
AHA - Adaptive Honeypot Alternative

Gérard Wagener

October 29, 2010

1 / 25



Introduction

Related work

I Honeypots are resources designed to be under attack [5]

I End eighties / early nineties first experiments by Clifford Stoll
[6], Steven Bellovin [1] and Bill Cheswick [2]

I They mainly reported how they trapped attackers and the
related activities

I In 1998 Fred Cohen discussed the deception techniques that
can be used while dealing with attackers [3]

I Lance Spitzner writes that honeypots are particularly useful to
learn from attackers

I Jose Antonio Coret re-implemented an SSH server in python
as honeypot [4]

2 / 25



Introduction
Attack Scenario

Step Attacker Honypot Comment
0 SSH connect Attacker penetration
1 Returns shell Full access
2 id System identification
3 Execute id
4 uname System identification
5 Execute uname
6 ps aux Already compromised?
7 Execute ps
8 wget URL0 Acquire tool
9 Execute wget
10 ./ssh − brute Misuse the system
11 Return error Strategical block
12 wget URL1 Additional tool
13 Execute wget
14 ./configure Build attacker tool Source code
15 Allow Make attacker happy

3 / 25



Introduction

Contribution

I Create framework serving as building blocks for adaptive
honeypots

I Optimize information retrieval from attackers (skills, tools,
used time, social background, used language)

I Based on a Linux operating system exposing a vulnerable SSH
server

4 / 25



Adaptation mechanisms

I Allow the execution of a program
I Behave like a regular high-interaction honeypot
I Do not interfere with the execution flow

I Block the execution of a program
I Strategically block the execution of a program
I Challenge the attacker

I Substitute the executed program
I Make attacker believe that they downloaded the wrong

program
I Make attacker believe that their repository is not available

I Insult the attacker
I Irritate attacker
I Reveal his ethic background
I Differentiate between automated attacks and human attackers
I See if attackers bounce through compromised hosts

5 / 25



AHA framework - Overview

Internet

Attacker
(0)

Host Operating System (User space)

Kernel

User

User Mode Linux

SSHD

AHAD

AHA Worker

Log file

AHA Eye

Report

(1)

Output

(2)

Input

(5)

(3)

(4)

6 / 25



Components interaction

I Linux system call hooks
I sys execve
I sys clone
I sys exit

I Send messages to AHA daemon

I A decision must be taken (not included in the framework)
I Exchange Messages

I Export message → export kernel information to the daemon
I Reply message → decision taken by the daemon
I Export and reply messages are tighly linked → unique message

identifier

7 / 25



Components interaction

1 type=1

2 file=/usr/bin/vi

3 argument=vi

4 env=TERM=screen

5 env=SHELL=/bin/bash

6 env=SSH_CLIENT=192.168.1.2 41836 22

7 env=SSH_TTY=/dev/pts/0

8 env=USER=gabriela

9 env=PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

10 env=LANG=en_US.UTF-8

11 env=HISTCONTROL=ignoreboth

12 env=SHLVL=1

13 env=HOME=/home/gabriela

14 env=LOGNAME=gabriela

15 env=SSH_CONNECTION=192.168.1.2 41836 192.168.1.1 22

16 env=_=/usr/bin/vi

17 pid=1100

18 ppid=1075

19 rppid=1075

20 DONE=1 8 / 25



Reply message

1 struct ReplyMessage{

2 int block;

3 int substitue;

4 int insult;

5 };

9 / 25



Components description
User Mode Linux surgeries

Building an UML from a vanilla kernel

1 make defconfig ARCH=um

2 make ARCH=um

Modified kernel files
File Function
arch/um/kernel/exec.c sys execve

arch/um/kernel/process.c exit thread

arch/um/sys-i386/syscalls.c sys clone

os-Linux/main.c init

Purpose: Export program execution data and let the daemon take
the decisions

10 / 25



Components description
User Mode Linux surgeries

Sys execve hook

1 long sys_execve(char __user *file, char __user *__user *argv,

2 char __user *__user *env)

3 {

4 long error;

5 char *filename;

6 struct ReplyMessage msg;

7 filename = aha_dump_execve(file,argv,env);

8 if (filename){

9 aha_get_reply_message(filename,&msg);

10 kfree(filename);

11 /* Implement decisions taken by AHA */

12 if (msg.block) {

13 error = msg.block;

14 goto out;

15 }

16 if (msg.insult) {

17 aha_handle_insult_messages(&msg,file,argv);

18 }else {

19 if (msg.substitute) {

20 aha_handle_substitutes(&msg,file,argv);

21 }

22 }

23 }

11 / 25



Components description
AHA daemon

Operation

I Read messages initiated by the User Mode Linux

I Is the program execution related to an attacker?

