/* * Copyright (c) 2006, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Copyright (C) 2006-2008 Intel Corporation * Author: Ashok Raj * Author: Shaohua Li * Author: Anil S Keshavamurthy * Author: Fenghua Yu */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci.h" #define ROOT_SIZE VTD_PAGE_SIZE #define CONTEXT_SIZE VTD_PAGE_SIZE #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) #define IOAPIC_RANGE_START (0xfee00000) #define IOAPIC_RANGE_END (0xfeefffff) #define IOVA_START_ADDR (0x1000) #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 #define MAX_AGAW_WIDTH 64 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1) #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1) #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32)) #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64)) /* VT-d pages must always be _smaller_ than MM pages. Otherwise things are never going to work. */ static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) { return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); } static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) { return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); } static inline unsigned long page_to_dma_pfn(struct page *pg) { return mm_to_dma_pfn(page_to_pfn(pg)); } static inline unsigned long virt_to_dma_pfn(void *p) { return page_to_dma_pfn(virt_to_page(p)); } /* global iommu list, set NULL for ignored DMAR units */ static struct intel_iommu **g_iommus; static int rwbf_quirk; /* * 0: Present * 1-11: Reserved * 12-63: Context Ptr (12 - (haw-1)) * 64-127: Reserved */ struct root_entry { u64 val; u64 rsvd1; }; #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) static inline bool root_present(struct root_entry *root) { return (root->val & 1); } static inline void set_root_present(struct root_entry *root) { root->val |= 1; } static inline void set_root_value(struct root_entry *root, unsigned long value) { root->val |= value & VTD_PAGE_MASK; } static inline struct context_entry * get_context_addr_from_root(struct root_entry *root) { return (struct context_entry *) (root_present(root)?phys_to_virt( root->val & VTD_PAGE_MASK) : NULL); } /* * low 64 bits: * 0: present * 1: fault processing disable * 2-3: translation type * 12-63: address space root * high 64 bits: * 0-2: address width * 3-6: aval * 8-23: domain id */ struct context_entry { u64 lo; u64 hi; }; static inline bool context_present(struct context_entry *context) { return (context->lo & 1); } static inline void context_set_present(struct context_entry *context) { context->lo |= 1; } static inline void context_set_fault_enable(struct context_entry *context) { context->lo &= (((u64)-1) << 2) | 1; } static inline void context_set_translation_type(struct context_entry *context, unsigned long value) { context->lo &= (((u64)-1) << 4) | 3; context->lo |= (value & 3) << 2; } static inline void context_set_address_root(struct context_entry *context, unsigned long value) { context->lo |= value & VTD_PAGE_MASK; } static inline void context_set_address_width(struct context_entry *context, unsigned long value) { context->hi |= value & 7; } static inline void context_set_domain_id(struct context_entry *context, unsigned long value) { context->hi |= (value & ((1 << 16) - 1)) << 8; } static inline void context_clear_entry(struct context_entry *context) { context->lo = 0; context->hi = 0; } /* * 0: readable * 1: writable * 2-6: reserved * 7: super page * 8-10: available * 11: snoop behavior * 12-63: Host physcial address */ struct dma_pte { u64 val; }; static inline void dma_clear_pte(struct dma_pte *pte) { pte->val = 0; } static inline void dma_set_pte_readable(struct dma_pte *pte) { pte->val |= DMA_PTE_READ; } static inline void dma_set_pte_writable(struct dma_pte *pte) { pte->val |= DMA_PTE_WRITE; } static inline void dma_set_pte_snp(struct dma_pte *pte) { pte->val |= DMA_PTE_SNP; } static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) { pte->val = (pte->val & ~3) | (prot & 3); } static inline u64 dma_pte_addr(struct dma_pte *pte) { return (pte->val & VTD_PAGE_MASK); } static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn) { pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT; } static inline bool dma_pte_present(struct dma_pte *pte) { return (pte->val & 3) != 0; } /* * This domain is a statically identity mapping domain. * 1. This domain creats a static 1:1 mapping to all usable memory. * 2. It maps to each iommu if successful. * 3. Each iommu mapps to this domain if successful. */ struct dmar_domain *si_domain; /* devices under the same p2p bridge are owned in one domain */ #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0) /* domain represents a virtual machine, more than one devices * across iommus may be owned in one domain, e.g. kvm guest. */ #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1) /* si_domain contains mulitple devices */ #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2) struct dmar_domain { int id; /* domain id */ unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/ struct list_head devices; /* all devices' list */ struct iova_domain iovad; /* iova's that belong to this domain */ struct dma_pte *pgd; /* virtual address */ spinlock_t mapping_lock; /* page table lock */ int gaw; /* max guest address width */ /* adjusted guest address width, 0 is level 2 30-bit */ int agaw; int flags; /* flags to find out type of domain */ int iommu_coherency;/* indicate coherency of iommu access */ int iommu_snooping; /* indicate snooping control feature*/ int iommu_count; /* reference count of iommu */ spinlock_t iommu_lock; /* protect iommu set in domain */ u64 max_addr; /* maximum mapped address */ }; /* PCI domain-device relationship */ struct device_domain_info { struct list_head link; /* link to domain siblings */ struct list_head global; /* link to global list */ int segment; /* PCI domain */ u8 bus; /* PCI bus number */ u8 devfn; /* PCI devfn number */ struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */ struct intel_iommu *iommu; /* IOMMU used by this device */ struct dmar_domain *domain; /* pointer to domain */ }; static void flush_unmaps_timeout(unsigned long data); DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); #define HIGH_WATER_MARK 250 struct deferred_flush_tables { int next; struct iova *iova[HIGH_WATER_MARK]; struct dmar_domain *domain[HIGH_WATER_MARK]; }; static struct deferred_flush_tables *deferred_flush; /* bitmap for indexing intel_iommus */ static int g_num_of_iommus; static DEFINE_SPINLOCK(async_umap_flush_lock); static LIST_HEAD(unmaps_to_do); static int timer_on; static long list_size; static void domain_remove_dev_info(struct dmar_domain *domain); #ifdef CONFIG_DMAR_DEFAULT_ON int dmar_disabled = 0; #else int dmar_disabled = 1; #endif /*CONFIG_DMAR_DEFAULT_ON*/ static int __initdata dmar_map_gfx = 1; static int dmar_forcedac; static int intel_iommu_strict; #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) static DEFINE_SPINLOCK(device_domain_lock); static LIST_HEAD(device_domain_list); static struct iommu_ops intel_iommu_ops; static int __init intel_iommu_setup(char *str) { if (!str) return -EINVAL; while (*str) { if (!strncmp(str, "on", 2)) { dmar_disabled = 0; printk(KERN_INFO "Intel-IOMMU: enabled\n"); } else if (!strncmp(str, "off", 3)) { dmar_disabled = 1; printk(KERN_INFO "Intel-IOMMU: disabled\n"); } else if (!strncmp(str, "igfx_off", 8)) { dmar_map_gfx = 0; printk(KERN_INFO "Intel-IOMMU: disable GFX device mapping\n"); } else if (!strncmp(str, "forcedac", 8)) { printk(KERN_INFO "Intel-IOMMU: Forcing DAC for PCI devices\n"); dmar_forcedac = 1; } else if (!strncmp(str, "strict", 6)) { printk(KERN_INFO "Intel-IOMMU: disable batched IOTLB flush\n"); intel_iommu_strict = 1; } str += strcspn(str, ","); while (*str == ',') str++; } return 0; } __setup("intel_iommu=", intel_iommu_setup); static struct kmem_cache *iommu_domain_cache; static struct kmem_cache *iommu_devinfo_cache; static struct kmem_cache *iommu_iova_cache; static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep) { unsigned int flags; void *vaddr; /* trying to avoid low memory issues */ flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC); current->flags &= (~PF_MEMALLOC | flags); return vaddr; } static inline void *alloc_pgtable_page(void) { unsigned int flags; void *vaddr; /* trying to avoid low memory issues */ flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; vaddr = (void *)get_zeroed_page(GFP_ATOMIC); current->flags &= (~PF_MEMALLOC | flags); return vaddr; } static inline void free_pgtable_page(void *vaddr) { free_page((unsigned long)vaddr); } static inline void *alloc_domain_mem(void) { return iommu_kmem_cache_alloc(iommu_domain_cache); } static void free_domain_mem(void *vaddr) { kmem_cache_free(iommu_domain_cache, vaddr); } static inline void * alloc_devinfo_mem(void) { return iommu_kmem_cache_alloc(iommu_devinfo_cache); } static inline void free_devinfo_mem(void *vaddr) { kmem_cache_free(iommu_devinfo_cache, vaddr); } struct iova *alloc_iova_mem(void) { return iommu_kmem_cache_alloc(iommu_iova_cache); } void free_iova_mem(struct iova *iova) { kmem_cache_free(iommu_iova_cache, iova); } static inline int width_to_agaw(int width); static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) { unsigned long sagaw; int agaw = -1; sagaw = cap_sagaw(iommu->cap); for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) { if (test_bit(agaw, &sagaw)) break; } return agaw; } /* * Calculate max SAGAW for each iommu. */ int iommu_calculate_max_sagaw(struct intel_iommu *iommu) { return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); } /* * calculate agaw for each iommu. * "SAGAW" may be different across iommus, use a default agaw, and * get a supported