#include "builtin.h" #include "perf.h" #include "util/util.h" #include "util/cache.h" #include "util/symbol.h" #include "util/thread.h" #include "util/header.h" #include "util/parse-options.h" #include "util/trace-event.h" #include "util/debug.h" #include #include #include #include #include static char const *input_name = "perf.data"; static int input; static unsigned long page_size; static unsigned long mmap_window = 32; static unsigned long total_comm = 0; static struct rb_root threads; static struct thread *last_match; static struct perf_header *header; static u64 sample_type; static char default_sort_order[] = "avg, max, switch, runtime"; static char *sort_order = default_sort_order; #define PR_SET_NAME 15 /* Set process name */ #define MAX_CPUS 4096 #define BUG_ON(x) assert(!(x)) static u64 run_measurement_overhead; static u64 sleep_measurement_overhead; #define COMM_LEN 20 #define SYM_LEN 129 #define MAX_PID 65536 static unsigned long nr_tasks; struct sched_event; struct task_desc { unsigned long nr; unsigned long pid; char comm[COMM_LEN]; unsigned long nr_events; unsigned long curr_event; struct sched_event **events; pthread_t thread; sem_t sleep_sem; sem_t ready_for_work; sem_t work_done_sem; u64 cpu_usage; }; enum sched_event_type { SCHED_EVENT_RUN, SCHED_EVENT_SLEEP, SCHED_EVENT_WAKEUP, }; struct sched_event { enum sched_event_type type; u64 timestamp; u64 duration; unsigned long nr; int specific_wait; sem_t *wait_sem; struct task_desc *wakee; }; static struct task_desc *pid_to_task[MAX_PID]; static struct task_desc **tasks; static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER; static u64 start_time; static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER; static unsigned long nr_run_events; static unsigned long nr_sleep_events; static unsigned long nr_wakeup_events; static unsigned long nr_sleep_corrections; static unsigned long nr_run_events_optimized; static unsigned long targetless_wakeups; static unsigned long multitarget_wakeups; static u64 cpu_usage; static u64 runavg_cpu_usage; static u64 parent_cpu_usage; static u64 runavg_parent_cpu_usage; static unsigned long nr_runs; static u64 sum_runtime; static u64 sum_fluct; static u64 run_avg; static unsigned long replay_repeat = 10; static unsigned long nr_timestamps; static unsigned long unordered_timestamps; #define TASK_STATE_TO_CHAR_STR "RSDTtZX" enum thread_state { THREAD_SLEEPING = 0, THREAD_WAIT_CPU, THREAD_SCHED_IN, THREAD_IGNORE }; struct work_atom { struct list_head list; enum thread_state state; u64 sched_out_time; u64 wake_up_time; u64 sched_in_time; u64 runtime; }; struct task_atoms { struct list_head atom_list; struct thread *thread; struct rb_node node; u64 max_lat; u64 total_lat; u64 nb_atoms; u64 total_runtime; }; typedef int (*sort_fn_t)(struct task_atoms *, struct task_atoms *); static struct rb_root atom_root, sorted_atom_root; static u64 all_runtime; static u64 all_count; static int read_events(void); static u64 get_nsecs(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * 1000000000ULL + ts.tv_nsec; } static void burn_nsecs(u64 nsecs) { u64 T0 = get_nsecs(), T1; do { T1 = get_nsecs(); } while (T1 + run_measurement_overhead < T0 + nsecs); } static void sleep_nsecs(u64 nsecs) { struct timespec ts; ts.tv_nsec = nsecs % 999999999; ts.tv_sec = nsecs / 999999999; nanosleep(&ts, NULL); } static void calibrate_run_measurement_overhead(void) { u64 T0, T1, delta, min_delta = 1000000000ULL; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); burn_nsecs(0); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } run_measurement_overhead = min_delta; printf("run measurement overhead: %Ld nsecs\n", min_delta); } static void calibrate_sleep_measurement_overhead(void) { u64 T0, T1, delta, min_delta = 1000000000ULL; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); sleep_nsecs(10000); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } min_delta -= 10000; sleep_measurement_overhead = min_delta; printf("sleep measurement overhead: %Ld nsecs\n", min_delta); } static struct sched_event * get_new_event(struct task_desc *task, u64 timestamp) { struct sched_event *event = calloc(1, sizeof(*event)); unsigned long idx = task->nr_events; size_t size; event->timestamp = timestamp; event->nr = idx; task->nr_events++; size = sizeof(struct sched_event *) * task->nr_events; task->events = realloc(task->events, size); BUG_ON(!task->events); task->events[idx] = event; return