
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220673421

Heliza: Talking dirty to the attackers

Article in Journal in Computer Virology · August 2011

DOI: 10.1007/s11416-010-0150-4 · Source: DBLP

CITATIONS

16
READS

576

4 authors:

Some of the authors of this publication are also working on these related projects:

MISP-Project View project

Large-Scale Blockchain Testbed View project

Gérard Wagener

security made in Lëtzebuerg“ (SMILE) g.i.e.

29 PUBLICATIONS 415 CITATIONS

SEE PROFILE

Radu State

University of Luxembourg

344 PUBLICATIONS 2,870 CITATIONS

SEE PROFILE

Alexandre Dulaunoy

CIRCL Computer Incident Response Center Luxembourg

31 PUBLICATIONS 439 CITATIONS

SEE PROFILE

Thomas Engel

University of Luxembourg

343 PUBLICATIONS 4,854 CITATIONS

SEE PROFILE

All content following this page was uploaded by Radu State on 26 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220673421_Heliza_Talking_dirty_to_the_attackers?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220673421_Heliza_Talking_dirty_to_the_attackers?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MISP-Project?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Large-Scale-Blockchain-Testbed?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gerard-Wagener-2?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gerard-Wagener-2?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gerard-Wagener-2?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radu-State?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radu-State?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Luxembourg?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radu-State?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre-Dulaunoy?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre-Dulaunoy?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre-Dulaunoy?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas-Engel-12?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas-Engel-12?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Luxembourg?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas-Engel-12?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Radu-State?enrichId=rgreq-884cb30cf6d44bb897ea69ed4b48b0e5-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3MzQyMTtBUzoxMDExMzE5NDY1NjE1NDVAMTQwMTEyMzE0NDg0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

J Comput Virol
DOI 10.1007/s11416-010-0150-4

ORIGINAL PAPER

Heliza: talking dirty to the attackers

Gérard Wagener · Radu State · Alexandre Dulaunoy ·
Thomas Engel

Received: 18 June 2010 / Accepted: 23 November 2010
© Springer-Verlag France 2010

Abstract In this article we describe a new paradigm for
adaptive honeypots that are capable of learning from their
interaction with attackers. The main objective of such hon-
eypots is to get as much information as possible about the
profile of an intruder, while decoying their true nature and
goals. We have leveraged machine learning techniques for
this task and have developed a honeypot that uses a variant
of reinforcement learning in order to learn the best behavior
when facing attackers. The honeypot is capable of adopt-
ing behavioral strategies that vary from blocking commands,
returning erroneous messages right up to insults that aim to
irritate the intruder and serve as reverse Turing Test. Our
preliminary experimental results show that behavioral strat-
egies are dependent on contextual parameters and can serve
as advanced building blocks for intelligent honeypots.

1 Introduction

Over the recent years, honeypots, resources dedicated to
be attacked [1], have been widely deployed in operational
environments and have been subject of numerous research

G. Wagener (B) · R. State · T. Engel
University of Luxembourg, 6, rue Richard Coudenhove-Kalergi,
1359 Luxembourg, Luxembourg
e-mail: gerard.wagener.002@student.uni.lu

R. State
e-mail: radu.state@uni.lu

T. Engel
e-mail: thomas.engel@uni.lu

A. Dulaunoy
Computer Incident Response Center
Luxembourg c/o smile - “security made in Letzebuerg”,
6, rue de l’Etang, 5326 Contern, Luxembourg
e-mail: alexandre.dulaunoy@circl.lu

activities in the scientific community. Although many pre-
vious research contributions have addressed the underlying
technical and system-level challenges for developing stealthy
and secure honeypots, very little has been done with respect
to making honeypots intelligent and adaptive. Intelligent hon-
eypots can make a worthwhile difference, since existing hon-
eypots are either too limited and thus provide little valuable
information, or are easily identifiable by experienced attack-
ers. We aim to obtain several types of intelligence data from a
honeypot, including the software used to escalate privileges
as well as the rootkits and custom exploits that an attacker
downloads and installs. The tools we are interested in, are
tools installed after a successful penetration of the system and
used during malicious activities. These tools are usually not
collected with traditional malware collectors like Nepenthes
[2]. Additional pieces of information that we aim to get are
related to the technical background and skill of an attacker,
their ethnic and linguistic profile, the repositories used and
other targets under attack.

