[0]; }; struct core_info { struct core_info *next; cpumask_t mask; }; static void topology_work_fn(struct work_struct *work); static struct tl_info *tl_info; static struct core_info core_info; static int machine_has_topology; static int machine_has_topology_irq; static struct timer_list topology_timer; static void set_topology_timer(void); static DECLARE_WORK(topology_work, topology_work_fn); cpumask_t cpu_core_map[NR_CPUS]; cpumask_t cpu_coregroup_map(unsigned int cpu) { struct core_info *core = &core_info; cpumask_t mask; cpus_clear(mask); if (!machine_has_topology) return cpu_present_map; mutex_lock(&smp_cpu_state_mutex); while (core) { if (cpu_isset(cpu, core->mask)) { mask = core->mask; break; } core = core->next; } mutex_unlock(&smp_cpu_state_mutex); if (cpus_empty(mask)) mask = cpumask_of_cpu(cpu); return mask; } static void add_cpus_to_core(struct tl_cpu *tl_cpu, struct core_info *core) { unsigned int cpu; for (cpu = find_first_bit(&tl_cpu->mask[0], CPU_BITS); cpu < CPU_BITS; cpu = find_next_bit(&tl_cpu->mask[0], CPU_BITS, cpu + 1)) { unsigned int rcpu, lcpu; rcpu = CPU_BITS - 1 - cpu + tl_cpu->origin; for_each_present_cpu(lcpu) { if (__cpu_logical_map[lcpu] == rcpu) { cpu_set(lcpu, core->mask); smp_cpu_polarization[lcpu] = tl_cpu->pp; } } } } static void clear_cores(void) { struct core_info *core = &core_info; while (core) { cpus_clear(core->mask); core = core->next; } } static union tl_entry *next_tle(union tl_entry *tle) { if (tle->nl) return (union tl_entry *)((struct tl_container *)tle + 1); else return (union tl_entry *)((struct tl_cpu *)tle + 1); } static void tl_to_cores(struct tl_info *info) { union tl_entry *tle, *end; struct core_info *core = &core_info; mutex_lock(&smp_cpu_state_mutex); clear_cores(); tle = info->tle; end = (union tl_entry *)((unsigned long)info + info->length); while (tle < end) { switch (tle->nl) { case 5: case 4: case 3: case 2: break; case 1: core = core->next; break; case 0: add_cpus_to_core(&tle->cpu, core); break; default: clear_cores(); machine_has_topology = 0; return; } tle = next_tle(tle); } mutex_unlock(&smp_cpu_state_mutex); } static void topology_update_polarization_simple(void) { int cpu; mutex_lock(&smp_cpu_state_mutex); for_each_present_cpu(cpu) smp_cpu_polarization[cpu] = POLARIZATION_HRZ; mutex_unlock(&smp_cpu_state_mutex); } static int ptf(unsigned long fc) { int rc; asm volatile( " .insn rre,0xb9a20000,%1,%1\n" " ipm %0\n" " srl %0,28\n" : "=d" (rc) : "d" (fc) : "cc"); return rc; } int topology_set_cpu_management(int fc) { int cpu; int rc; if (!machine_has_topology) return -EOPNOTSUPP; if (fc) rc = ptf(PTF_VERTICAL); else rc = ptf(PTF_HORIZONTAL); if (rc) return -EBUSY; for_each_present_cpu(cpu) smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; return rc; } static void update_cpu_core_map(void) { int cpu; for_each_present_cpu(cpu) cpu_core_map[cpu] = cpu_coregroup_map(cpu); } void arch_update_cpu_topology(void) { struct tl_info *info = tl_info; struct sys_device *sysdev; int cpu; if (!machine_has_topology) { update_cpu_core_map(); topology_update_polarization_simple(); return; } stsi(info, 15, 1, 2); tl_to_cores(info); update_cpu_core_map(); for_each_online_cpu(cpu) { sysdev = get_cpu_sysdev(cpu); kobject_uevent(&sysdev->kobj, KOBJ_CHANGE); } } static void topology_work_fn(struct work_struct *work) { arch_reinit_sched_domains(); } void topology_schedule_update(void) { schedule_work(&topology_work); } static void topology_timer_fn(unsigned long ignored) { if (ptf(PTF_CHECK)) topology_schedule_update(); set_topology_timer(); } static void set_topology_timer(void) { topology_timer.function = topology_timer_fn; topology_timer.data = 0; topology_timer.expires = jiffies + 60 * HZ; add_timer(&topology_timer); } static void topology_interrupt(__u16 code) { schedule_work(&topology_work); } static int __init init_topology_update(void) { int rc; rc = 0; if (!machine_has_topology) { topology_update_polarization_simple(); goto out; } init_timer_deferrable(&topology_timer); if (machine_has_topology_irq) { rc = register_external_interrupt(0x2005, topology_interrupt); if (rc) goto out; ctl_set_bit(0, 8); } else set_topology_timer(); out: update_cpu_core_map(); return rc; } __initcall(init_topology_update); void __init s390_init_cpu_topology(void) { unsigned long long facility_bits; struct tl_info *info; struct core_info *core; int nr_cores; int i; if (stfle(&facility_bits, 1) <= 0) return; if (!(facility_bits & (1ULL << 52)) || !(facility_bits & (1ULL << 61))) return; machine_has_topology = 1; if (facility_bits & (1ULL << 51)) machine_has_topology_irq = 1; tl_info = alloc_bootmem_pages(PAGE_SIZE); if (!tl_info) goto error; info = tl_info; stsi(info, 15, 1, 2); nr_cores = info->mag[NR_MAG - 2]; for (i = 0; i < info->mnest - 2; i++) nr_cores *= info->mag[NR_MAG - 3 - i]; printk(KERN_INFO "CPU topology:"); for (i = 0; i < NR_MAG; i++) printk(" %d", info->mag[i]); printk(" / %d\n", info->mnest); core = &core_info; for (i = 0; i < nr_cores; i++) { core->next = alloc_bootmem(sizeof(struct core_info)); core = core->next; if (!core) goto error; } return; error: machine_has_topology = 0; machine_has_topology_irq = 0; }