event; } static struct sched_event *last_event(struct task_desc *task) { if (!task->nr_events) return NULL; return task->events[task->nr_events - 1]; } static void add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration) { struct sched_event *event, *curr_event = last_event(task); /* * optimize an existing RUN event by merging this one * to it: */ if (curr_event && curr_event->type == SCHED_EVENT_RUN) { nr_run_events_optimized++; curr_event->duration += duration; return; } event = get_new_event(task, timestamp); event->type = SCHED_EVENT_RUN; event->duration = duration; nr_run_events++; } static void add_sched_event_wakeup(struct task_desc *task, u64 timestamp, struct task_desc *wakee) { struct sched_event *event, *wakee_event; event = get_new_event(task, timestamp); event->type = SCHED_EVENT_WAKEUP; event->wakee = wakee; wakee_event = last_event(wakee); if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { targetless_wakeups++; return; } if (wakee_event->wait_sem) { multitarget_wakeups++; return; } wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem)); sem_init(wakee_event->wait_sem, 0, 0); wakee_event->specific_wait = 1; event->wait_sem = wakee_event->wait_sem; nr_wakeup_events++; } static void add_sched_event_sleep(struct task_desc *task, u64 timestamp, u64 task_state __used) { struct sched_event *event = get_new_event(task, timestamp); event->type = SCHED_EVENT_SLEEP; nr_sleep_events++; } static struct task_desc *register_pid(unsigned long pid, const char *comm) { struct task_desc *task; BUG_ON(pid >= MAX_PID); task = pid_to_task[pid]; if (task) return task; task = calloc(1, sizeof(*task)); task->pid = pid; task->nr = nr_tasks; strcpy(task->comm, comm); /* * every task starts in sleeping state - this gets ignored * if there's no wakeup pointing to this sleep state: */ add_sched_event_sleep(task, 0, 0); pid_to_task[pid] = task; nr_tasks++; tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *)); BUG_ON(!tasks); tasks[task->nr] = task; if (verbose) printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm); return task; } static void print_task_traces(void) { struct task_desc *task; unsigned long i; for (i = 0; i < nr_tasks; i++) { task = tasks[i]; printf("task %6ld (%20s:%10ld), nr_events: %ld\n", task->nr, task->comm, task->pid, task->nr_events); } } static void add_cross_task_wakeups(void) { struct task_desc *task1, *task2; unsigned long i, j; for (i = 0; i < nr_tasks; i++) { task1 = tasks[i]; j = i + 1; if (j == nr_tasks) j = 0; task2 = tasks[j]; add_sched_event_wakeup(task1, 0, task2); } } static void process_sched_event(struct task_desc *this_task __used, struct sched_event *event) { int ret = 0; u64 now; long long delta; now = get_nsecs(); delta = start_time + event->timestamp - now; switch (event->type) { case SCHED_EVENT_RUN: burn_nsecs(event->duration); break; case SCHED_EVENT_SLEEP: if (event->wait_sem) ret = sem_wait(event->wait_sem); BUG_ON(ret); break; case SCHED_EVENT_WAKEUP: if (event->wait_sem) ret = sem_post(event->wait_sem); BUG_ON(ret); break; default: BUG_ON(1); } } static u64 get_cpu_usage_nsec_parent(void) { struct rusage ru; u64 sum; int err; err = getrusage(RUSAGE_SELF, &ru); BUG_ON(err); sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; return sum; } static u64 get_cpu_usage_nsec_self(void) { char filename [] = "/proc/1234567890/sched"; unsigned long msecs, nsecs; char *line = NULL; u64 total = 0; size_t len = 0; ssize_t chars; FILE *file; int ret; sprintf(filename, "/proc/%d/sched", getpid()); file = fopen(filename, "r"); BUG_ON(!file); while ((chars = getline(&line, &len, file)) != -1) { ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n", &msecs, &nsecs); if (ret == 2) { total = msecs*1e6 + nsecs; break; } } if (line) free(line); fclose(file); return total; } static void *thread_func(void *ctx) { struct task_desc *this_task = ctx; u64 cpu_usage_0, cpu_usage_1; unsigned long i, ret; char comm2[22]; sprintf(comm2, ":%s", this_task->comm); prctl(PR_SET_NAME, comm2); again: ret = sem_post(&this_task->ready_for_work); BUG_ON(ret); ret = pthread_mutex_lock(&start_work_mutex); BUG_ON(ret); ret = pthread_mutex_unlock(&start_work_mutex); BUG_ON(ret); cpu_usage_0 = get_cpu_usage_nsec_self(); for (i = 0; i < this_task->nr_events; i++) { this_task->curr_event = i; process_sched_event(this_task, this_task->events[i]); } cpu_usage_1 = get_cpu_usage_nsec_self(); this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; ret = sem_post(&this_task->work_done_sem); BUG_ON(ret); ret = pthread_mutex_lock(&work_done_wait_mutex); BUG_ON(ret); ret = pthread_mutex_unlock(&work_done_wait_mutex); BUG_ON(ret); goto again; } static void create_tasks(void) { struct task_desc *task; pthread_attr_t attr; unsigned long i; int err; err = pthread_attr_init(&attr); BUG_ON(err); err = pthread_attr_setstacksize(&attr, (size_t)(16*1024)); BUG_ON(err); err = pthread_mutex_lock(&start_work_mutex); BUG_ON(err); err = pthread_mutex_lock(&work_done_wait_mutex); BUG_ON(err); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; sem_init(&task->sleep_sem, 0, 0); sem_init(&task->ready_for_work, 0, 0); sem_init(&task->work_done_sem, 0, 0); task->curr_event = 0; err = pthread_create(&task->thread, &attr, thread_func, task); BUG_ON(err); } } static void wait_for_tasks(void) { u64 cpu_usage_0, cpu_usage_1; struct task_desc *task; unsigned long i, ret; start_time = get_nsecs(); cpu_usage = 0; pthread_mutex_unlock(&work_done_wait_mutex); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; ret = sem_wait(&task->ready_for_work); BUG_ON(ret); sem_init(&task->ready_for_work, 0, 0); } ret = pthread_mutex_lock(&work_done_wait_mutex); BUG_ON(ret); cpu_usage_0 = get_cpu_usage_nsec_parent(); pthread_mutex_unlock(&start_work_mutex); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; ret = sem_wait(&task->work_done_sem); BUG_ON(ret); sem_init(&task->work_done_sem, 0, 0); cpu_usage += task->cpu_usage; task->cpu_usage = 0; } cpu_usage_1 = get_cpu_usage_nsec_parent(); if (!runavg_cpu_usage) runavg_cpu_usage = cpu_usage; runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10; parent_cpu_usage = cpu_usage_1 - cpu_usage_0; if (!runavg_parent_cpu_usage) runavg_parent_cpu_usage = parent_cpu_usage; runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 + parent_cpu_usage)/10; ret = pthread_mutex_lock(&start_work_mutex); BUG_ON(ret); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; sem_init(&task->sleep_sem, 0, 0); task->curr_event = 0; } } static void run_one_test(void) { u64 T0, T1, delta, avg_delta, fluct, std_dev; T0 = get_nsecs(); wait_for_tasks(); T1 = get_nsecs(); delta = T1 - T0; sum_runtime += delta; nr_runs++; avg_delta = sum_runtime / nr_runs; if (delta < avg_delta) fluct = avg_delta - delta; else fluct = delta - avg_delta; sum_fluct += fluct; std_dev = sum_fluct / nr_runs / sqrt(nr_runs); if (!run_avg) run_avg = delta; run_avg = (run_avg*9 + delta)/10; printf("#%-3ld: %0.3f, ", nr_runs, (double)delta/1000000.0); printf("ravg: %0.2f, ", (double)run_avg/1e6); printf("cpu: %0.2f / %0.2f", (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6); #if 0 /* * rusage statistics done by the parent, these are less * accurate than the sum_exec_runtime based statistics: */ printf(" [%0.2f / %0.2f]", (double)parent_cpu_usage/1e6, (double)runavg_parent_cpu_usage/1e6); #endif printf("\n"); if (nr_sleep_corrections) printf(" (%ld sleep corrections)\n", nr_sleep_corrections); nr_sleep_corrections = 0; } static void test_calibrations(void) { u64 T0, T1; T0 = get_nsecs(); burn_nsecs(1e6); T1 = get_nsecs(); printf("the run test took %Ld nsecs\n", T1-T0); T0 = get_nsecs(); sleep_nsecs(1e6); T1 = get_nsecs(); printf("the sleep test took %Ld nsecs\n", T1-T0); } static void __cmd_replay(void) { unsigned long i; calibrate_run_measurement_overhead(); calibrate_sleep_measurement_overhead(); test_calibrations(); read_events(); printf("nr_run_events: %ld\n", nr_run_events); printf("nr_sleep_events: %ld\n", nr_sleep_events); printf("nr_wakeup_events: %ld\n", nr_wakeup_events); if (targetless_wakeups) printf("target-less wakeups: %ld\n", targetless_wakeups); if (multitarget_wakeups) printf("multi-target wakeups: %ld\n", multitarget_wakeups); if (nr_run_events_optimized) printf("run events optimized: %ld\n", nr_run_events_optimized); print_task_traces(); add_cross_task_wakeups(); create_tasks(); printf("------------------------------------------------------------\n"); for (i = 0; i < replay_repeat; i++) run_one_test(); } static int process_comm_event(event_t *event, unsigned long offset, unsigned long head) { struct thread *thread; thread = threads__findnew(event->comm.pid, &threads, &last_match); dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n", (void *)(offset + head), (void *)(long)(event->header.size), event->comm.comm, event->comm.pid); if (thread == NULL || thread__set_comm(thread, event->comm.comm)) { dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n"); return -1; } total_comm++; return 0; } struct raw_event_sample { u32 size; char data[0]; }; #define FILL_FIELD(ptr, field, event, data) \ ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data) #define FILL_ARRAY(ptr, array, event, data) \ do { \ void *__array = raw_field_ptr(event, #array, data); \ memcpy(ptr.array, __array, sizeof(ptr.array)); \ } while(0) #define FILL_COMMON_FIELDS(ptr, event, data) \ do { \ FILL_FIELD(ptr, common_type, event, data); \ FILL_FIELD(ptr, common_flags, event, data); \ FILL_FIELD(ptr, common_preempt_count, event, data); \ FILL_FIELD(ptr, common_pid, event, data); \ FILL_FIELD(ptr, common_tgid, event, data); \ } while (0) struct trace_switch_event { u32 size; u16 common_type; u8 common_flags; u8 common_preempt_count; u32 common_pid; u32 common_tgid; char prev_comm[16]; u32 prev_pid; u32 prev_prio; u64 prev_state; char next_comm[16]; u32 next_pid; u32 next_prio; }; struct trace_wakeup_event { u32 size; u16 common_type; u8 common_flags; u8 common_preempt_count; u32 common_pid; u32 common_tgid; char comm[16]; u32 pid; u32 prio; u32 success; u32 cpu; }; struct trace_fork_event { u32 size; u16 common_type; u8 common_flags; u8 common_preempt_count; u32 common_pid; u32 common_tgid; char parent_comm[16]; u32 parent_pid; char child_comm[16]; u32 child_pid; }; struct trace_sched_handler { void (*switch_event)(struct trace_switch_event *, struct event *, int cpu, u64 timestamp, struct thread *thread); void (*wakeup_event)(struct trace_wakeup_event *, struct event *, int cpu, u64 timestamp, struct thread *thread); void (*fork_event)(struct trace_fork_event *, struct event *, int cpu, u64 timestamp, struct thread *thread); }; static void replay_wakeup_event(struct trace_wakeup_event *wakeup_event, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct task_desc *waker, *wakee; if (verbose) { printf("sched_wakeup event %p\n", event); printf(" ... pid %d woke up %s/%d\n", wakeup_event->common_pid, wakeup_event->comm, wakeup_event->pid); } waker = register_pid(wakeup_event->common_pid, ""); wakee = register_pid(wakeup_event->pid, wakeup_event->comm); add_sched_event_wakeup(waker, timestamp, wakee); } static u64 cpu_last_switched[MAX_CPUS]; static void replay_switch_event(struct trace_switch_event *switch_event, struct event *event, int cpu, u64 timestamp, struct thread *thread __used) { struct task_desc *prev, *next; u64 timestamp0; s64 delta; if (verbose) printf("sched_switch event %p\n", event); if (cpu >= MAX_CPUS || cpu < 0) return; timestamp0 = cpu_last_switched[cpu]; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) die("hm, delta: %Ld < 0 ?\n", delta); if (verbose) { printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n", switch_event->prev_comm, switch_event->prev_pid, switch_event->next_comm, switch_event->next_pid, delta); } prev = register_pid(switch_event->prev_pid, switch_event->prev_comm); next = register_pid(switch_event->next_pid, switch_event->next_comm); cpu_last_switched[cpu] = timestamp; add_sched_event_run(prev, timestamp, delta); add_sched_event_sleep(prev, timestamp, switch_event->prev_state); } static void replay_fork_event(struct trace_fork_event *fork_event, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { if (verbose) { printf("sched_fork event %p\n", event); printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid); printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid); } register_pid(fork_event->parent_pid, fork_event->parent_comm); register_pid(fork_event->child_pid, fork_event->child_comm); } static struct trace_sched_handler replay_ops = { .wakeup_event = replay_wakeup_event, .switch_event = replay_switch_event, .fork_event = replay_fork_event, }; struct sort_dimension { const char *name; sort_fn_t cmp; struct list_head list; }; static LIST_HEAD(cmp_pid); static int thread_lat_cmp(struct list_head *list, struct task_atoms *l, struct task_atoms *r) { struct sort_dimension *sort; int ret = 0; BUG_ON(list_empty(list)); list_for_each_entry(sort, list, list) { ret = sort->cmp(l, r); if (ret) return ret; } return ret; } static struct task_atoms * thread_atoms_search(struct rb_root *root, struct thread *thread, struct list_head *sort_list) { struct rb_node *node = root->rb_node; struct task_atoms key = { .thread = thread }; while (node) { struct task_atoms *atoms; int cmp; atoms = container_of(node, struct task_atoms, node); cmp = thread_lat_cmp(sort_list, &key, atoms); if (cmp > 0) node = node->rb_left; else if (cmp < 0) node = node->rb_right; else { BUG_ON(thread != atoms->thread); return atoms; } } return NULL; } static void __thread_latency_insert(struct rb_root *root, struct task_atoms *data, struct list_head *sort_list) { struct rb_node **new = &(root->rb_node), *parent = NULL; while (*new) { struct task_atoms *this; int cmp; this = container_of(*new, struct task_atoms, node); parent = *new; cmp = thread_lat_cmp(sort_list, data, this); if (cmp > 0) new = &((*new)->rb_left); else new = &((*new)->rb_right); } rb_link_node(&data->node, parent, new); rb_insert_color(&data->node, root); } static void thread_atoms_insert(struct thread *thread) { struct task_atoms *atoms; atoms = calloc(sizeof(*atoms), 1); if (!atoms) die("No memory"); atoms->thread = thread; INIT_LIST_HEAD(&atoms->atom_list); __thread_latency_insert(&atom_root, atoms, &cmp_pid); } static void latency_fork_event(struct trace_fork_event *fork_event __used, struct event *event __used, int cpu __used, u64 timestamp __used, struct thread *thread __used) { /* should insert the newcomer */ } __used static char sched_out_state(struct trace_switch_event *switch_event) { const char *str = TASK_STATE_TO_CHAR_STR; return str[switch_event->prev_state]; } static void lat_sched_out(struct task_atoms *atoms, struct trace_switch_event *switch_event __used, u64 delta, u64 timestamp) { struct work_atom *atom; atom = calloc(sizeof(*atom), 1); if (!atom) die("Non memory"); atom->sched_out_time = timestamp; if (sched_out_state(switch_event) == 'R') { atom->state = THREAD_WAIT_CPU; atom->wake_up_time = atom->sched_out_time; } atom->runtime = delta; list_add_tail(&atom->list, &atoms->atom_list); } static void lat_sched_in(struct task_atoms *atoms, u64 timestamp) { struct work_atom *atom; u64 delta; if (list_empty(&atoms->atom_list)) return; atom = list_entry(atoms->atom_list.prev, struct work_atom, list); if (atom->state != THREAD_WAIT_CPU) return; if (timestamp < atom->wake_up_time) { atom->state = THREAD_IGNORE; return; } atom->state = THREAD_SCHED_IN; atom->sched_in_time = timestamp; delta = atom->sched_in_time - atom->wake_up_time; atoms->total_lat += delta; if (delta > atoms->max_lat) atoms->max_lat = delta; atoms->nb_atoms++; atoms->total_runtime += atom->runtime; } static void latency_switch_event(struct trace_switch_event *switch_event, struct event *event __used, int cpu, u64 timestamp, struct thread *thread __used) { struct task_atoms *out_atoms, *in_atoms; struct thread *sched_out, *sched_in; u64 timestamp0; s64 delta; if (cpu >= MAX_CPUS || cpu < 0) return; timestamp0 = cpu_last_switched[cpu]; cpu_last_switched[cpu] = timestamp; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) die("hm, delta: %Ld < 0 ?\n", delta); sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match); sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match); in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid); if (!in_atoms) { thread_atoms_insert(sched_in); in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid); if (!in_atoms) die("in-atom: Internal tree error"); } out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid); if (!out_atoms) { thread_atoms_insert(sched_out); out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid); if (!out_atoms) die("out-atom: Internal tree error"); } lat_sched_in(in_atoms, timestamp); lat_sched_out(out_atoms, switch_event, delta, timestamp); } static void latency_wakeup_event(struct trace_wakeup_event *wakeup_event, struct event *event __used, int cpu __used, u64 timestamp, struct thread *thread __used) { struct task_atoms *atoms; struct work_atom *atom; struct thread *wakee; /* Note for later, it may be interesting to observe the failing cases */ if (!wakeup_event->success) return; wakee = threads__findnew(wakeup_event->pid, &threads, &last_match); atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid); if (!atoms) { thread_atoms_insert(wakee); return; } if (list_empty(&atoms->atom_list)) return; atom = list_entry(atoms->atom_list.prev, struct work_atom, list); if (atom->state != THREAD_SLEEPING) return; nr_timestamps++; if (atom->sched_out_time > timestamp) { unordered_timestamps++; return; } atom->state = THREAD_WAIT_CPU; atom->wake_up_time = timestamp; } static struct trace_sched_handler lat_ops = { .wakeup_event = latency_wakeup_event, .switch_event = latency_switch_event, .fork_event = latency_fork_event, }; static void output_lat_thread(struct task_atoms *atom_list) { int i; int ret; u64 avg; if (!atom_list->nb_atoms) return; /* * Ignore idle threads: */ if (!atom_list->thread->pid) return; all_runtime += atom_list->total_runtime; all_count += atom_list->nb_atoms; ret = printf(" %s-%d ", atom_list->thread->comm, atom_list->thread->pid); for (i = 0; i < 24 - ret; i++) printf(" "); avg = atom_list->total_lat / atom_list->nb_atoms; printf("|%9.