We argue in this article that a new paradigm of adaptive
honeypots can provide more intelligence than the established
architectures. We describe a prototype called Heliza that can
learn how to optimally interact with an attacker. Interactions
can be the blocking of a command, the profanity, the return
of erroneous results as well as the simple execution of an
entered command. Heliza is inspired from the well known
Eliza [3] program that lured in the 1970s many computer
users into thinking that they were interacting with a thera-
pist or an advanced rule-based system, although Eliza used a
very simple and primitive inference algorithm. When design-
ing Heliza, we considered that each interaction has a value in
the proper context. For instance, blocking a wget command,
can lead an attacker to use an alternative repository and this
may reveal another attacker controlled location. Insulting an
attacker can irritate her and make her reveal her linguistic

123

G. Wagener et al.

background, while the responses of erroneous messages can
indicate her technical skills. The major challenge was to
define the context and automatically learn the best strate-
gies for each contextual state. Existing honeypots could not
implement such strategies. High-interaction honeypots [1]
allow any system manipulation by an attacker. Attackers can
install and execute arbitrary programs on such a honeypot.
The observation of such activities does not reveal their tech-
nical skills because every action is permitted and attackers
reach their attack goal without any resistance. Furthermore,
the linguistic profiles of an attacker cannot be derived from
the observation of sequential programs executions. Low- and
mid interaction honeypots are easily detected even by a nov-
ice attacker, and thus can serve only against autorooters or
automated malware.

The main contributions of this article are twofold. First,
we describe a new approach for intelligent honeypots that can
learn from their interaction with an attacker. We propose a
reinforcement learning-based mechanism that leverages the
well known reinforcement learning algorithm SARSA [4]
and a Markov state model in order to drive an adaptive hon-
eypot. Secondly, we describe the implementation in a Linux
based system and highlight some of the technical challenges
that we had to face.

The article is organized as follows: The paradigm of
adaptive honeypots is discussed in Sect. 2 which describes
two different behaviors. One adaptive honeypot is targeted
at collecting information from attackers, while another one
is intended to keep attacker as long as possible on the sys-
tem. An adaptive honeypot framework is described in Sect. 3.
Experiments are presented in Sect. 4 followed by a summary
of the related work in Sect. 5. Conclusions and future work
activities are set out in Sect. 6.

2 Adaptive honeypots

Heliza emulates a weak and vulnerable SSH server, which is
a popular attack vector [5,6]. Attackers penetrate the system
via SSH by performing a brute force attack against accounts
on the system. They probe different user accounts with pre-
defined password lists [5]. Shortly after breaking in, attackers
come back to the compromised accounts and begin perform-
ing malicious activities on the system. Heliza allows infor-
mation retrieval from attackers to be optimized by leveraging
reinforcement learning algorithms.

According to Sutton [4], reinforcement learning is an auto-
mated method for goal-directed learning and decision mak-
ing that works to maximize a numerical reward signal. An
agent must discover which actions provide the most reward
by trying them out. Rewards can be positive or negative and
an agent by default tries to optimize its reward in the long run.
A general overview of reinforcement learning is presented in

Fig. 1 Overview of reinforcement learning

[4] and is shown in Fig. 1. An agent operates in a specific
environment and can perform various actions (at) at discrete
time steps, denoted by the variable t . Each action results in a
state change st and a reward is given for the selected action
(rt). A classical example is an agent that needs to find the exit
of a maze. The agent can move north, south, east and west.
Each position in the maze results in a distinct state. When the
agent bumps into the wall or wants to make an impossible
transition, the agent is punished. When the agent makes a
valid movement no reward is given. However, if the agent
finds the exit of the maze, it gets a positive reward.

Heliza is an adaptive honeypot, dedicated to be attacked,
and behaves like a learning agent that is continuously under
attack. Normally attackers want to execute commands. Heliz-
a has to take decisions as to allow or block these commands.
Heliza is also able to forge outputs or insult the attacker.
Following a decision, an attacker can enter another com-
mand, which results into a state change. Each state change is
also linked with a reward.