less agaw for iommus that don't support the default agaw. */ int iommu_calculate_agaw(struct intel_iommu *iommu) { return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); } /* This functionin only returns single iommu in a domain */ static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) { int iommu_id; /* si_domain and vm domain should not get here. */ BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE); BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY); iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); if (iommu_id < 0 || iommu_id >= g_num_of_iommus) return NULL; return g_iommus[iommu_id]; } static void domain_update_iommu_coherency(struct dmar_domain *domain) { int i; domain->iommu_coherency = 1; i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); for (; i < g_num_of_iommus; ) { if (!ecap_coherent(g_iommus[i]->ecap)) { domain->iommu_coherency = 0; break; } i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1); } } static void domain_update_iommu_snooping(struct dmar_domain *domain) { int i; domain->iommu_snooping = 1; i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); for (; i < g_num_of_iommus; ) { if (!ecap_sc_support(g_iommus[i]->ecap)) { domain->iommu_snooping = 0; break; } i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1); } } /* Some capabilities may be different across iommus */ static void domain_update_iommu_cap(struct dmar_domain *domain) { domain_update_iommu_coherency(domain); domain_update_iommu_snooping(domain); } static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn) { struct dmar_drhd_unit *drhd = NULL; int i; for_each_drhd_unit(drhd) { if (drhd->ignored) continue; if (segment != drhd->segment) continue; for (i = 0; i < drhd->devices_cnt; i++) { if (drhd->devices[i] && drhd->devices[i]->bus->number == bus && drhd->devices[i]->devfn == devfn) return drhd->iommu; if (drhd->devices[i] && drhd->devices[i]->subordinate && drhd->devices[i]->subordinate->number <= bus && drhd->devices[i]->subordinate->subordinate >= bus) return drhd->iommu; } if (drhd->include_all) return drhd->iommu; } return NULL; } static void domain_flush_cache(struct dmar_domain *domain, void *addr, int size) { if (!domain->iommu_coherency) clflush_cache_range(addr, size); } /* Gets context entry for a given bus and devfn */ static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, u8 bus, u8 devfn) { struct root_entry *root; struct context_entry *context; unsigned long phy_addr; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); root = &iommu->root_entry[bus]; context = get_context_addr_from_root(root); if (!context) { context = (struct context_entry *)alloc_pgtable_page(); if (!context) { spin_unlock_irqrestore(&iommu->lock, flags); return NULL; } __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); phy_addr = virt_to_phys((void *)context); set_root_value(root, phy_addr); set_root_present(root); __iommu_flush_cache(iommu, root, sizeof(*root)); } spin_unlock_irqrestore(&iommu->lock, flags); return &context[devfn]; } static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) { struct root_entry *root; struct context_entry *context; int ret; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); root = &iommu->root_entry[bus]; context = get_context_addr_from_root(root); if (!context) { ret = 0; goto out; } ret = context_present(&context[devfn]); out: spin_unlock_irqrestore(&iommu->lock, flags); return ret; } static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) { struct root_entry *root; struct context_entry *context; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); root = &iommu->root_entry[bus]; context = get_context_addr_from_root(root); if (context) { context_clear_entry(&context[devfn]); __iommu_flush_cache(iommu, &context[devfn], \ sizeof(*context)); } spin_unlock_irqrestore(&iommu->lock, flags); } static void free_context_table(struct intel_iommu *iommu) { struct root_entry *root; int i; unsigned long flags; struct context_entry *context; spin_lock_irqsave(&iommu->lock, flags); if (!iommu->root_entry) { goto out; } for (i = 0; i < ROOT_ENTRY_NR; i++) { root = &iommu->root_entry[i]; context = get_context_addr_from_root(root); if (context) free_pgtable_page(context); } free_pgtable_page(iommu->root_entry); iommu->root_entry = NULL; out: spin_unlock_irqrestore(&iommu->lock, flags); } /* page table handling */ #define LEVEL_STRIDE (9) #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) static inline int agaw_to_level(int agaw) { return agaw + 2; } static inline int agaw_to_width(int agaw) { return 30 + agaw * LEVEL_STRIDE; } static inline int width_to_agaw(int width) { return (width - 30) / LEVEL_STRIDE; } static inline unsigned int level_to_offset_bits(int level) { return (level - 1) * LEVEL_STRIDE; } static inline int pfn_level_offset(unsigned long pfn, int level) { return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; } static inline unsigned long level_mask(int level) { return -1UL << level_to_offset_bits(level); } static inline unsigned long level_size(int level) { return 1UL << level_to_offset_bits(level); } static inline unsigned long align_to_level(unsigned long pfn, int level) { return (pfn + level_size(level) - 1) & level_mask(level); } static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, unsigned long pfn) { int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; struct dma_pte *parent, *pte = NULL; int level = agaw_to_level(domain->agaw); int offset; unsigned long flags; BUG_ON(!domain->pgd); BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width); parent = domain->pgd; spin_lock_irqsave(&domain->mapping_lock, flags); while (level > 0) { void *tmp_page; offset = pfn_level_offset(pfn, level); pte = &parent[offset]; if (level == 1) break; if (!dma_pte_present(pte)) { tmp_page = alloc_pgtable_page(); if (!tmp_page) { spin_unlock_irqrestore(&domain->mapping_lock, flags); return NULL; } domain_flush_cache(domain, tmp_page, PAGE_SIZE); dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page)); /* * high level table always sets r/w, last level page * table control read/write */ dma_set_pte_readable(pte); dma_set_pte_writable(pte); domain_flush_cache(domain, pte, sizeof(*pte)); } parent = phys_to_virt(dma_pte_addr(pte)); level--; } spin_unlock_irqrestore(&domain->mapping_lock, flags); return pte; } /* return address's pte at specific level */ static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, unsigned long pfn, int level) { struct dma_pte *parent, *pte = NULL; int total = agaw_to_level(domain->agaw); int offset; parent = domain->pgd; while (level <= total) { offset = pfn_level_offset(pfn, total); pte = &parent[offset]; if (level == total) return pte; if (!dma_pte_present(pte)) break; parent = phys_to_virt(dma_pte_addr(pte)); total--; } return NULL; } /* clear last level pte, a tlb flush should be followed */ static void dma_pte_clear_range(struct dmar_domain *domain, unsigned long start_pfn, unsigned long last_pfn) { int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; struct dma_pte *first_pte, *pte; BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); /* we don't need lock here; nobody else touches the iova range */ while (start_pfn <= last_pfn) { first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1); if (!pte) { start_pfn = align_to_level(start_pfn + 1, 2); continue; } while (start_pfn <= last_pfn && (unsigned long)pte >> VTD_PAGE_SHIFT == (unsigned long)first_pte >> VTD_PAGE_SHIFT) { dma_clear_pte(pte); start_pfn++; pte++; } domain_flush_cache(domain, first_pte, (void *)pte - (void *)first_pte); } } /* free page table pages. last level pte should already be cleared */ static void dma_pte_free_pagetable(struct dmar_domain *domain, unsigned long start_pfn, unsigned long last_pfn) { int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; struct dma_pte *pte; int total = agaw_to_level(domain->agaw); int level; unsigned long tmp; BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); /* we don't need lock here, nobody else touches the iova range */ level = 2; while (level <= total) { tmp = align_to_level(start_pfn, level); /* Only clear this pte/pmd if we're asked to clear its _whole_ range */ if (tmp + level_size(level) - 1 > last_pfn) return; while (tmp <= last_pfn) { pte = dma_pfn_level_pte(domain, tmp, level); if (pte) { free_pgtable_page( phys_to_virt(dma_pte_addr(pte))); dma_clear_pte(pte); domain_flush_cache(domain, pte, sizeof(*pte)); } tmp += level_size(level); } level++; } /* free pgd */ if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { free_pgtable_page(domain->pgd); domain->pgd = NULL; } } /* iommu handling */ static int iommu_alloc_root_entry(struct intel_iommu *iommu) { struct root_entry *root; unsigned long flags; root = (struct root_entry *)alloc_pgtable_page(); if (!root) return -ENOMEM; __iommu_flush_cache(iommu, root, ROOT_SIZE); spin_lock_irqsave(&iommu->lock, flags); iommu->root_entry = root; spin_unlock_irqrestore(&iommu->lock, flags); return 0; } static void iommu_set_root_entry(struct intel_iommu *iommu) { void *addr; u32 sts; unsigned long flag; addr = iommu->root_entry; spin_lock_irqsave(&iommu->register_lock, flag); dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_RTPS), sts); spin_unlock_irqrestore(&iommu->register_lock, flag); } static void iommu_flush_write_buffer(struct intel_iommu *iommu) { u32 val; unsigned long flag; if (!rwbf_quirk && !cap_rwbf(iommu->cap)) return; spin_lock_irqsave(&iommu->register_lock, flag); writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (!(val & DMA_GSTS_WBFS)), val); spin_unlock_irqrestore(&iommu->register_lock, flag); } /* return value determine if we need a write buffer flush */ static void __iommu_flush_context(struct intel_iommu *iommu, u16 did, u16 source_id, u8 function_mask, u64 type) { u64 val = 0; unsigned long flag; switch (type) { case DMA_CCMD_GLOBAL_INVL: val = DMA_CCMD_GLOBAL_INVL; break; case DMA_CCMD_DOMAIN_INVL: val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); break; case DMA_CCMD_DEVICE_INVL: val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); break; default: BUG(); } val |= DMA_CCMD_ICC; spin_lock_irqsave(&iommu->register_lock, flag); dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, dmar_readq, (!(val & DMA_CCMD_ICC)), val); spin_unlock_irqrestore(&iommu->register_lock, flag); } /* return value determine if we need a write buffer flush */ static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, unsigned int size_order, u64 type) { int tlb_offset = ecap_iotlb_offset(iommu->ecap); u64 val = 0, val_iva = 0; unsigned long flag; switch (type) { case DMA_TLB_GLOBAL_FLUSH: /* global flush doesn't need set IVA_REG */ val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; break; case DMA_TLB_DSI_FLUSH: val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); break; case DMA_TLB_PSI_FLUSH: val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); /* Note: always flush non-leaf currently */ val_iva = size_order | addr; break; default: BUG(); } /* Note: set drain read/write */ #if 0 /* * This is probably to be super secure.. Looks like we can * ignore it without any impact. */ if (cap_read_drain(iommu->cap)) val |= DMA_TLB_READ_DRAIN; #endif if (cap_write_drain(iommu->cap)) val |= DMA_TLB_WRITE_DRAIN; spin_lock_irqsave(&iommu->register_lock, flag); /* Note: Only uses first TLB reg currently */ if (val_iva) dmar_writeq(iommu->reg + tlb_offset, val_iva); dmar_writeq(iommu->reg + tlb_offset + 8, val); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, tlb_offset + 8, dmar_readq, (!(val & DMA_TLB_IVT)), val); spin_unlock_irqrestore(&iommu->register_lock, flag); /* check IOTLB invalidation granularity */ if (DMA_TLB_IAIG(val) == 0) printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", (unsigned long long)DMA_TLB_IIRG(type), (unsigned long long)DMA_TLB_IAIG(val)); } static struct device_domain_info *iommu_support_dev_iotlb( struct dmar_domain *domain, int segment, u8 bus, u8 devfn) { int found = 0; unsigned long flags; struct device_domain_info *info; struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn); if (!ecap_dev_iotlb_support(iommu->ecap)) return NULL; if (!iommu->qi) return NULL; spin_lock_irqsave(&device_domain_lock, flags); list_for_each_entry(info, &domain->devices, link) if (info->bus == bus && info->devfn == devfn) { found = 1; break; } spin_unlock_irqrestore(&device_domain_lock, flags); if (!found || !info->dev) return NULL; if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS)) return NULL; if (!dmar_find_matched_atsr_unit(info->dev)) return NULL; info->iommu = iommu; return info; } static void iommu_enable_dev_iotlb(struct device_domain_info *info) { if (!info) return; pci_enable_ats(info->dev, VTD_PAGE_SHIFT); } static void iommu_disable_dev_iotlb(struct device_domain_info *info) { if (!info->dev || !pci_ats_enabled(info->dev)) return; pci_disable_ats(info->dev); } static void iommu_flush_dev_iotlb(struct dmar_domain *domain, u64 addr, unsigned mask) { u16 sid, qdep; unsigned long flags; struct device_domain_info *info; spin_lock_irqsave(&device_domain_lock, flags); list_for_each_entry(info, &domain->devices, link) { if (!info->dev || !pci_ats_enabled(info->dev)) continue; sid = info->bus << 8 | info->devfn; qdep = pci_ats_queue_depth(info->dev); qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask); } spin_unlock_irqrestore(&device_domain_lock, flags); } static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, unsigned long pfn, unsigned int pages) { unsigned int mask = ilog2(__roundup_pow_of_two(pages)); uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; BUG_ON(pages == 0); /* * Fallback to domain selective flush if no PSI support or the size is * too big. * PSI requires page size to be 2 ^ x, and the base address is naturally * aligned to the size */ if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); else iommu->flush.flush_iotlb(iommu, did, addr, mask, DMA_TLB_PSI_FLUSH); /* * In caching mode, domain ID 0 is reserved for non-present to present * mapping flush. Device IOTLB doesn't need to be flushed in this case. */ if (!cap_caching_mode(iommu->cap) || did) iommu_flush_dev_iotlb(iommu->domains[did], addr, mask); } static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) { u32 pmen; unsigned long flags; spin_lock_irqsave(&iommu->register_lock, flags); pmen = readl(iommu->reg + DMAR_PMEN_REG); pmen &= ~DMA_PMEN_EPM; writel(pmen, iommu->reg + DMAR_PMEN_REG); /* wait for the protected region status bit to clear */ IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, readl, !(pmen & DMA_PMEN_PRS), pmen); spin_unlock_irqrestore(&iommu->register_lock, flags); } static int iommu_enable_translation(struct intel_iommu *iommu) { u32 sts; unsigned long flags; spin_lock_irqsave(&iommu->register_lock, flags); iommu->gcmd |= DMA_GCMD_TE; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_TES), sts); spin_unlock_irqrestore(&iommu->register_lock, flags); return 0; } static int iommu_disable_translation(struct intel_iommu *iommu) { u32 sts; unsigned long flag; spin_lock_irqsave(&iommu->register_lock, flag); iommu->gcmd &= ~DMA_GCMD_TE; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (!(sts & DMA_GSTS_TES)), sts); spin_unlock_irqrestore(&iommu->register_lock, flag); return 0; } static int iommu_init_domains(struct intel_iommu *iommu) { unsigned long ndomains; unsigned long nlongs; ndomains = cap_ndoms(iommu->cap); pr_debug("Number of Domains supportd <%ld>\n", ndomains); nlongs = BITS_TO_LONGS(ndomains); /* TBD: there might be 64K domains, * consider other allocation for future chip */ iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); if (!iommu->domain_ids) { printk(KERN_ERR "Allocating domain id array failed\n"); return -ENOMEM; } iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), GFP_KERNEL); if (!iommu->domains) { printk(KERN_ERR "Allocating domain array failed\n"); kfree(iommu->domain_ids); return -ENOMEM; } spin_lock_init(&iommu->lock); /* * if Caching mode is set, then invalid translations are tagged * with domainid 0. Hence we need to pre-allocate it. */ if (cap_caching_mode(iommu->cap)) set_bit(0, iommu->domain_ids); return 0; } static void domain_exit(struct dmar_domain *domain); static void vm_domain_exit(struct dmar_domain *domain); void free_dmar_iommu(struct intel_iommu *iommu) { struct dmar_domain *domain; int i; unsigned long flags; i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap)); for (; i < cap_ndoms(iommu->cap); ) { domain = iommu->domains[i]; clear_bit(i, iommu->domain_ids); spin_lock_irqsave(&domain->iommu_lock, flags); if (--domain->iommu_count == 0) { if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) vm_domain_exit(domain); else domain_exit(domain); } spin_unlock_irqrestore(&domain->iommu_lock, flags); i = find_next_bit(iommu->domain_ids, cap_ndoms(iommu->cap), i+1); } if (iommu->gcmd & DMA_GCMD_TE) iommu_disable_translation(iommu); if (iommu->irq) { set_irq_data(iommu->irq, NULL); /* This will mask the irq */ free_irq(iommu->irq, iommu); destroy_irq(iommu->irq); } kfree(iommu->domains); kfree(iommu->domain_ids); g_iommus[iommu->seq_id] = NULL; /* if all iommus are freed, free g_iommus */ for (i = 0; i < g_num_of_iommus; i++) { if (g_iommus[i]) break; } if (i == g_num_of_iommus) kfree(g_iommus); /* free context mapping */ free_context_table(iommu); } static struct dmar_domain *alloc_domain(void) { struct dmar_domain *domain; domain = alloc_domain_mem(); if (!domain) return NULL; memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); domain->flags = 0; return domain; } static int iommu_attach_domain(struct dmar_domain *domain, struct intel_iommu *iommu) { int num; unsigned long ndomains; unsigned long flags; ndomains = cap_ndoms(iommu->cap); spin_lock_irqsave(&iommu->lock, flags); num = find_first_zero_bit(iommu->domain_ids, ndomains); if (num >= ndomains) { spin_unlock_irqrestore(&iommu->lock, flags); printk(KERN_ERR "IOMMU: no free domain ids\n"); return -ENOMEM; } domain->id = num; set_bit(num, iommu->domain_ids); set_bit(iommu->seq_id, &domain->iommu_bmp); iommu->domains[num] = domain; spin_unlock_irqrestore(&iommu->lock, flags); return 0; } static void iommu_detach_domain(struct dmar_domain *domain, struct intel_iommu *iommu) { unsigned long flags; int num, ndomains; int found = 0; spin_lock_irqsave(&iommu->lock, flags); ndomains = cap_ndoms(iommu->cap); num = find_first_bit(iommu->domain_ids, ndomains); for (; num < ndomains; ) { if (iommu->domains[num] == domain) { found = 1; break; } num = find_next_bit(iommu->domain_ids, cap_ndoms(iommu->cap), num+1); } if (found) { clear_bit(num, iommu->domain_ids); clear_bit(iommu->seq_id, &domain->iommu_bmp); iommu->domains[num] = NULL; } spin_unlock_irqrestore(&iommu->lock, flags); } static struct iova_domain reserved_iova_list; static struct lock_class_key reserved_alloc_key; static struct lock_class_key reserved_rbtree_key; static void dmar_init_reserved_ranges(void) { struct pci_dev *pdev = NULL; struct iova *iova; int i; init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); lockdep_set_class(&reserved_iova_list.iova_alloc_lock, &reserved_alloc_key); lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, &reserved_rbtree_key); /* IOAPIC ranges shouldn't be accessed by DMA */ iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), IOVA_PFN(IOAPIC_RANGE_END)); if (!iova) printk(KERN_ERR "Reserve IOAPIC range failed\n"); /* Reserve all PCI MMIO to avoid peer-to-peer access */ for_each_pci_dev(pdev) { struct resource *r; for (i = 0; i < PCI_NUM_RESOURCES; i++) { r = &pdev->resource[i]; if (!r->flags || !