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n", (double)atom_list->total_runtime / 1e6, atom_list->nb_atoms, (double)avg / 1e6, (double)atom_list->max_lat / 1e6); } static int pid_cmp(struct task_atoms *l, struct task_atoms *r) { if (l->thread->pid < r->thread->pid) return -1; if (l->thread->pid > r->thread->pid) return 1; return 0; } static struct sort_dimension pid_sort_dimension = { .name = "pid", .cmp = pid_cmp, }; static int avg_cmp(struct task_atoms *l, struct task_atoms *r) { u64 avgl, avgr; if (!l->nb_atoms) return -1; if (!r->nb_atoms) return 1; avgl = l->total_lat / l->nb_atoms; avgr = r->total_lat / r->nb_atoms; if (avgl < avgr) return -1; if (avgl > avgr) return 1; return 0; } static struct sort_dimension avg_sort_dimension = { .name = "avg", .cmp = avg_cmp, }; static int max_cmp(struct task_atoms *l, struct task_atoms *r) { if (l->max_lat < r->max_lat) return -1; if (l->max_lat > r->max_lat) return 1; return 0; } static struct sort_dimension max_sort_dimension = { .name = "max", .cmp = max_cmp, }; static int switch_cmp(struct task_atoms *l, struct task_atoms *r) { if (l->nb_atoms < r->nb_atoms) return -1; if (l->nb_atoms > r->nb_atoms) return 1; return 0; } static struct sort_dimension switch_sort_dimension = { .name = "switch", .cmp = switch_cmp, }; static int runtime_cmp(struct task_atoms *l, struct task_atoms *r) { if (l->total_runtime < r->total_runtime) return -1; if (l->total_runtime > r->total_runtime) return 1; return 0; } static struct sort_dimension runtime_sort_dimension = { .name = "runtime", .cmp = runtime_cmp, }; static struct sort_dimension *available_sorts[] = { &pid_sort_dimension, &avg_sort_dimension, &max_sort_dimension, &switch_sort_dimension, &runtime_sort_dimension, }; #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *)) static LIST_HEAD(sort_list); static int sort_dimension__add(char *tok, struct list_head *list) { int i; for (i = 0; i < NB_AVAILABLE_SORTS; i++) { if (!strcmp(available_sorts[i]->name, tok)) { list_add_tail(&available_sorts[i]->list, list); return 0; } } return -1; } static void setup_sorting(void); static void sort_lat(void) { struct rb_node *node; for (;;) { struct task_atoms *data; node = rb_first(&atom_root); if (!node) break; rb_erase(node, &atom_root); data = rb_entry(node, struct task_atoms, node); __thread_latency_insert(&sorted_atom_root, data, &sort_list); } } static void __cmd_lat(void) { struct rb_node *next; setup_pager(); read_events(); sort_lat(); printf("\n ---------------------------------------------------------------------------------------\n"); printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |\n"); printf(" ---------------------------------------------------------------------------------------\n"); next = rb_first(&sorted_atom_root); while (next) { struct task_atoms *atom_list; atom_list = rb_entry(next, struct task_atoms, node); output_lat_thread(atom_list); next = rb_next(next); } printf(" ---------------------------------------------------------------------------------------\n"); printf(" TOTAL: |%9.3f ms |%9Ld |", (double)all_runtime/1e6, all_count); if (unordered_timestamps && nr_timestamps) { printf(" INFO: %.2f%% unordered events.