2.1 Environment

Attackers compromising the system are modeled as its envi-
ronment. Attackers penetrate the system via SSH and pro-
vide input strings that are usually commands. For instance,
they may inspect the system and then try to make it ready
for their malicious purpose. A typical attack sequence is for
instance sshd→ uname→ wget→ tar→ custom.
Attackers may also enter empty commands, typographic
errors or insults. Generally, attackers enter sequences of
strings denoted i0i1i2 . . . in where in ∈ S∗. An input in

is a system command if and only if it belongs to the set
L = {s1, s2, s3, . . . , sn} which contains all bash commands
[7] including system programs installed during the setup of
the system. Attacker often install customized tools, which
we designate the set C, like SSH brute force scanners, root-
kits, local root exploits or phishing server software. Hence,
C ⊆ S∗. This means that all valid programs on the honeypot
not previously known are installed by attackers. After having
successfully transferred them to the honeypot, they are valid
programs on the honeypot and can be executed. Each input
that is neither a program nor an ENTER keystroke typed by
an attacker is considered to be an insult. Hence, the set of
insults is I = S∗ − L − {empty} − C .

123

Heliza: talking dirty to the attackers

Formally, the environment is modeled as a Markov chain
with an associated reward process [8]. The underlying finite
state space is S = {s1, s2, . . . , sn}. Contrary to the model
proposed by Xu et al. in [8], each state is a command
or a program entered by the attacker or one of three spe-
cial states. S = L

⋃{insult, custom, empty}. A transi-
tion to the empty state is made when an attacker hits the
ENTER key on the system. Attackers sometimes do this to
test whether the remote connection is still working. When
an attacker wants to execute a custom installed program, a
transition to the custom state is made. We define a relation
z1 ⊆ C×{custom}. A string that is entered by an attacker and
that is neither a program nor an ENTER keystroke is mapped
into the state called insult, which is formally defined by
the mapping z2 ⊆ I × {insult}.

Like the model proposed by Xu et al., we denote the tra-
jectory generated by the Markov chain {xt |t = si ; si ∈ S}. In
our model, a trajectory corresponds to a sequence of inputs
provided by an attacker. The dynamics of the Markov chain
are described by the transition probability matrix P whose
(i,j)-th entry is the transition probability for xt+1 = j given
that xt = i . The probabilities are due to common input sub-
sequences among sequences.

Environment properties

The exit state is an absorbing state. When attackers are in
this state they have left the honeypot. Due to the fact, that
all attackers penetrate the system through the sshd state, all
attacks pass through the same node. Hence, it can be deduced
that this Markov chain cannot have distinct partitions. An
attacker can execute a command multiple times, resulting
in a loop in the Markov chain. Due to common transitions
among different attackers, the same state can lead towards
several other states.

Heliza learns by computing a value action function that
gives for each (state, action) pair the long-term utility with
respect to the target objectives. Once this function has been
learned, Heliza chooses at each state the action with the high-
est estimated reward.

2.2 Honeypot actions

The added value of honeypots lies in their ability to learn
from attackers or to reveal information about them. Heliza is
adaptive and capable of taking actions in response to attacker
actions. Heliza aims to collect attacker tools and to detect
whether the attack is automated or manually performed.
Heliza can also be tuned to keep attacker busy. Four actions
a1...4 ∈ A are possible for Heliza: It can behave like a stan-
dard high-interaction honeypot by allowing (a1) command
executions. When Heliza decides to block (a2) a command
entered by an attacker, it is not executed, but an error code