(r->flags & IORESOURCE_MEM)) continue; iova = reserve_iova(&reserved_iova_list, IOVA_PFN(r->start), IOVA_PFN(r->end)); if (!iova) printk(KERN_ERR "Reserve iova failed\n"); } } } static void domain_reserve_special_ranges(struct dmar_domain *domain) { copy_reserved_iova(&reserved_iova_list, &domain->iovad); } static inline int guestwidth_to_adjustwidth(int gaw) { int agaw; int r = (gaw - 12) % 9; if (r == 0) agaw = gaw; else agaw = gaw + 9 - r; if (agaw > 64) agaw = 64; return agaw; } static int domain_init(struct dmar_domain *domain, int guest_width) { struct intel_iommu *iommu; int adjust_width, agaw; unsigned long sagaw; init_iova_domain(&domain->iovad, DMA_32BIT_PFN); spin_lock_init(&domain->mapping_lock); spin_lock_init(&domain->iommu_lock); domain_reserve_special_ranges(domain); /* calculate AGAW */ iommu = domain_get_iommu(domain); if (guest_width > cap_mgaw(iommu->cap)) guest_width = cap_mgaw(iommu->cap); domain->gaw = guest_width; adjust_width = guestwidth_to_adjustwidth(guest_width); agaw = width_to_agaw(adjust_width); sagaw = cap_sagaw(iommu->cap); if (!test_bit(agaw, &sagaw)) { /* hardware doesn't support it, choose a bigger one */ pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); agaw = find_next_bit(&sagaw, 5, agaw); if (agaw >= 5) return -ENODEV; } domain->agaw = agaw; INIT_LIST_HEAD(&domain->devices); if (ecap_coherent(iommu->ecap)) domain->iommu_coherency = 1; else domain->iommu_coherency = 0; if (ecap_sc_support(iommu->ecap)) domain->iommu_snooping = 1; else domain->iommu_snooping = 0; domain->iommu_count = 1; /* always allocate the top pgd */ domain->pgd = (struct dma_pte *)alloc_pgtable_page(); if (!domain->pgd) return -ENOMEM; __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); return 0; } static void domain_exit(struct dmar_domain *domain) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; /* Domain 0 is reserved, so dont process it */ if (!domain) return; domain_remove_dev_info(domain); /* destroy iovas */ put_iova_domain(&domain->iovad); /* clear ptes */ dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); /* free page tables */ dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); for_each_active_iommu(iommu, drhd) if (test_bit(iommu->seq_id, &domain->iommu_bmp)) iommu_detach_domain(domain, iommu); free_domain_mem(domain); } static int domain_context_mapping_one(struct dmar_domain *domain, int segment, u8 bus, u8 devfn, int translation) { struct context_entry *context; unsigned long flags; struct intel_iommu *iommu; struct dma_pte *pgd; unsigned long num; unsigned long ndomains; int id; int agaw; struct device_domain_info *info = NULL; pr_debug("Set context mapping for %02x:%02x.%d\n", bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); BUG_ON(!domain->pgd); BUG_ON(translation != CONTEXT_TT_PASS_THROUGH && translation != CONTEXT_TT_MULTI_LEVEL); iommu = device_to_iommu(segment, bus, devfn); if (!iommu) return -ENODEV; context = device_to_context_entry(iommu, bus, devfn); if (!context) return -ENOMEM; spin_lock_irqsave(&iommu->lock, flags); if (context_present(context)) { spin_unlock_irqrestore(&iommu->lock, flags); return 0; } id = domain->id; pgd = domain->pgd; if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) { int found = 0; /* find an available domain id for this device in iommu */ ndomains = cap_ndoms(iommu->cap); num = find_first_bit(iommu->domain_ids, ndomains); for (; num < ndomains; ) { if (iommu->domains[num] == domain) { id = num; found = 1; break; } num = find_next_bit(iommu->domain_ids, cap_ndoms(iommu->cap), num+1); } if (found == 0) { num = find_first_zero_bit(iommu->domain_ids, ndomains); if (num >= ndomains) { spin_unlock_irqrestore(&iommu->lock, flags); printk(KERN_ERR "IOMMU: no free domain ids\n"); return -EFAULT; } set_bit(num, iommu->domain_ids); set_bit(iommu->seq_id, &domain->iommu_bmp); iommu->domains[num] = domain; id = num; } /* Skip top levels of page tables for * iommu which has less agaw than default. */ for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { pgd = phys_to_virt(dma_pte_addr(pgd)); if (!dma_pte_present(pgd)) { spin_unlock_irqrestore(&iommu->lock, flags); return -ENOMEM; } } } context_set_domain_id(context, id); if (translation != CONTEXT_TT_PASS_THROUGH) { info = iommu_support_dev_iotlb(domain, segment, bus, devfn); translation = info ? CONTEXT_TT_DEV_IOTLB : CONTEXT_TT_MULTI_LEVEL; } /* * In pass through mode, AW must be programmed to indicate the largest * AGAW value supported by hardware. And ASR is ignored by hardware. */ if (unlikely(translation == CONTEXT_TT_PASS_THROUGH)) context_set_address_width(context, iommu->msagaw); else { context_set_address_root(context, virt_to_phys(pgd)); context_set_address_width(context, iommu->agaw); } context_set_translation_type(context, translation); context_set_fault_enable(context); context_set_present(context); domain_flush_cache(domain, context, sizeof(*context)); /* * It's a non-present to present mapping. If hardware doesn't cache * non-present entry we only need to flush the write-buffer. If the * _does_ cache non-present entries, then it does so in the special * domain #0, which we have to flush: */ if (cap_caching_mode(iommu->cap)) { iommu->flush.flush_context(iommu, 0, (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, DMA_CCMD_DEVICE_INVL); iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH); } else { iommu_flush_write_buffer(iommu); } iommu_enable_dev_iotlb(info); spin_unlock_irqrestore(&iommu->lock, flags); spin_lock_irqsave(&domain->iommu_lock, flags); if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) { domain->iommu_count++; domain_update_iommu_cap(domain); } spin_unlock_irqrestore(&domain->iommu_lock, flags); return 0; } static int domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev, int translation) { int ret; struct pci_dev *tmp, *parent; ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus), pdev->bus->number, pdev->devfn, translation); if (ret) return ret; /* dependent device mapping */ tmp = pci_find_upstream_pcie_bridge(pdev); if (!tmp) return 0; /* Secondary interface's bus number and devfn 0 */ parent = pdev->bus->self; while (parent != tmp) { ret = domain_context_mapping_one(domain, pci_domain_nr(parent->bus), parent->bus->number, parent->devfn, translation); if (ret) return ret; parent = parent->bus->self; } if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ return domain_context_mapping_one(domain, pci_domain_nr(tmp->subordinate), tmp->subordinate->number, 0, translation); else /* this is a legacy PCI bridge */ return domain_context_mapping_one(domain, pci_domain_nr(tmp->bus), tmp->bus->number, tmp->devfn, translation); } static int domain_context_mapped(struct pci_dev *pdev) { int ret; struct pci_dev *tmp, *parent; struct intel_iommu *iommu; iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, pdev->devfn); if (!iommu) return -ENODEV; ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn); if (!ret) return ret; /* dependent device mapping */ tmp = pci_find_upstream_pcie_bridge(pdev); if (!tmp) return ret; /* Secondary interface's bus number and devfn 0 */ parent = pdev->bus->self; while (parent != tmp) { ret = device_context_mapped(iommu, parent->bus->number, parent->devfn); if (!ret) return ret; parent = parent->bus->self; } if (tmp->is_pcie) return device_context_mapped(iommu, tmp->subordinate->number, 0); else return device_context_mapped(iommu, tmp->bus->number, tmp->devfn); } static int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, unsigned long phys_pfn, unsigned long nr_pages, int prot) { struct dma_pte *first_pte = NULL, *pte = NULL; int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width); if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) return -EINVAL; prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP; while (nr_pages--) { if (!pte) { first_pte = pte = pfn_to_dma_pte(domain, iov_pfn); if (!pte) return -ENOMEM; } /* We don't need lock here, nobody else * touches the iova range */ BUG_ON(dma_pte_addr(pte)); pte->val = (phys_pfn << VTD_PAGE_SHIFT) | prot; pte++; if (!nr_pages || (unsigned long)pte >> VTD_PAGE_SHIFT != (unsigned long)first_pte >> VTD_PAGE_SHIFT) { domain_flush_cache(domain, first_pte, (void *)pte - (void *)first_pte); pte = NULL; } iov_pfn++; phys_pfn++; } return 0; } static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn) { if (!iommu) return; clear_context_table(iommu, bus, devfn); iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); } static void domain_remove_dev_info(struct dmar_domain *domain) { struct device_domain_info *info; unsigned long flags; struct intel_iommu *iommu; spin_lock_irqsave(&device_domain_lock, flags); while (!list_empty(&domain->devices)) { info = list_entry(domain->devices.next, struct device_domain_info, link); list_del(&info->link); list_del(&info->global); if (info->dev) info->dev->dev.archdata.iommu = NULL; spin_unlock_irqrestore(&device_domain_lock, flags); iommu_disable_dev_iotlb(info); iommu = device_to_iommu(info->segment, info->bus, info->devfn); iommu_detach_dev(iommu, info->bus, info->devfn); free_devinfo_mem(info); spin_lock_irqsave(&device_domain_lock, flags); } spin_unlock_irqrestore(&device_domain_lock, flags); } /* * find_domain * Note: we use struct pci_dev->dev.archdata.iommu stores the info */ static struct dmar_domain * find_domain(struct pci_dev *pdev) { struct device_domain_info *info; /* No lock here, assumes no domain exit in normal case */ info = pdev->dev.archdata.iommu; if (info) return info->domain; return NULL; } /* domain is initialized */ static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) { struct dmar_domain *domain, *found = NULL; struct intel_iommu *iommu; struct dmar_drhd_unit *drhd; struct device_domain_info *info, *tmp; struct pci_dev *dev_tmp; unsigned long flags; int bus = 0, devfn = 0; int segment; int ret; domain = find_domain(pdev); if (domain) return domain; segment = pci_domain_nr(pdev->bus); dev_tmp = pci_find_upstream_pcie_bridge(pdev); if (dev_tmp) { if (dev_tmp->is_pcie) { bus = dev_tmp->subordinate->number; devfn = 0; } else { bus = dev_tmp->bus->number; devfn = dev_tmp->devfn; } spin_lock_irqsave(&device_domain_lock, flags); list_for_each_entry(info, &device_domain_list, global) { if (info->segment == segment && info->bus == bus && info->devfn == devfn) { found = info->domain; break; } } spin_unlock_irqrestore(&device_domain_lock, flags); /* pcie-pci bridge already has a domain, uses it */ if (found) { domain = found; goto found_domain; } } domain = alloc_domain(); if (!domain) goto error; /* Allocate new domain for the device */ drhd = dmar_find_matched_drhd_unit(pdev); if (!drhd) { printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", pci_name(pdev)); return NULL; } iommu = drhd->iommu; ret = iommu_attach_domain(domain, iommu); if (ret) { domain_exit(domain); goto error; } if (domain_init(domain, gaw)) { domain_exit(domain); goto error; } /* register pcie-to-pci device */ if (dev_tmp) { info = alloc_devinfo_mem(); if (!info) { domain_exit(domain); goto error; } info->segment = segment; info->bus = bus; info->devfn = devfn; info->dev = NULL; info->domain = domain; /* This domain is shared by devices under p2p bridge */ domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES; /* pcie-to-pci bridge already has a domain, uses it */ found = NULL; spin_lock_irqsave(&device_domain_lock, flags); list_for_each_entry(tmp, &device_domain_list, global) { if (tmp->segment == segment && tmp->bus == bus && tmp->devfn == devfn) { found = tmp->domain; break; } } if (found) { free_devinfo_mem(info); domain_exit(domain); domain = found; } else { list_add(&info->link, &domain->devices); list_add(&info->global, &device_domain_list); } spin_unlock_irqrestore(&device_domain_lock, flags); } found_domain: info = alloc_devinfo_mem(); if (!info) goto error; info->segment = segment; info->bus = pdev->bus->number; info->devfn = pdev->devfn; info->dev = pdev; info->domain = domain; spin_lock_irqsave(&device_domain_lock, flags); /* somebody is fast */ found = find_domain(pdev); if (found != NULL) { spin_unlock_irqrestore(&device_domain_lock, flags); if (found != domain) { domain_exit(domain); domain = found; } free_devinfo_mem(info); return domain; } list_add(&info->link, &domain->devices); list_add(&info->global, &device_domain_list); pdev->dev.archdata.iommu = info; spin_unlock_irqrestore(&device_domain_lock, flags); return domain; error: /* recheck it here, maybe others set it */ return find_domain(pdev); } static int iommu_identity_mapping; static int iommu_domain_identity_map(struct dmar_domain *domain, unsigned long long start, unsigned long long end) { unsigned long first_vpfn = start >> VTD_PAGE_SHIFT; unsigned long last_vpfn = end >> VTD_PAGE_SHIFT; if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn), dma_to_mm_pfn(last_vpfn))) { printk(KERN_ERR "IOMMU: reserve iova failed\n"); return -ENOMEM; } pr_debug("Mapping reserved region %llx-%llx for domain %d\n", start, end, domain->id); /* * RMRR range might have overlap with physical memory range, * clear it first */ dma_pte_clear_range(domain, first_vpfn, last_vpfn); return domain_pfn_mapping(domain, first_vpfn, first_vpfn, last_vpfn - first_vpfn + 1, DMA_PTE_READ|DMA_PTE_WRITE); } static int iommu_prepare_identity_map(struct pci_dev *pdev, unsigned long long start, unsigned long long end) { struct dmar_domain *domain; int ret; printk(KERN_INFO "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", pci_name(pdev), start, end); domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); if (!domain) return -ENOMEM; ret = iommu_domain_identity_map(domain, start, end); if (ret) goto error; /* context entry init */ ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL); if (ret) goto error; return 0; error: domain_exit(domain); return ret; } static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, struct pci_dev *pdev) { if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) return 0; return iommu_prepare_identity_map(pdev, rmrr->base_address, rmrr->end_address + 1); } #ifdef CONFIG_DMAR_FLOPPY_WA static inline void iommu_prepare_isa(void) { struct pci_dev *pdev; int ret; pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); if (!pdev) return; printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n"); ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024); if (ret) printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; " "floppy might not work\n"); } #else static inline void iommu_prepare_isa(void) { return; } #endif /* !CONFIG_DMAR_FLPY_WA */ /* Initialize each context entry as pass through.*/ static int __init init_context_pass_through(void) { struct pci_dev *pdev = NULL; struct dmar_domain *domain; int ret; for_each_pci_dev(pdev) { domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); ret = domain_context_mapping(domain, pdev, CONTEXT_TT_PASS_THROUGH); if (ret) return ret; } return 0; } static int md_domain_init(struct dmar_domain *domain, int guest_width); static int __init si_domain_work_fn(unsigned long start_pfn, unsigned long end_pfn, void *datax) { int *ret = datax; *ret = iommu_domain_identity_map(si_domain, (uint64_t)start_pfn << PAGE_SHIFT, (uint64_t)end_pfn << PAGE_SHIFT); return *ret; } static int si_domain_init(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; int nid, ret = 0; si_domain = alloc_domain(); if (!si_domain) return -EFAULT; pr_debug("Identity mapping domain is domain %d\n", si_domain->id); for_each_active_iommu(iommu, drhd) { ret = iommu_attach_domain(si_domain, iommu); if (ret) { domain_exit(si_domain); return -EFAULT; } } if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { domain_exit(si_domain); return -EFAULT; } si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY; for_each_online_node(nid) { work_with_active_regions(nid, si_domain_work_fn, &ret); if (ret) return ret; } return 0; } static void domain_remove_one_dev_info(struct dmar_domain *domain, struct pci_dev *pdev); static int identity_mapping(struct pci_dev *pdev) { struct device_domain_info *info; if (likely(!iommu_identity_mapping)) return 0; list_for_each_entry(info, &si_domain->devices, link) if (info->dev == pdev) return 1; return 0; } static int domain_add_dev_info(struct dmar_domain *domain, struct pci_dev *pdev) { struct device_domain_info *info; unsigned long flags; info = alloc_devinfo_mem(); if (!info) return -ENOMEM; info->segment = pci_domain_nr(pdev->bus); info->bus = pdev->bus->number; info->devfn = pdev->devfn; info->dev = pdev; info->domain = domain; spin_lock_irqsave(&device_domain_lock, flags); list_add(&info->link, &domain->devices); list_add(&info->global, &device_domain_list); pdev->dev.archdata.iommu = info; spin_unlock_irqrestore(&device_domain_lock, flags); return 0; } static int iommu_prepare_static_identity_mapping(void) { struct pci_dev *pdev = NULL; int ret; ret = si_domain_init(); if (ret) return -EFAULT; for_each_pci_dev(pdev) { printk(KERN_INFO "IOMMU: identity mapping for device %s\n", pci_name(pdev)); ret = domain_context_mapping(si_domain, pdev, CONTEXT_TT_MULTI_LEVEL); if (ret) return ret; ret = domain_add_dev_info(si_domain, pdev); if (ret) return ret; } return 0; } int __init init_dmars(void) { struct dmar_drhd_unit *drhd; struct dmar_rmrr_unit *rmrr; struct pci_dev *pdev; struct intel_iommu *iommu; int i, ret; int pass_through = 1; /* * In case pass through can not be enabled, iommu tries to use identity * mapping. */ if (iommu_pass_through) iommu_identity_mapping = 1; /* * for each drhd * allocate root * initialize and program root entry to not present * endfor */ for_each_drhd_unit(drhd) { g_num_of_iommus++; /* * lock not needed as this is only incremented in the single * threaded kernel __init code path all other access are read * only */ } g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), GFP_KERNEL); if (!g_iommus) { printk(KERN_ERR "Allocating global iommu array failed\n"); ret = -ENOMEM; goto error; } deferred_flush = kzalloc(g_num_of_iommus * sizeof(struct deferred_flush_tables), GFP_KERNEL); if (!deferred_flush) { kfree(g_iommus); ret = -ENOMEM; goto error; } for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; g_iommus[iommu->seq_id] = iommu; ret = iommu_init_domains(iommu); if (ret) goto error; /* * TBD: * we could share the same root & context tables * amoung all IOMMU's. Need to Split it later. */ ret = iommu_alloc_root_entry(iommu); if (ret) { printk(KERN_ERR "IOMMU: allocate root entry failed\n"); goto error; } if (!ecap_pass_through(iommu->ecap)) pass_through = 0; } if (iommu_pass_through) if (!pass_through) { printk(KERN_INFO "Pass Through is not supported by hardware.\n"); iommu_pass_through = 0; } /* * Start from the sane iommu hardware state. */ for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; /* * If the queued invalidation is already initialized by us * (for example, while enabling interrupt-remapping) then * we got the things already rolling from a sane state. */ if (iommu->qi) continue; /* * Clear any previous faults. */ dmar_fault(-1, iommu); /* * Disable queued invalidation if supported and already enabled * before OS handover. */ dmar_disable_qi(iommu); } for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; if (dmar_enable_qi(iommu)) { /* * Queued Invalidate not enabled, use Register Based * Invalidate */ iommu->flush.flush_context = __iommu_flush_context; iommu->flush.flush_iotlb = __iommu_flush_iotlb; printk(KERN_INFO "IOMMU 0x%Lx: using Register based " "invalidation\n", (unsigned long long)drhd->reg_base_addr); } else { iommu->flush.flush_context = qi_flush_context; iommu->flush.flush_iotlb = qi_flush_iotlb; printk(KERN_INFO "IOMMU 0x%Lx: using Queued " "invalidation\n", (unsigned long long)drhd->reg_base_addr); } } /* * If pass through is set and enabled, context entries of all pci * devices are intialized by pass through translation type. */ if (iommu_pass_through) { ret = init_context_pass_through(); if (ret) { printk(KERN_ERR "IOMMU: Pass through init failed.