I Take a decision and put it in the input queue

Code Organization

I AHAActions → core functions to interact with the User Mode
Linux

I KERNEL ERRORS → Strategical blocking (taken from the
Kernel Source)

I ReplyMessage → Create a binary reply message for the User
Mode Linux

I ProcessTree → Maintain in the daemon a clone of the process
tree of the UML

12 / 25



Components description
AHA Worker

I Execution performance is critical

I AHA daemon only takes decisions

I AHA Worker periodically polls the queues

I Merges messages in a log file

I Avoid overfilled queues

13 / 25



Components description
AHA Eye

I Monitoring is essential for honeypot operation

I Human readable form is desired

I AHA Eye uses the log file from AHA Worker

I Creates a report → attacker’s bash session

14 / 25



Is the program related to an attacker or the system?

sshd

4121

4127

bash

bash

4129

uname

-a

0

1

1

0

2

3

0

Attacker 1 (A1)

Legend
Program name

PID

Command line argument

Classified programs∑
ts Program name

0 sshd
2

bash

5

uname

~A1 =< sshd , bash, uname >

15 / 25



Is the program related to an attacker or the system?

sshd

4121

4127

bash

bash

4129

uname

-a

0

1

1

0

2

3

0

Attacker 1 (A1)

Legend
Program name

PID

Command line argument

Classified programs∑
ts Program name

0 sshd
2 bash
5

uname

~A1 =< sshd , bash, uname >

15 / 25



Is the program related to an attacker or the system?

sshd

4121

4127

bash

bash

4129

uname

-a

0

1

1

0

2

3

0

Attacker 1 (A1)

Legend
Program name

PID

Command line argument

Classified programs∑
ts Program name

0 sshd
2 bash
5 uname

~A1 =< sshd , bash, uname >

15 / 25



Is the program related to an attacker or the system?

sshd

4121

4127

bash

bash

4129

uname

-a

0

1

1

0

2

3

0

Attacker 1 (A1)

Legend
Program name

PID

Command line argument

Classified programs∑
ts Program name

0 sshd
2 bash
5 uname

~A1 =< sshd , bash, uname >

15 / 25



Insulting the attacker

1 void aha_handle_insult_messages(struct ReplyMessage *msg,

2 char __user* file,

3 char __user* __user* argv)

4

5 char buf[16];

6 char* addr;

7 int cnt;

8

9 if(!copy_to_user(file,"/sbin/insult",13)){

10 cnt = snprintf((char*)&buf,16,"%d",msg->insult);

11 if ((cnt > 0) && (cnt<15))

12 buf[cnt+1]=0;

13 if (!get_user(addr,argv))

14 copy_to_user(addr,buf,cnt+1);

15 }

16

Substituting programs works similarly

16 / 25



Gathering insults from an attacker

Problem

I Insults = invalid programs

I Handled by Bash

Solution (ugly)

I Hook bash using the NOTFOUND HOOK

I Use helper application that just accepts the arguments

I When the helper application is started a sys execve is
induced

I This is then visible for the AHA daemon

17 / 25



Case Studies
Example Session (94.52.64.x username: test)

w
. .. scbrute.tar .wp
w
18:28:21 up 6:46, 1 user, load average: 0.15, 0.03, 0.01
bash
I dont wanna do that
sh
wget http://www.dragutrau.xxx.su/xxx/yyy
I love you
kill -9 1
Core dumped
l
. .. scbrute.tar .wp
fetch
fuck you
exit

18 / 25



Case Studies
Experiment #1

Adaptive Honeypot vs High-Interaction Honeypot

19 / 25



Case Studies
Experiment #2

Insult Analysis

Language Proportion Country Code Proportion
Undefined 51.8 % RO 47%
Typographic errors 17.1% DE 16%
Romanian 11.8% ES 4%
English 9.2% LU 4%
Smiley 5.3% IT 4%
Slovak 5.3% MK 4%
Croatian 1.0 LB 3%
Polish 1.0% NL 2%
German 0.2% GB 1%
others 33.06% others 15%

Examples

muie, sex, fuck me, gogo, beto,hahahah, :)), pla, sugeo, please,
sucker, bine, ?, noaon, qwerty ...

20 / 25



Future work and conclusions

I Future work
I Execution slow-down → AHA is slower than an

high-interaction honeypot
I Evaluate timing attacks
I Explore faster interprocess communication techniques
I Insult program needs to be protected with rootkit techniques
I Substituting a program can crash the program when the stack

frame is too small
I Vulnerable against indirect attacks → let the system continue

the attack
I Tests with the SKAS patch could be done
I tty read and tty write could be monitored → insights about

keystrokes
I Instrument a virtual machine instead of User Mode Linux

21 / 25



Future work and conclusions

I Conclusions
I Honeypots should become more intelligent and adaptive
I Optimize information retrieval from attackers
I Created an adaptive honeypot framework to investigate

learning techniques
I Extended User Mode Linux
I Each system call related to program execution needs to be

acknowledged by the AHA daemon
I Freely available at git.quuxlabs.com

22 / 25



Demo in progress ...

Thank you for your patience ...

23 / 25



Questions and Answers

Thank you for your attention
Questions?
Comments for improvement?

24 / 25



Bibliography

Steven M. Bellovin.

There be dragons.
In Proceedings of the Third Usenix Unix Security Symposium, pages 1–16, September 1992.

Bill Cheswick.

An evening with Berferd in which a cracker is lured, endured, and studied.
In In Proc. Winter USENIX Conference, pages 163–174, 1992.

Fred Cohen.

A note on the role of deception in information protection.
Computers & Security, 17(6):483–506, 1998.

Jose Antonio Coret.

Kojoney - a honeypot for the SSH service.
http://kojoney.sourceforge.net/.

L. Spitzner.

Honeypots: Tracking Hackers.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

Clifford Stoll.

Stalking the wily hacker.
Commun. ACM, 31(5):484–497, 1988.

25 / 25