is returned. Heliza can also substitute (a3) commands. For
instance, when the commandw is executed, aiming to see how
many users are logged in, Heliza lies and shows a previously
generated content. Another, example is where an attacker
executes the tool wget with the intention of downloading a
customized tool. In this case, Heliza could lie and display a
“page not found” error, which may lead an attacker to reveal
another malicious repository. An alternative possibility is to
swap a few bytes in the downloaded payload. Provos et al. [9]
showed that the lifetime of malicious code repositories can
be very small (1 h) and if an attacker is connecting to such
a site we assume that it is not suspicious if Heliza returns
a “page not found” error. Heliza can also insult (a4) attack-
ers. This action mainly serves as reverse Turing Test [10].
The purpose of such a test is to discover whether an action
is being performed by a human being or an automated tool.
The insult decision leads to a display of an insult in the ter-
minal of an attacker. An attacker can respond with an insult.
By doing so, it is highly likely that the attacker is a human
being. Suppose that an attacker has downloaded a customized
tool and wants to execute it. Heliza then replies: Is this
all what you want to do? Some attackers imme-
diately leave when they see a message like this. Obviously,
in this case we cannot determine whether this attacker is a
human or not. However, some attackers get overwhelmed by
emotion and type insults in the terminal. In this case, Heliza
can discover that the attacker is a human and can sometimes
determine the native language of the attacker. Some attacks
are automated and their reaction to insults depends on the
capabilities of the script. Some scripts check error codes and
the output of the executed command and take appropriate
actions. Other scripts have no error handling and just con-
tinue the attack.

2.3 Rewards

In the reinforcement learning domain, a learning agent tries
to optimize a numerical reward signal. Heliza can use two
reward functions depending on the desired behaviors.

Collecting attacker related information

Alata et al. [11] described that attackers often install custom-
ized tools on high-interaction honeypots designed for their
malicious purpose. Hence, the goal of our reward function is
to collect as many attacker tools as possible. Moreover, we are
interested in discerning the linguistic features of an attacker.
However, the main focus is on customized tools installed by
an attacker. The reward function with this purpose is defined
in Eq. (1) where i is the input string used by an attacker. Each
input i of an attacker sequence of strings i0i1 . . . in is mapped
with the states of the Markov chain si ∈ S. The normalized
Levenshtein distance [12] is denoted ld and the action taken

123

G. Wagener et al.

Table 1 Sample attacker session

t it st action reward

0 sshd sshd allow 0

1 ssudo insult allow 1
8

2 sudo sudo block 0

3 wget wget substitute 0

4 wget wget allow 0

5 ./exploit custom insult 1

6 I am ... insult insult 47
145

by Heliza is denoted a j . The merged set of custom com-
mands and system commands is Y = C

⋃
L . If an attacker

does a transition to a customized tool, Heliza gets the high-
est reward (1) and if an attacker executes a system related
command the reward 0 is distributed. However, if an insult is
entered, the Levenshtein distance between this string and all
other programs (x) is computed and the minimal normalized
distance is returned as reward.

rt (si , a j) =

⎧
⎪⎨

⎪⎩

1 if i ∈ C

min
x∈Y

(ld(i, x)) if i ∈ I

0 otherwise

(1)

Received insults are particularly useful for gaining infor-
mation about attackers. For instance, if they swear in their
native language, this could indicate their origin and ethnic
background. The case where an attacker enters an insult,
the minimum normalized Levenshtein distance relative
to the customized tools and system commands is returned.
If the attacker just made a typographic error, the minimum
normalized Levenshtein distance is low. Not much informa-
tion about the attacker has been revealed except it is highly
probable that this attacker is a human being. However, if
the distance is close to 1, an attacker has entered a com-
pletely unknown input, which may be valuable for Heliza.
The reason for normalizing the Levenshtein distance between
0 and 1, is that Heliza should focus on collecting tools than
rather collecting attacker insults. The highest reward is still
granted when a transition to a customized tool is made.

An example of an attacker session is presented in Table 1
where the variable t represents discrete time steps. The col-
umn labeled with it shows the input that an attacker pro-
vided which is mapped to a state st in the Markov chain.
For a given transition made by an attacker, Heliza can take
an action and gets a reward. In this example, an attacker
connected to the honeypot at time 0 and wants to get to
the sshd state. Heliza allows this transition and gets a
reward of 0. The attacker then wants to execute the com-
mand ssudo, which is classified as an insult. However, the
attacker simply made a typographic error. For this simplified
example, the Levenshtein distances are computed between

the input ssudo and all the installed programs {sshd,
sudo, wget}. The resulting set of Levenshtein distances
is {1, 2, 5}. The minimal Levenshtein distance is 1, which
means that only one character needs to be edited to get to
the string sudo. Hence, the normalized Levenshtein dis-
tance becomes 1

