AHA - Adaptive Honeypot Alternative

Gérard Wagener

October 29, 2010

/25

Introduction

Related work

>

>

Honeypots are resources designed to be under attack [5]

End eighties / early nineties first experiments by Clifford Stoll
[6], Steven Bellovin [1] and Bill Cheswick [2]

They mainly reported how they trapped attackers and the
related activities

In 1998 Fred Cohen discussed the deception techniques that
can be used while dealing with attackers [3]

Lance Spitzner writes that honeypots are particularly useful to
learn from attackers

Jose Antonio Coret re-implemented an SSH server in python
as honeypot [4]

N

25

Introduction

Attack Scenario

(%2

o

D
©

O~NOoOOol bk~ W +E O

Attacker
SSH connect

id

uname

ps aux

wget URLy
./ssh — brute
wget URL;

./configure

Honypot
Returns shell
Execute id
Execute uname
Execute ps
Execute wget
Return error
Execute wget

Build attacker tool
Allow

Comment
Attacker penetration
Full access
System identification

System identification
Already compromised?
Acquire tool

Misuse the system
Strategical block

Additional tool

Source code
Make attacker happy

25

Introduction

Contribution
» Create framework serving as building blocks for adaptive
honeypots

» Optimize information retrieval from attackers (skills, tools,
used time, social background, used language)

» Based on a Linux operating system exposing a vulnerable SSH
server

25

Adaptation mechanisms

» Allow the execution of a program

>

>

Behave like a regular high-interaction honeypot
Do not interfere with the execution flow

> Block the execution of a program

| 4

>

Strategically block the execution of a program
Challenge the attacker

» Substitute the executed program

>

>

Make attacker believe that they downloaded the wrong
program
Make attacker believe that their repository is not available

» Insult the attacker

>

v VvYyy

Irritate attacker

Reveal his ethic background

Differentiate between automated attacks and human attackers
See if attackers bounce through compromised hosts

5/25

AHA framework - Overview

Host Operating System (User space)

(4)
SSHD (3] ™~
‘ Output ‘ Input
Kernel AHAD
Use
(2
User Mode Linux
(5)
AHA Eye AHA Worker

|

6/25

Components interaction

> Linux system call hooks
> Sys_execve
> sys_clone
> sys_exit
» Send messages to AHA daemon
» A decision must be taken (not included in the framework)
> Exchange Messages

» Export message — export kernel information to the daemon

> Reply message — decision taken by the daemon

» Export and reply messages are tighly linked — unique message
identifier

Components interaction

type=1

file=/usr/bin/vi

argument=vi

env=TERM=screen

env=SHELL=/bin/bash

env=SSH_CLIENT=192.168.1.2 41836 22
env=SSH_TTY=/dev/pts/0

env=USER=gabriela
env=PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin
env=LANG=en_US.UTF-8

env=HISTCONTROL=ignoreboth

env=SHLVL=1

env=HOME=/home/gabriela

env=LOGNAME=gabriela
env=SSH_CONNECTION=192.168.1.2 41836 192.168.1.1 22
env=_=/usr/bin/vi

pid=1100

ppid=1075

rppid=1075

DONE=1

© 00 N O U s W N =

T S o S~ S S ST T
S © o N o oA~ W N = O

25

Reply message

1 |struct ReplyMessage{

2 int block;
3 int substitue;
4 int insult;

5|}

25

Components description

User Mode Linux surgeries

Building an UML from a vanilla kernel

1 |make defconfig ARCH=um
2 |make ARCH=um

Modified kernel files

arch/um/kernel /exec.c sys_execve
arch/um/kernel /process.c ~ exit_thread
arch/um/sys-i386/syscalls.c sys_clone
os-Linux/main.c _init
Purpose: Export program execution data and let the daemon take
the decisions

10/25

Components description

User Mode Linux surgeries

Sys_execve hook

1 long sys_execve(char __user *file, char __user *__user *argv,
2 char __user *__user *env)

3 {

4 long error;

5 char *filename;

6 struct ReplyMessage msg;

7 filename = aha_dump_execve(file,argv,env);

8 if (filename){

9 aha_get_reply_message(filename,&msg) ;

10 kfree(filename) ;

11 /* Implement decisions taken by AHA */

12 if (msg.block) {

13 error = msg.block;

14 goto out;

15 s

16 if (msg.insult) {

17 aha_handle_insult_messages(&msg,file,argv);
18 Yelse {

19 if (msg.substitute) {

20 aha_handle_substitutes(&msg,file,argv);
21 }

22 }

23 }

11/25

Components description
AHA daemon

Operation

> Read messages initiated by the User Mode Linux
> Is the program execution related to an attacker?

» Take a decision and put it in the input queue

Code Organization

» AHAActions — core functions to interact with the User Mode
Linux

» KERNEL_ERRORS — Strategical blocking (taken from the
Kernel Source)

> ReplyMessage — Create a binary reply message for the User
Mode Linux

» ProcessTree — Maintain in the daemon a clone of the process
tree of the UML

12 /25

Components description
AHA Worker

v

Execution performance is critical

v

AHA daemon only takes decisions

v

AHA Worker periodically polls the queues

v

Merges messages in a log file

v

Avoid overfilled queues

13 /25

Components description
AHA Eye

v

Monitoring is essential for honeypot operation
Human readable form is desired
AHA Eye uses the log file from AHA Worker

Creates a report — attacker’s bash session

v

v

v

14 /25

Is the program related to an attacker or the system?