\n"); iommu_pass_through = 0; } } /* * If pass through is not set or not enabled, setup context entries for * identity mappings for rmrr, gfx, and isa and may fall back to static * identity mapping if iommu_identity_mapping is set. */ if (!iommu_pass_through) { if (iommu_identity_mapping) iommu_prepare_static_identity_mapping(); /* * For each rmrr * for each dev attached to rmrr * do * locate drhd for dev, alloc domain for dev * allocate free domain * allocate page table entries for rmrr * if context not allocated for bus * allocate and init context * set present in root table for this bus * init context with domain, translation etc * endfor * endfor */ printk(KERN_INFO "IOMMU: Setting RMRR:\n"); for_each_rmrr_units(rmrr) { for (i = 0; i < rmrr->devices_cnt; i++) { pdev = rmrr->devices[i]; /* * some BIOS lists non-exist devices in DMAR * table. */ if (!pdev) continue; ret = iommu_prepare_rmrr_dev(rmrr, pdev); if (ret) printk(KERN_ERR "IOMMU: mapping reserved region failed\n"); } } iommu_prepare_isa(); } /* * for each drhd * enable fault log * global invalidate context cache * global invalidate iotlb * enable translation */ for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; iommu_flush_write_buffer(iommu); ret = dmar_set_interrupt(iommu); if (ret) goto error; iommu_set_root_entry(iommu); iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); iommu_disable_protect_mem_regions(iommu); ret = iommu_enable_translation(iommu); if (ret) goto error; } return 0; error: for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; free_iommu(iommu); } kfree(g_iommus); return ret; } static inline unsigned long aligned_nrpages(unsigned long host_addr, size_t size) { host_addr &= ~PAGE_MASK; host_addr += size + PAGE_SIZE - 1; return host_addr >> VTD_PAGE_SHIFT; } static struct iova *intel_alloc_iova(struct device *dev, struct dmar_domain *domain, unsigned long nrpages, uint64_t dma_mask) { struct pci_dev *pdev = to_pci_dev(dev); struct iova *iova = NULL; /* Restrict dma_mask to the width that the iommu can handle */ dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask); if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { /* * First try to allocate an io virtual address in * DMA_BIT_MASK(32) and if that fails then try allocating * from higher range */ iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(DMA_BIT_MASK(32)), 1); if (iova) return iova; } iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1); if (unlikely(!iova)) { printk(KERN_ERR "Allocating %ld-page iova for %s failed", nrpages, pci_name(pdev)); return NULL; } return iova; } static struct dmar_domain * get_valid_domain_for_dev(struct pci_dev *pdev) { struct dmar_domain *domain; int ret; domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); if (!domain) { printk(KERN_ERR "Allocating domain for %s failed", pci_name(pdev)); return NULL; } /* make sure context mapping is ok */ if (unlikely(!domain_context_mapped(pdev))) { ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL); if (ret) { printk(KERN_ERR "Domain context map for %s failed", pci_name(pdev)); return NULL; } } return domain; } static int iommu_dummy(struct pci_dev *pdev) { return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; } /* Check if the pdev needs to go through non-identity map and unmap process.*/ static int iommu_no_mapping(struct pci_dev *pdev) { int found; if (!iommu_identity_mapping) return iommu_dummy(pdev); found = identity_mapping(pdev); if (found) { if (pdev->dma_mask > DMA_BIT_MASK(32)) return 1; else { /* * 32 bit DMA is removed from si_domain and fall back * to non-identity mapping. */ domain_remove_one_dev_info(si_domain, pdev); printk(KERN_INFO "32bit %s uses non-identity mapping\n", pci_name(pdev)); return 0; } } else { /* * In case of a detached 64 bit DMA device from vm, the device * is put into si_domain for identity mapping. */ if (pdev->dma_mask > DMA_BIT_MASK(32)) { int ret; ret = domain_add_dev_info(si_domain, pdev); if (!ret) { printk(KERN_INFO "64bit %s uses identity mapping\n", pci_name(pdev)); return 1; } } } return iommu_dummy(pdev); } static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int dir, u64 dma_mask) { struct pci_dev *pdev = to_pci_dev(hwdev); struct dmar_domain *domain; phys_addr_t start_paddr; struct iova *iova; int prot = 0; int ret; struct intel_iommu *iommu; BUG_ON(dir == DMA_NONE); if (iommu_no_mapping(pdev)) return paddr; domain = get_valid_domain_for_dev(pdev); if (!domain) return 0; iommu = domain_get_iommu(domain); size = aligned_nrpages(paddr, size); iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask); if (!iova) goto error; /* * Check if DMAR supports zero-length reads on write only * mappings.. */ if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ !cap_zlr(iommu->cap)) prot |= DMA_PTE_READ; if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) prot |= DMA_PTE_WRITE; /* * paddr - (paddr + size) might be partial page, we should map the whole * page. Note: if two part of one page are separately mapped, we * might have two guest_addr mapping to the same host paddr, but this * is not a big problem */ ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo), paddr >> VTD_PAGE_SHIFT, size, prot); if (ret) goto error; /* it's a non-present to present mapping. Only flush if caching mode */ if (cap_caching_mode(iommu->cap)) iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size); else iommu_flush_write_buffer(iommu); start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; start_paddr += paddr & ~PAGE_MASK; return start_paddr; error: if (iova) __free_iova(&domain->iovad, iova); printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n", pci_name(pdev), size, (unsigned long long)paddr, dir); return 0; } static dma_addr_t intel_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { return __intel_map_single(dev, page_to_phys(page) + offset, size, dir, to_pci_dev(dev)->dma_mask); } static void flush_unmaps(void) { int i, j; timer_on = 0; /* just flush them all */ for (i = 0; i < g_num_of_iommus; i++) { struct intel_iommu *iommu = g_iommus[i]; if (!iommu) continue; if (!deferred_flush[i].next) continue; iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); for (j = 0; j < deferred_flush[i].next; j++) { unsigned long mask; struct iova *iova = deferred_flush[i].iova[j]; mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT; mask = ilog2(mask >> VTD_PAGE_SHIFT); iommu_flush_dev_iotlb(deferred_flush[i].domain[j], iova->pfn_lo << PAGE_SHIFT, mask); __free_iova(&deferred_flush[i].domain[j]->iovad, iova); } deferred_flush[i].next = 0; } list_size = 0; } static void flush_unmaps_timeout(unsigned long data) { unsigned long flags; spin_lock_irqsave(&async_umap_flush_lock, flags); flush_unmaps(); spin_unlock_irqrestore(&async_umap_flush_lock, flags); } static void add_unmap(struct dmar_domain *dom, struct iova *iova) { unsigned long flags; int next, iommu_id; struct intel_iommu *iommu; spin_lock_irqsave(&async_umap_flush_lock, flags); if (list_size == HIGH_WATER_MARK) flush_unmaps(); iommu = domain_get_iommu(dom); iommu_id = iommu->seq_id; next = deferred_flush[iommu_id].next; deferred_flush[iommu_id].domain[next] = dom; deferred_flush[iommu_id].iova[next] = iova; deferred_flush[iommu_id].next++; if (!timer_on) { mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); timer_on = 1; } list_size++; spin_unlock_irqrestore(&async_umap_flush_lock, flags); } static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { struct pci_dev *pdev = to_pci_dev(dev); struct dmar_domain *domain; unsigned long start_pfn, last_pfn; struct iova *iova; struct intel_iommu *iommu; if (iommu_no_mapping(pdev)) return; domain = find_domain(pdev); BUG_ON(!domain); iommu = domain_get_iommu(domain); iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); if (!iova) return; start_pfn = mm_to_dma_pfn(iova->pfn_lo); last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; pr_debug("Device %s unmapping: pfn %lx-%lx\n", pci_name(pdev), start_pfn, last_pfn); /* clear the whole page */ dma_pte_clear_range(domain, start_pfn, last_pfn); /* free page tables */ dma_pte_free_pagetable(domain, start_pfn, last_pfn); if (intel_iommu_strict) { iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, last_pfn - start_pfn + 1); /* free iova */ __free_iova(&domain->iovad, iova); } else { add_unmap(domain, iova); /* * queue up the release of the unmap to save the 1/6th of the * cpu used up by the iotlb flush operation... */ } } static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size, int dir) { intel_unmap_page(dev, dev_addr, size, dir, NULL); } static void *intel_alloc_coherent(struct device *hwdev, size_t size, dma_addr_t *dma_handle, gfp_t flags) { void *vaddr; int order; size = PAGE_ALIGN(size); order = get_order(size); flags &= ~(GFP_DMA | GFP_DMA32); vaddr = (void *)__get_free_pages(flags, order); if (!vaddr) return NULL; memset(vaddr, 0, size); *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, DMA_BIDIRECTIONAL, hwdev->coherent_dma_mask); if (*dma_handle) return vaddr; free_pages((unsigned long)vaddr, order); return NULL; } static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle) { int order; size = PAGE_ALIGN(size); order = get_order(size); intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL); free_pages((unsigned long)vaddr, order); } static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { struct pci_dev *pdev = to_pci_dev(hwdev); struct dmar_domain *domain; unsigned long start_pfn, last_pfn; struct iova *iova; struct intel_iommu *iommu; if (iommu_no_mapping(pdev)) return; domain = find_domain(pdev); BUG_ON(!domain); iommu = domain_get_iommu(domain); iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); if (!iova) return; start_pfn = mm_to_dma_pfn(iova->pfn_lo); last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; /* clear the whole page */ dma_pte_clear_range(domain, start_pfn, last_pfn); /* free page tables */ dma_pte_free_pagetable(domain, start_pfn, last_pfn); iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, (last_pfn - start_pfn + 1)); /* free iova */ __free_iova(&domain->iovad, iova); } static int intel_nontranslate_map_sg(struct device *hddev, struct scatterlist *sglist, int nelems, int dir) { int i; struct scatterlist *sg; for_each_sg(sglist, sg, nelems, i) { BUG_ON(!sg_page(sg)); sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset; sg->dma_length = sg->length; } return nelems; } static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { int i; struct pci_dev *pdev = to_pci_dev(hwdev); struct dmar_domain *domain; size_t size = 0; int prot = 0; size_t offset_pfn = 0; struct iova *iova = NULL; int ret; struct scatterlist *sg; unsigned long start_vpfn; struct intel_iommu *iommu; BUG_ON(dir == DMA_NONE); if (iommu_no_mapping(pdev)) return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); domain = get_valid_domain_for_dev(pdev); if (!domain) return 0; iommu = domain_get_iommu(domain); for_each_sg(sglist, sg, nelems, i) size += aligned_nrpages(sg->offset, sg->length); iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask); if (!iova) { sglist->dma_length = 0; return 0; } /* * Check if DMAR supports zero-length reads on write only * mappings.. */ if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ !cap_zlr(iommu->cap)) prot |= DMA_PTE_READ; if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) prot |= DMA_PTE_WRITE; start_vpfn = mm_to_dma_pfn(iova->pfn_lo); offset_pfn = 0; for_each_sg(sglist, sg, nelems, i) { int nr_pages = aligned_nrpages(sg->offset, sg->length); ret = domain_pfn_mapping(domain, start_vpfn + offset_pfn, page_to_dma_pfn(sg_page(sg)), nr_pages, prot); if (ret) { /* clear the page */ dma_pte_clear_range(domain, start_vpfn, start_vpfn + offset_pfn); /* free page tables */ dma_pte_free_pagetable(domain, start_vpfn, start_vpfn + offset_pfn); /* free iova */ __free_iova(&domain->iovad, iova); return 0; } sg->dma_address = ((dma_addr_t)(start_vpfn + offset_pfn) << VTD_PAGE_SHIFT) + sg->offset; sg->dma_length = sg->length; offset_pfn += nr_pages; } /* it's a non-present to present mapping. Only flush if caching mode */ if (cap_caching_mode(iommu->cap)) iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn); else iommu_flush_write_buffer(iommu); return nelems; } static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr) { return !dma_addr; } struct dma_map_ops intel_dma_ops = { .alloc_coherent = intel_alloc_coherent, .free_coherent = intel_free_coherent, .map_sg = intel_map_sg, .unmap_sg = intel_unmap_sg, .map_page = intel_map_page, .unmap_page = intel_unmap_page, .mapping_error = intel_mapping_error, }; static inline int iommu_domain_cache_init(void) { int ret = 0; iommu_domain_cache = kmem_cache_create("iommu_domain", sizeof(struct dmar_domain), 0, SLAB_HWCACHE_ALIGN, NULL); if (!iommu_domain_cache) { printk(KERN_ERR "Couldn't create iommu_domain cache\n"); ret = -ENOMEM; } return ret; } static inline int iommu_devinfo_cache_init(void) { int ret = 0; iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", sizeof(struct device_domain_info), 0, SLAB_HWCACHE_ALIGN, NULL); if (!iommu_devinfo_cache) { printk(KERN_ERR "Couldn't create devinfo cache\n"); ret = -ENOMEM; } return ret; } static inline int iommu_iova_cache_init(void) { int ret = 0; iommu_iova_cache = kmem_cache_create("iommu_iova", sizeof(struct iova), 0, SLAB_HWCACHE_ALIGN, NULL); if (!iommu_iova_cache) { printk(KERN_ERR "Couldn't create iova cache\n"); ret = -ENOMEM; } return ret; } static int __init iommu_init_mempool(void) { int ret; ret = iommu_iova_cache_init(); if (ret) return ret; ret = iommu_domain_cache_init(); if (ret) goto domain_error; ret = iommu_devinfo_cache_init(); if (!ret) return ret; kmem_cache_destroy(iommu_domain_cache); domain_error: kmem_cache_destroy(iommu_iova_cache); return -ENOMEM; } static void __init iommu_exit_mempool(void) { kmem_cache_destroy(iommu_devinfo_cache); kmem_cache_destroy(iommu_domain_cache); kmem_cache_destroy(iommu_iova_cache); } static void __init init_no_remapping_devices(void) { struct dmar_drhd_unit *drhd; for_each_drhd_unit(drhd) { if (!drhd->include_all) { int i; for (i = 0; i < drhd->devices_cnt; i++) if (drhd->devices[i] != NULL) break; /* ignore DMAR unit if no pci devices exist */ if (i == drhd->devices_cnt) drhd->ignored = 1; } } if (dmar_map_gfx) return; for_each_drhd_unit(drhd) { int i; if (drhd->ignored || drhd->include_all) continue; for (i = 0; i < drhd->devices_cnt; i++) if (drhd->devices[i] && !IS_GFX_DEVICE(drhd->devices[i])) break; if (i < drhd->devices_cnt) continue; /* bypass IOMMU if it is just for gfx devices */ drhd->ignored = 1; for (i = 0; i < drhd->devices_cnt; i++) { if (!drhd->devices[i]) continue; drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; } } } #ifdef CONFIG_SUSPEND static int init_iommu_hw(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu = NULL; for_each_active_iommu(iommu, drhd) if (iommu->qi) dmar_reenable_qi(iommu); for_each_active_iommu(iommu, drhd) { iommu_flush_write_buffer(iommu); iommu_set_root_entry(iommu); iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); iommu_disable_protect_mem_regions(iommu); iommu_enable_translation(iommu); } return 0; } static void iommu_flush_all(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; for_each_active_iommu(iommu, drhd) { iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); } } static int iommu_suspend(struct sys_device *dev, pm_message_t state) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu = NULL; unsigned long flag; for_each_active_iommu(iommu, drhd) { iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS, GFP_ATOMIC); if (!iommu->iommu_state) goto nomem; } iommu_flush_all(); for_each_active_iommu(iommu, drhd) { iommu_disable_translation(iommu); spin_lock_irqsave(&iommu->register_lock, flag); iommu->iommu_state[SR_DMAR_FECTL_REG] = readl(iommu->reg + DMAR_FECTL_REG); iommu->iommu_state[SR_DMAR_FEDATA_REG] = readl(iommu->reg + DMAR_FEDATA_REG); iommu->iommu_state[SR_DMAR_FEADDR_REG] = readl(iommu->reg + DMAR_FEADDR_REG); iommu->iommu_state[SR_DMAR_FEUADDR_REG] = readl(iommu->reg + DMAR_FEUADDR_REG); spin_unlock_irqrestore(&iommu->register_lock, flag); } return 0; nomem: for_each_active_iommu(iommu, drhd) kfree(iommu->iommu_state); return -ENOMEM; } static int iommu_resume(struct sys_device *dev) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu = NULL; unsigned long flag; if (init_iommu_hw()) { WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); return -EIO; } for_each_active_iommu(iommu, drhd) { spin_lock_irqsave(&iommu->register_lock, flag); writel(iommu->iommu_state[SR_DMAR_FECTL_REG], iommu->reg + DMAR_FECTL_REG); writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], iommu->reg + DMAR_FEDATA_REG); writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], iommu->reg + DMAR_FEADDR_REG); writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], iommu->reg + DMAR_FEUADDR_REG); spin_unlock_irqrestore(&iommu->register_lock, flag); } for_each_active_iommu(iommu, drhd) kfree(iommu->iommu_state); return 0; } static struct sysdev_class iommu_sysclass = { .name = "iommu", .resume = iommu_resume, .suspend = iommu_suspend, }; static struct sys_device device_iommu = { .cls = &iommu_sysclass, }; static int __init init_iommu_sysfs(void) { int error; error = sysdev_class_register(&iommu_sysclass); if (error) return error; error = sysdev_register(&device_iommu); if (error) sysdev_class_unregister(&iommu_sysclass); return error; } #else static int __init init_iommu_sysfs(void) { return 0; } #endif /* CONFIG_PM */ int __init intel_iommu_init(void) { int ret = 0; if (dmar_table_init()) return -ENODEV; if (dmar_dev_scope_init()) return -ENODEV; /* * Check the need for DMA-remapping initialization now. * Above initialization will also be used by Interrupt-remapping. */ if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled) return -ENODEV; iommu_init_mempool(); dmar_init_reserved_ranges(); init_no_remapping_devices(); ret = init_dmars(); if (ret) { printk(KERN_ERR "IOMMU: dmar init failed\n"); put_iova_domain(&reserved_iova_list); iommu_exit_mempool(); return ret; } printk(KERN_INFO "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); init_timer(&unmap_timer); force_iommu = 1; if (!iommu_pass_through) { printk(KERN_INFO "Multi-level page-table translation for DMAR.\n"); dma_ops = &intel_dma_ops; } else printk(KERN_INFO "DMAR: Pass through translation for DMAR.