\n", (double)unordered_timestamps/(double)nr_timestamps*100.0); } else { printf("\n"); } printf(" -------------------------------------------------\n\n"); } static struct trace_sched_handler *trace_handler; static void process_sched_wakeup_event(struct raw_event_sample *raw, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct trace_wakeup_event wakeup_event; FILL_COMMON_FIELDS(wakeup_event, event, raw->data); FILL_ARRAY(wakeup_event, comm, event, raw->data); FILL_FIELD(wakeup_event, pid, event, raw->data); FILL_FIELD(wakeup_event, prio, event, raw->data); FILL_FIELD(wakeup_event, success, event, raw->data); FILL_FIELD(wakeup_event, cpu, event, raw->data); trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread); } static void process_sched_switch_event(struct raw_event_sample *raw, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct trace_switch_event switch_event; FILL_COMMON_FIELDS(switch_event, event, raw->data); FILL_ARRAY(switch_event, prev_comm, event, raw->data); FILL_FIELD(switch_event, prev_pid, event, raw->data); FILL_FIELD(switch_event, prev_prio, event, raw->data); FILL_FIELD(switch_event, prev_state, event, raw->data); FILL_ARRAY(switch_event, next_comm, event, raw->data); FILL_FIELD(switch_event, next_pid, event, raw->data); FILL_FIELD(switch_event, next_prio, event, raw->data); trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread); } static void process_sched_fork_event(struct raw_event_sample *raw, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct trace_fork_event fork_event; FILL_COMMON_FIELDS(fork_event, event, raw->data); FILL_ARRAY(fork_event, parent_comm, event, raw->data); FILL_FIELD(fork_event, parent_pid, event, raw->data); FILL_ARRAY(fork_event, child_comm, event, raw->data); FILL_FIELD(fork_event, child_pid, event, raw->data); trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread); } static void process_sched_exit_event(struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { if (verbose) printf("sched_exit event %p\n", event); } static void process_raw_event(event_t *raw_event __used, void *more_data, int cpu, u64 timestamp, struct thread *thread) { struct raw_event_sample *raw = more_data; struct event *event; int type; type = trace_parse_common_type(raw->data); event = trace_find_event(type); if (!strcmp(event->name, "sched_switch")) process_sched_switch_event(raw, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_wakeup")) process_sched_wakeup_event(raw, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_wakeup_new")) process_sched_wakeup_event(raw, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_process_fork")) process_sched_fork_event(raw, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_process_exit")) process_sched_exit_event(event, cpu, timestamp, thread); } static int process_sample_event(event_t *event, unsigned long offset, unsigned long head) { char level; int show = 0; struct dso *dso = NULL; struct thread *thread; u64 ip = event->ip.ip; u64 timestamp = -1; u32 cpu = -1; u64 period = 1; void *more_data = event->ip.__more_data; int cpumode; thread = threads__findnew(event->ip.pid, &threads, &last_match); if (sample_type & PERF_SAMPLE_TIME) { timestamp = *(u64 *)more_data; more_data += sizeof(u64); } if (sample_type & PERF_SAMPLE_CPU) { cpu = *(u32 *)more_data; more_data += sizeof(u32); more_data += sizeof(u32); /* reserved */ } if (sample_type & PERF_SAMPLE_PERIOD) { period = *(u64 *)more_data; more_data += sizeof(u64); } dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n", (void *)(offset + head), (void *)(long)(event->header.size), event->header.misc, event->ip.pid, event->ip.tid, (void *)(long)ip, (long long)period); dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid); if (thread == NULL) { eprintf("problem processing %d event, skipping it.\n", event->header.type); return -1; } cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK; if (cpumode == PERF_EVENT_MISC_KERNEL) { show = SHOW_KERNEL; level = 'k'; dso = kernel_dso; dump_printf(" ...... dso: %s\n", dso->name); } else if (cpumode == PERF_EVENT_MISC_USER) { show = SHOW_USER; level = '.'; } else { show = SHOW_HV; level = 'H'; dso = hypervisor_dso; dump_printf(" ...... dso: [hypervisor]\n"); } if (sample_type & PERF_SAMPLE_RAW) process_raw_event(event, more_data, cpu, timestamp, thread); return 0; } static int process_event(event_t *event, unsigned long offset, unsigned long head) { trace_event(event); switch (event->header.type) { case PERF_EVENT_MMAP ... PERF_EVENT_LOST: return 0; case PERF_EVENT_COMM: return process_comm_event(event, offset, head); case PERF_EVENT_EXIT ... PERF_EVENT_READ: return 0; case PERF_EVENT_SAMPLE: return process_sample_event(event, offset, head); case PERF_EVENT_MAX: default: return -1; } return 0; } static int read_events(void) { int ret, rc = EXIT_FAILURE; unsigned long offset = 0; unsigned long head = 0; struct stat perf_stat; event_t *event; uint32_t size; char *buf; trace_report(); register_idle_thread(&threads, &last_match); input = open(input_name, O_RDONLY); if (input < 0) { perror("failed to open file"); exit(-1); } ret = fstat(input, &perf_stat); if (ret < 0) { perror("failed to stat file"); exit(-1); } if (!perf_stat.st_size) { fprintf(stderr, "zero-sized file, nothing to do!