8 . In step 2, the attacker notices the typo-
graphic error and enters the correct command. This time,
Heliza blocks the command. The attacker decides in step 3
to download a local root exploit. Heliza decides to return a
forged output stating that the requested page was not found.
The attacker then selects another malicious repository and
this download is allowed. The attacker wants to execute
the local root exploit. A transition to the state custom is
made because the program was not known during the hon-
eypot setup. The reward 1 is returned because the honey-
pot has collected a customized tool from an attacker. Heliza
decides to print the text Are you stupid enough
to execute this crappy tool. . .. The attacker is
overwhelmed by emotion and types I am not stupid
dude, it is time for revenge. . .. This time, the
normalized Levenshtein distance becomes 47

145 which rewards
the honeypot of having revealed an entire sentence from the
attacker.

Keeping attackers busy

A straight-forward reward is to take into account the delay
between two successive commands expressed in seconds.
A higher delay means a longer reaction time of the attacker
in handling partial attack failures. Hence, we define a func-
tion δ : S× S× A×N→ R. The reward function defined in
Eq. (2) returns the temporal difference needed to transit from
the previous state to the current state by taking the action a j

at the time i .

rd(si , a j) = δ(si−1, si , a j , i) (2)

2.4 Learning agent

Heliza is a learning agent, and attackers act as its environ-
ment. According to Sutton [4], an agent has the ability to
perform a set of actions in various situations (states). Each
action is awarded with a positive or negative reward. The pur-
pose of reinforcement learning is to find the optimal policy to
select the most promising actions in given states. Formally,
a policy π is defined as a stochastic rule used by an agent to
select actions [4]. Reinforcement learning is divided into two
categories: off-line learning and on-line learning [4]. Monte
Carlo methods are frequently used for off-line learning meth-
ods and time difference learning methods are used for on-line
learning. Either method requires complete knowledge about
the environment and both try to optimize received rewards.
The purpose of Monte Carlo policy evaluation methods is

123

Heliza: talking dirty to the attackers

to estimate the value of a given state s under a policy π

[4]. However, in the context of adaptive honeypots, we are
interested in evaluating state action pairs rather than states.
An attacker whose rootkit execution has been blocked may
chose another path in the hope to achieve the initial attack
goal.

The objective of Heliza is to incrementally discover the
policy for choosing actions in given states, which is usual for
on-policy methods [4]. Attackers connect to Heliza and per-
form some malicious activity resulting in state transitions.
In the state exit, they leave the honeypot which means
that they have reached an absorbing state. This phenomenon
gives the possibility of breaking down the learning method
into episodes. The policy is being evaluated at the end of
an episode. The State Action Reward State Action (SARSA)
method is a straightforward method of on-policy learning
method [4]. The general form is presented in Eq. (3). The
goal is to estimate the reward Q according to a policy, for
a given state st and a given action at . Due to the fact that
an environment is unknown for an agent, an explorer has to
decide to explore or to exploit the learned knowledge. This is
a fundamental problem in reinforcement learning. We used
the ε-greedy explorer because convergence to optimal Q val-
ues has been proved with such an explorer [13]. The environ-
ment is explored according a random component ε and the
environment is exploited according the learned Q values. An
estimation of Q at time t is augmented by the received reward
rt plus a discounted (γ) estimated future reward, taking into
account a step size parameter (α). In practice, the rewards
are set retroactively and in the adaptive honeypot scenario
no discounting (γ = 1) is done because the beginning and
the end of an episode are known. An episode begins when an
attacker connects and ends when an attacker leaves at which
time the estimated values are computed. A default value of
0.05 is used as step size parameter (α) [14].