\n"); init_iommu_sysfs(); register_iommu(&intel_iommu_ops); return 0; } static void iommu_detach_dependent_devices(struct intel_iommu *iommu, struct pci_dev *pdev) { struct pci_dev *tmp, *parent; if (!iommu || !pdev) return; /* dependent device detach */ tmp = pci_find_upstream_pcie_bridge(pdev); /* Secondary interface's bus number and devfn 0 */ if (tmp) { parent = pdev->bus->self; while (parent != tmp) { iommu_detach_dev(iommu, parent->bus->number, parent->devfn); parent = parent->bus->self; } if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ iommu_detach_dev(iommu, tmp->subordinate->number, 0); else /* this is a legacy PCI bridge */ iommu_detach_dev(iommu, tmp->bus->number, tmp->devfn); } } static void domain_remove_one_dev_info(struct dmar_domain *domain, struct pci_dev *pdev) { struct device_domain_info *info; struct intel_iommu *iommu; unsigned long flags; int found = 0; struct list_head *entry, *tmp; iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, pdev->devfn); if (!iommu) return; spin_lock_irqsave(&device_domain_lock, flags); list_for_each_safe(entry, tmp, &domain->devices) { info = list_entry(entry, struct device_domain_info, link); /* No need to compare PCI domain; it has to be the same */ if (info->bus == pdev->bus->number && info->devfn == pdev->devfn) { list_del(&info->link); list_del(&info->global); if (info->dev) info->dev->dev.archdata.iommu = NULL; spin_unlock_irqrestore(&device_domain_lock, flags); iommu_disable_dev_iotlb(info); iommu_detach_dev(iommu, info->bus, info->devfn); iommu_detach_dependent_devices(iommu, pdev); free_devinfo_mem(info); spin_lock_irqsave(&device_domain_lock, flags); if (found) break; else continue; } /* if there is no other devices under the same iommu * owned by this domain, clear this iommu in iommu_bmp * update iommu count and coherency */ if (iommu == device_to_iommu(info->segment, info->bus, info->devfn)) found = 1; } if (found == 0) { unsigned long tmp_flags; spin_lock_irqsave(&domain->iommu_lock, tmp_flags); clear_bit(iommu->seq_id, &domain->iommu_bmp); domain->iommu_count--; domain_update_iommu_cap(domain); spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags); } spin_unlock_irqrestore(&device_domain_lock, flags); } static void vm_domain_remove_all_dev_info(struct dmar_domain *domain) { struct device_domain_info *info; struct intel_iommu *iommu; unsigned long flags1, flags2; spin_lock_irqsave(&device_domain_lock, flags1); while (!list_empty(&domain->devices)) { info = list_entry(domain->devices.next, struct device_domain_info, link); list_del(&info->link); list_del(&info->global); if (info->dev) info->dev->dev.archdata.iommu = NULL; spin_unlock_irqrestore(&device_domain_lock, flags1); iommu_disable_dev_iotlb(info); iommu = device_to_iommu(info->segment, info->bus, info->devfn); iommu_detach_dev(iommu, info->bus, info->devfn); iommu_detach_dependent_devices(iommu, info->dev); /* clear this iommu in iommu_bmp, update iommu count * and capabilities */ spin_lock_irqsave(&domain->iommu_lock, flags2); if (test_and_clear_bit(iommu->seq_id, &domain->iommu_bmp)) { domain->iommu_count--; domain_update_iommu_cap(domain); } spin_unlock_irqrestore(&domain->iommu_lock, flags2); free_devinfo_mem(info); spin_lock_irqsave(&device_domain_lock, flags1); } spin_unlock_irqrestore(&device_domain_lock, flags1); } /* domain id for virtual machine, it won't be set in context */ static unsigned long vm_domid; static int vm_domain_min_agaw(struct dmar_domain *domain) { int i; int min_agaw = domain->agaw; i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); for (; i < g_num_of_iommus; ) { if (min_agaw > g_iommus[i]->agaw) min_agaw = g_iommus[i]->agaw; i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1); } return min_agaw; } static struct dmar_domain *iommu_alloc_vm_domain(void) { struct dmar_domain *domain; domain = alloc_domain_mem(); if (!domain) return NULL; domain->id = vm_domid++; memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE; return domain; } static int md_domain_init(struct dmar_domain *domain, int guest_width) { int adjust_width; init_iova_domain(&domain->iovad, DMA_32BIT_PFN); spin_lock_init(&domain->mapping_lock); spin_lock_init(&domain->iommu_lock); domain_reserve_special_ranges(domain); /* calculate AGAW */ domain->gaw = guest_width; adjust_width = guestwidth_to_adjustwidth(guest_width); domain->agaw = width_to_agaw(adjust_width); INIT_LIST_HEAD(&domain->devices); domain->iommu_count = 0; domain->iommu_coherency = 0; domain->max_addr = 0; /* always allocate the top pgd */ domain->pgd = (struct dma_pte *)alloc_pgtable_page(); if (!domain->pgd) return -ENOMEM; domain_flush_cache(domain, domain->pgd, PAGE_SIZE); return 0; } static void iommu_free_vm_domain(struct dmar_domain *domain) { unsigned long flags; struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; unsigned long i; unsigned long ndomains; for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; ndomains = cap_ndoms(iommu->cap); i = find_first_bit(iommu->domain_ids, ndomains); for (; i < ndomains; ) { if (iommu->domains[i] == domain) { spin_lock_irqsave(&iommu->lock, flags); clear_bit(i, iommu->domain_ids); iommu->domains[i] = NULL; spin_unlock_irqrestore(&iommu->lock, flags); break; } i = find_next_bit(iommu->domain_ids, ndomains, i+1); } } } static void vm_domain_exit(struct dmar_domain *domain) { /* Domain 0 is reserved, so dont process it */ if (!domain) return; vm_domain_remove_all_dev_info(domain); /* destroy iovas */ put_iova_domain(&domain->iovad); /* clear ptes */ dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); /* free page tables */ dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); iommu_free_vm_domain(domain); free_domain_mem(domain); } static int intel_iommu_domain_init(struct iommu_domain *domain) { struct dmar_domain *dmar_domain; dmar_domain = iommu_alloc_vm_domain(); if (!dmar_domain) { printk(KERN_ERR "intel_iommu_domain_init: dmar_domain == NULL\n"); return -ENOMEM; } if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { printk(KERN_ERR "intel_iommu_domain_init() failed\n"); vm_domain_exit(dmar_domain); return -ENOMEM; } domain->priv = dmar_domain; return 0; } static void intel_iommu_domain_destroy(struct iommu_domain *domain) { struct dmar_domain *dmar_domain = domain->priv; domain->priv = NULL; vm_domain_exit(dmar_domain); } static int intel_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct dmar_domain *dmar_domain = domain->priv; struct pci_dev *pdev = to_pci_dev(dev); struct intel_iommu *iommu; int addr_width; u64 end; int ret; /* normally pdev is not mapped */ if (unlikely(domain_context_mapped(pdev))) { struct dmar_domain *old_domain; old_domain = find_domain(pdev); if (old_domain) { if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) domain_remove_one_dev_info(old_domain, pdev); else domain_remove_dev_info(old_domain); } } iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, pdev->devfn); if (!iommu) return -ENODEV; /* check if this iommu agaw is sufficient for max mapped address */ addr_width = agaw_to_width(iommu->agaw); end = DOMAIN_MAX_ADDR(addr_width); end = end & VTD_PAGE_MASK; if (end < dmar_domain->max_addr) { printk(KERN_ERR "%s: iommu agaw (%d) is not " "sufficient for the mapped address (%llx)\n", __func__, iommu->agaw, dmar_domain->max_addr); return -EFAULT; } ret = domain_add_dev_info(dmar_domain, pdev); if (ret) return ret; ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL); return ret; } static void intel_iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct dmar_domain *dmar_domain = domain->priv; struct pci_dev *pdev = to_pci_dev(dev); domain_remove_one_dev_info(dmar_domain, pdev); } static int intel_iommu_map_range(struct iommu_domain *domain, unsigned long iova, phys_addr_t hpa, size_t size, int iommu_prot) { struct dmar_domain *dmar_domain = domain->priv; u64 max_addr; int addr_width; int prot = 0; int ret; if (iommu_prot & IOMMU_READ) prot |= DMA_PTE_READ; if (iommu_prot & IOMMU_WRITE) prot |= DMA_PTE_WRITE; if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) prot |= DMA_PTE_SNP; max_addr = iova + size; if (dmar_domain->max_addr < max_addr) { int min_agaw; u64 end; /* check if minimum agaw is sufficient for mapped address */ min_agaw = vm_domain_min_agaw(dmar_domain); addr_width = agaw_to_width(min_agaw); end = DOMAIN_MAX_ADDR(addr_width); end = end & VTD_PAGE_MASK; if (end < max_addr) { printk(KERN_ERR "%s: iommu agaw (%d) is not " "sufficient for the mapped address (%llx)\n", __func__, min_agaw, max_addr); return -EFAULT; } dmar_domain->max_addr = max_addr; } /* Round up size to next multiple of PAGE_SIZE, if it and the low bits of hpa would take us onto the next page */ size = aligned_nrpages(hpa, size); ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, hpa >> VTD_PAGE_SHIFT, size, prot); return ret; } static void intel_iommu_unmap_range(struct iommu_domain *domain, unsigned long iova, size_t size) { struct dmar_domain *dmar_domain = domain->priv; dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT, (iova + size - 1) >> VTD_PAGE_SHIFT); if (dmar_domain->max_addr == iova + size) dmar_domain->max_addr = iova; } static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, unsigned long iova) { struct dmar_domain *dmar_domain = domain->priv; struct dma_pte *pte; u64 phys = 0; pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT); if (pte) phys = dma_pte_addr(pte); return phys; } static int intel_iommu_domain_has_cap(struct iommu_domain *domain, unsigned long cap) { struct dmar_domain *dmar_domain = domain->priv; if (cap == IOMMU_CAP_CACHE_COHERENCY) return dmar_domain->iommu_snooping; return 0; } static struct iommu_ops intel_iommu_ops = { .domain_init = intel_iommu_domain_init, .domain_destroy = intel_iommu_domain_destroy, .attach_dev = intel_iommu_attach_device, .detach_dev = intel_iommu_detach_device, .map = intel_iommu_map_range, .unmap = intel_iommu_unmap_range, .iova_to_phys = intel_iommu_iova_to_phys, .domain_has_cap = intel_iommu_domain_has_cap, }; static void __devinit quirk_iommu_rwbf(struct pci_dev *dev) { /* * Mobile 4 Series Chipset neglects to set RWBF capability, * but needs it: */ printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n"); rwbf_quirk = 1; } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);