\n"); exit(0); } header = perf_header__read(input); head = header->data_offset; sample_type = perf_header__sample_type(header); if (!(sample_type & PERF_SAMPLE_RAW)) die("No trace sample to read. Did you call perf record " "without -R?"); if (load_kernel() < 0) { perror("failed to load kernel symbols"); return EXIT_FAILURE; } remap: buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ, MAP_SHARED, input, offset); if (buf == MAP_FAILED) { perror("failed to mmap file"); exit(-1); } more: event = (event_t *)(buf + head); size = event->header.size; if (!size) size = 8; if (head + event->header.size >= page_size * mmap_window) { unsigned long shift = page_size * (head / page_size); int res; res = munmap(buf, page_size * mmap_window); assert(res == 0); offset += shift; head -= shift; goto remap; } size = event->header.size; if (!size || process_event(event, offset, head) < 0) { /* * assume we lost track of the stream, check alignment, and * increment a single u64 in the hope to catch on again 'soon'. */ if (unlikely(head & 7)) head &= ~7ULL; size = 8; } head += size; if (offset + head < (unsigned long)perf_stat.st_size) goto more; rc = EXIT_SUCCESS; close(input); return rc; } static const char * const sched_usage[] = { "perf sched [] {record|latency|replay|trace}", NULL }; static const struct option sched_options[] = { OPT_BOOLEAN('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_END() }; static const char * const latency_usage[] = { "perf sched latency []", NULL }; static const struct option latency_options[] = { OPT_STRING('s', "sort", &sort_order, "key[,key2...]", "sort by key(s): runtime, switch, avg, max"), OPT_BOOLEAN('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_END() }; static const char * const replay_usage[] = { "perf sched replay []", NULL }; static const struct option replay_options[] = { OPT_INTEGER('r', "repeat", &replay_repeat, "repeat the workload replay N times (-1: infinite)"), OPT_BOOLEAN('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_END() }; static void setup_sorting(void) { char *tmp, *tok, *str = strdup(sort_order); for (tok = strtok_r(str, ", ", &tmp); tok; tok = strtok_r(NULL, ", ", &tmp)) { if (sort_dimension__add(tok, &sort_list) < 0) { error("Unknown --sort key: `%s'", tok); usage_with_options(latency_usage, latency_options); } } free(str); sort_dimension__add((char *)"pid", &cmp_pid); } static const char *record_args[] = { "record", "-a", "-R", "-M", "-f", "-c", "1", "-e", "sched:sched_switch:r", "-e", "sched:sched_stat_wait:r", "-e", "sched:sched_stat_sleep:r", "-e", "sched:sched_stat_iowait:r", "-e", "sched:sched_stat_runtime:r", "-e", "sched:sched_process_exit:r", "-e", "sched:sched_process_fork:r", "-e", "sched:sched_wakeup:r", "-e", "sched:sched_migrate_task:r", }; static int __cmd_record(int argc, const char **argv) { unsigned int rec_argc, i, j; const char **rec_argv; rec_argc = ARRAY_SIZE(record_args) + argc - 1; rec_argv = calloc(rec_argc + 1, sizeof(char *)); for (i = 0; i < ARRAY_SIZE(record_args); i++) rec_argv[i] = strdup(record_args[i]); for (j = 1; j < (unsigned int)argc; j++, i++) rec_argv[i] = argv[j]; BUG_ON(i != rec_argc); return cmd_record(i, rec_argv, NULL); } int cmd_sched(int argc, const char **argv, const char *prefix __used) { symbol__init(); page_size = getpagesize(); argc = parse_options(argc, argv, sched_options, sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); if (!argc) usage_with_options(sched_usage, sched_options); if (!strncmp(argv[0], "rec", 3)) { return __cmd_record(argc, argv); } else if (!strncmp(argv[0], "lat", 3)) { trace_handler = &lat_ops; if (argc > 1) { argc = parse_options(argc, argv, latency_options, latency_usage, 0); if (argc) usage_with_options(latency_usage, latency_options); } setup_sorting(); __cmd_lat(); } else if (!strncmp(argv[0], "rep", 3)) { trace_handler = &replay_ops; if (argc) { argc = parse_options(argc, argv, replay_options, replay_usage, 0); if (argc) usage_with_options(replay_usage, replay_options); } __cmd_replay(); } else if (!strcmp(argv[0], "trace")) { /* * Aliased to 'perf trace' for now: */ return cmd_trace(argc, argv, prefix); } else { usage_with_options(sched_usage, sched_options); } return 0; }