Q(st , at)← Q(st , at)

+α
[
rt+1 + γ Q(st+1, at+1)− Q(st , at)

]
(3)

3 Adaptive honeypot framework

We have developed a high-interaction honeypot generic fra-
mework, denoted AHA, where different adaptation mech-
anisms can be implemented. The framework consists of a
modified Linux kernel running in user-space, that outsourc-
es the decision-making process to the host operating system.
The decisions are then implemented in Python which is eas-
ier to perform than implementing a dedicated kernel module.
The AHA framework consists of a customized User Mode
Linux (UML) [15], a custom developed library with common
functions, the AHA daemon and a configuration file. UML is
a Linux kernel running in user-space or in other words, it runs

Fig. 2 Overview of the adaptive honeypot framework overview

on a Linux system like any other program and does not need
extra privileges. The UML kernel is often called guest kernel
and the kernel running the UML is denoted host kernel. UML
can be built from an arbitrary recent Linux kernel version by
specifying the UM parameter. The reason why UML was
chosen, is that from an implementation point of view, it pro-
vides functions to interact with the host-operating system that
are ready to use. In theory attackers could detect UML [16]
and a better alternative is to perform a virtual machine intro-
spection [17]. However, this approach involves more imple-
mentation efforts and is even not bullet proof [17]. The scope
of this article is to have a proof of concept of adaptive high-
interaction honeypots. An overview is shown in Fig. 2. The
honeypot is usually operated at a public IP address. Attack-
ers constantly scan the Internet and so discover the honey-
pot (step 0). They then normally start a brute force attack
against the honeypot, by probing different user accounts with
associated passwords from large dictionaries. After a while,
they manage penetrating the honeypot (step 1). The kernel
operating in the virtual machine transmits each argument of
a sys_execve system call1 to the host operating system
(step 2) where a daemon, denoted AHAD, captures it (step 3)
and takes a decision as to whether this system call should be
allowed, blocked, substituted or responded with an insult.
The daemon puts the decision in the input queue (step 4).
The kernel in the guest operating system waits τ milliseconds
for the response from the daemon and fetches the decision
(step 5). If it receives it within this time frame, it implements
the decision. If it does not receive it, the system call returns

1 Bash internal commands, the fact that an attacker hits the ENTER key
or typographic errors are not visible in kernel space for the sys_execve
function. Hence, it is mandatory to set a hook in bash to propagate these
commands to kernel space.

123

G. Wagener et al.

an error, namely ENOMEM, which leads the attacker believe
that there is no memory left on the machine. We empirically
determined that the maximal time frame τ for suspending a
system call is 50 ms. This makes the system slower but still
usable.

In order to export information from the guest-kernel to the
host-kernel we used dedicated functions included in UML.
Among these functions are functions to open sockets or to
create files. We modified the UML code and used these func-
tions to exchange information between the host operating
system and guest kernel. We did some small surgery in the
system call wrappersys_execvewith the purpose to inter-
cept all programs that are scheduled to be executed.

A unique message identifier i is generated based on the
executed CPU cycles of the host operating system. Inside
the UML, the program name with its arguments is taken
from user-space, and copied into a static c data structure mi .
This unique message identifier i serves as filename on the
host operating system, where the static data structure mi is
written in binary form. In practice, the exchange of binary
messages is faster than the exchange of textual messages.
The sys_execve is then suspended for τ milliseconds. On
the host operating system the AHA daemon is notified via
the INOTIFY [18] interface that a new message arrived in the
output queue. It immediately fetches the message, remem-
bers the message identifier i and decodes it with the Python
module c types (useful to handle binary data), takes a deci-
sion and puts another binary c structure m̄i with the same
identifier i in the input queue. The reason to select different
queues is to reduce the number of synchronization steps as
these are computationally expensive. After τ milliseconds
the suspended system call sys_execve resumes, takes the
message and parses it by simply accessing the fields of the
binary structure and implements the decision. On one hand,
when the system call should be allowed, the regular code
of the wrapper is executed. On the other hand, when the
system call should be blocked, the error code ENOPERM is
returned. When the output of a program is forged, the pro-
gram name of the desired executed program is swapped with
a hidden installed program in the UML capable to forge out-
puts. From an implementation point of view, insulting an
attacker is similar to substituting commands, because in that
case the program of the desired executed program is substi-
tuted with an hidden program labeled insult that randomly
selects insults from a predefined list. It is essential that the
daemon distinguish between programs executed by the sys-
tem itself and by programs executed by attackers [6]. There-
fore, the process tree data structure is analyzed [6]. Each
program that belongs to a sub-tree of a privileged separated
process of sshd [19] is identified as a program executed
by an attacker. Other programs belong to the system itself
and by default are allowed. PyBrain [14], a Python based-
library, is used for the implementation of the reinforcement

learning part functionality. A prototype of AHA is publicly
available [20].