0
CEDNC)

l 0 Legend

} l Program name

| 4121 !

1 | PID

l 1 2 3 Command line argument
4127 4129

l | Classified programs

| 1 3 > ts | Program name
1 ‘bash‘ ‘uname‘ 3 0 sshd

| : 2

; L 5

15/25

Is the program related to an attacker or the system?

l 0 Legend

} l Program name

| 4121 !

1 | PID

l 1 2 3 Command line argument
| 4127 4129

l | Classified programs

| 1 3 > ts | Program name
1 ‘bash‘ ‘uname‘ 3 0 sshd

3 ! 2 bash

| O v 5

| (bash -a |

e @

15/25

Is the program related to an attacker or the system?

0

3 4121

i 1 2

i 4127 4129
1 3
lbash| ||uname|
0 0
bash &

Legend
Program name
PID

Command line argument

Classified programs

> ts | Program name
0 sshd

2 bash

5 uname

15/25

Is the program related to an attacker or the system?

0
CEDNC)

l 0 Legend

} l Program name

| 4121 !

1 | PID

l 1 2 3 Command line argument
4127 4129

l | Classified programs

| 1 3 > ts | Program name
1 ‘bash‘ ‘uname‘ 3 0 sshd

3 ! 2 bash

| 0 ; 5 uname

/ﬁ =< sshd, bash, uname >

15/25

Insulting the attacker

© 0w N g W NN =

— =
= o

12
13
14
15
16

void aha_handle_insult_messages(struct ReplyMessage *msg,
char __userx file,

char __user* __user* argv)

char buf[16];
char* addr;
int cnt;

if ('copy_to_user(file,"/sbin/insult",13)){
cnt = snprintf ((char*)&buf,16,"%d" ,msg->insult);
if ((ent > 0) && (cnt<15))
buf [cnt+1]=0;
if (!get_user(addr,argv))
copy_to_user (addr,buf,cnt+1) ;

Substituting programs works similarly

16

25

Gathering insults from an attacker

Problem

» Insults = invalid programs
» Handled by Bash

Solution (ugly)

» Hook bash using the NOTFOUND_HOOK
» Use helper application that just accepts the arguments

> When the helper application is started a sys_execve is
induced
» This is then visible for the AHA daemon

17/25

Case Studies

Example Session (94.52.64.x username: test)

w
. scbrute.tar .wp

w

18:28:21 up 6:46, 1 user, load average: 0.15, 0.03, 0.01

bash

| dont wanna do that

sh

wget http://www.dragutrau.xxx.su/xxx/yyy

| love you

kill -9 1

Core dumped

I
. scbrute.tar .wp

fetch

fuck you

exit

18/25

Case Studies
Experiment #1

Adaptive Honeypot vs High-Interaction Honeypot

Process vector length distribution
03 —r T

l—flghimtéra:‘non' ho‘ney‘pot‘
Adaptive honeypot

025 1

02 1

015

Probahility

01 ¢

012 3 45 6 7 8 9 101 1213 14 15 16 17 18 19>20

Process vector length

19/25

Case Studies
Experiment #2

Insult Analysis

Language Proportion Country Code Proportion
Undefined 51.8 % RO 47%
Typographic errors 17.1% DE 16%
Romanian 11.8% ES 4%
English 9.2% LU 4%
Smiley 5.3% IT 4%
Slovak 5.3% MK 4%
Croatian 1.0 LB 3%
Polish 1.0% NL 2%
German 0.2% GB 1%
others 33.06% others 15%
Examples

muie, sex, fuck me, gogo, beto,hahahah, :)), pla, sugeo, please,
sucker, bine, 7, noaon, qwerty ...

20 /25

Future work and conclusions

» Future work

>

vV vy VvYyy

Execution slow-down — AHA is slower than an
high-interaction honeypot

Evaluate timing attacks

Explore faster interprocess communication techniques

Insult program needs to be protected with rootkit techniques
Substituting a program can crash the program when the stack
frame is too small

Vulnerable against indirect attacks — let the system continue
the attack

» Tests with the SKAS patch could be done
> tty_read and tty_write could be monitored — insights about

keystrokes
Instrument a virtual machine instead of User Mode Linux

21/25

Future work and conclusions

» Conclusions

» Honeypots should become more intelligent and adaptive

» Optimize information retrieval from attackers

» Created an adaptive honeypot framework to investigate
learning techniques

» Extended User Mode Linux

» Each system call related to program execution needs to be

acknowledged by the AHA daemon

Freely available at git.quuxlabs.com

v

Demo in progress ...

Thank you for your patience ...

23 /25

Questions and Answers

Thank you for your attention
Questions?
Comments for improvement?

24 /25

Bibliography

Steven M. Bellovin.

There be dragons.

In Proceedings of the Third Usenix Unix Security Symposium, pages 1-16, September 1992.
Bill Cheswick.

An evening with Berferd in which a cracker is lured, endured, and studied.
In In Proc. Winter USENIX Conference, pages 163-174, 1992.

Fred Cohen.

A note on the role of deception in information protection.

Computers & Security, 17(6):483-506, 1998

Jose Antonio Coret.

Kojoney - a honeypot for the SSH service.
http://kojoney.sourceforge.net/

L. Spitzner.

Honeypots: Tracking Hackers.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002

B W W W W

Clifford Stoll.

Stalking the wily hacker.
Commun. ACM, 31(5):484-497, 1988.

25 /25