4 Experiments

We operated a high- and a low-interaction honeypot to eval-
uate Heliza. Each honeypot was operated until 349 success-
ful attacks have been observed. From these experiments we
recovered honeypot traces and stored them in an SQLite data-
base [21] which is freely available [22]. A honeypot trace is
a chain of inputs provided by attackers and is composed of
the following elements:

uid is a unique identifier which distinguishes different
attacker sessions. An attacker session starts when the
SSH server clones a privileged separated process [19]
and ends when this process dies, from which it can be
deduced that the attacker left the honeypot.

id is a numerical strictly monotonically increasing identifier
that identifies the input that an attacker gives. This identi-
fier is essential to establish the order of the inputs that an
attacker has provided. Further details about recovering
attacker sessions regarding concurrency issues between
attackers and the system itself are presented in our pre-
vious research activities [6].

input is the input or command an attacker entered. The input
can be a command, a misspelled command or an insult
from an attacker.

next input specifies the next input an attacker provided in
her session. Usually it is the next command but some-
times it can also be a misspelled command or an insult.

action is the action the honeypot took. For instance, allow,
block, substitute or insult.

delay records the time difference expressed in seconds
between the two inputs. Due to system and network buf-
fering delays we determined a slowdown factor which
was taken into account for further processing.

Table 2 (left part) describes general statistics about the
honeypot experiments including attacker traces of the honey-
pot setups. We have observed 349 different successful logins
on each SSH server. The shortest attack duration is between
0 and 1 s which is mainly due to automated brute-force tools
that were run against the honeypots aiming to establish a
list of successfully exploited user accounts. The maximal
attack duration was 97 min. In this SSH session an attacker
did heavy configuration work on the system and compiled
large programs which took some time. For a standard high-
interaction honeypot, the average attacker session lasted for
approximately 3 min and most attacker session durations
were below 3 min (83%). Heliza most frequently performed
allow actions closely followed by the number of occasions

123

Heliza: talking dirty to the attackers

Table 2 Dataset description

General statistics Country code Proportion (%)

Number of attacker
sessions

349 RO 47

Minimal attack
duration (s)

0 DE 16

Maximal attack
duration (s)

5,849 ES 10

Average attack
duration (s)

162 Unknown 4

SD of attack
duration (s)

509 LU 4

Proportion of allow
actions (%)

31 IT 4

Proportion of block
actions (%)

22 MK 4

Proportion of
substitute
actions (%)

30 LB 3

Proportion of insult
actions (%)

17 NL 2

GB 1

BE 1

US 1

FI 1

AT 1

FR 1

on which it forged output for the attackers. Heliza explicitly
blocked 31% of the inputs and deliberately insulted attackers
in 17% of the cases. The country code corresponding to the
IP addresses used by attackers was looked-up and the dis-
tribution is shown in the right part of Table 2 (right part).
Most attackers came from Romanian IP addresses. 16% of
the attackers came from German IP addresses and 10% of
the attackers had a Spanish IP addresses.

In the early stages of our honeypot development, it was
questionable whether attackers would react to insults. Such
a reaction would be an immediate disclosure of personal
information regarding attacker. Particularly interestingly, we
observed 1,011 insults from attackers. From a purely ethical
point of view, we cannot print these insults in this article.
However, we can give some information (Table 3) about the
used language by attackers to insult Heliza. For most insults
we were not able to discover the language attacker used.
Some insults consisted of only one character or some random
keystrokes. 17% of the insults were due to misspelled com-
mand, like the command uanme where we believed that the
attacker wanted to type uname. From these attacker inputs
it is highly probable that a human being was connected to
Heliza, rather than an automated script assuming that most
attackers test their malicious automated attacks before run-
ning them. Heliza always used the English language to insult
attackers and, surprisingly, fewer than 10% of the returned

Table 3 Attacker insult analysis

Command Frequency Language Proportion (%)

exit 15.77 Undefined 51.8

ls 11.16 Typographic errors 17.1

cd 9.95 Romanian 11.8

uname 5.82 English 9.2

ps 5.82 Smiley 5.3

last 5.09 Slovak 5.3

wget 4.61 Croatian 1.0

id 4.36 Polish 1.0

w 4.36 German 0.2

others 33.06

Table 4 Final action values

Used reward: rd Used reward: rt

allow substitute block insult allow substitute block insult

tar 100 203 55 127 5.55 5.15 4.94 1.96

sudo 101 101 146 196 5.37 1.16 3.71 4.17

chmod 199 121 140 71 5.33 5.50 8.85 8.05

uname 184 202 190 159 5.02 4.81 4.58 5.49

kill 65 1 295 220 1.83 2.82 5.77 1.82

insult 189 188 199 190 5.42 5.57 5.29 4.69

custom 194 170 163 189 5.66 5.10 4.95 5.37

ps 194 183 214 140 4.82 5.14 4.71 5.44

wget 175 202 163 146 6.34 5.53 5.24 5.20

bash 202 118 37 172 4.93 2.86 3.56 3.90

last 64 81 202 106 0.99 1.07 4.85 2.50

insults were in English and 12% were in Romanian. Some
attackers (5%) showed a sense of humor and replied with a
smiley. The right part of table contains the top 10 commands
entered by attackers after an insult of the Heliza. Figure 3
shows the inputs and commands attackers have provided
after they were insulted by Heliza. On the x-axis is presented
the number of inputs an attacker provided and on the y-axis
shows the amount of attackers. Heliza insulted 86 distinct
attackers and 15% of them immediately left the honeypot.
However, most of the attackers entered at least one command
or an insult. After a manual investigation of the attacker input
sequences, we noticed that some attackers believed that the
insults are due to other attackers and not from the system
itself. Even some attackers replied with the command wall
which is used to display messages in all the terminals of the
users that are connected. Some attackers just pressed enter to
clean the terminal and repeated the command which explains
that those attackers preferred to continue the attack. Normally
the attacker response time for the first insult is larger than the
response time regarding another insult. After a while some

123

G. Wagener et al.

Fig. 3 Inputs entered by attackers after an insult

attackers get annoyed and started to enter successive insults.
For such a sequence of insults the delay between such suc-
cessive insults is <2 s. Other attackers became curious and
started to challenge Heliza in order to understand what is
going on.

It is worth to mention, that insults can give indication about
other compromised machines. For instance, we observed
some Romanian insults from German, French and Spanish
IP addresses. In this case we assume that Romanian attack-
ers have compromised these machines and used them as
rebounds for attacking Heliza aiming connection launder-
ing. The reactions of attackers regarding strategical blocks
are also interesting. On average an attacker retries a com-
mand one time and there was an attacker who retried a com-
mand 116 times. After having done manual analysis of this
attacker’s traces we assume that this attacker tried to chal-
lenge Heliza in order to determine how the decisions are
taken. The reaction of attackers namely if attackers continue
their attack or if they get annoyed, their persistence facing
resistance permit to draw a profile of attackers which may
serve as attacker classification criterion (Fig. 3).

4.1 Learning analysis

Heliza was configured with two reward functions defined
Eqs. (1) and (2). The honeypot environment Markov chain
has 46 states. For space reasons, not all states can be discussed
in detail in this article. Thus, we present only the most rele-
vant and some general results. For the purpose of comparison
and simplification each attacker connection to Heliza corre-
sponds to an iteration k. Heliza incrementally (k = k + 1)
computes an action value table describing the various states
with the actions that provided the best rewards in the long
term [estimated Q values defined in Eq. (3)]. After the final
attack (k = 349) a stripped action value table is shown in
Table 4.

Generally the highest reward for a given state determines
the action which should be taken for this state in the long run.
This table is quite valuable for an honeypot operator who does
not want to setup Heliza but rather simply wants to install
static fake services2. Despite following the two behaviors,
some strategies for selecting an action for a given state are
the same. For instance, when an attacker connects to Heliza
it is always a good idea to allow the command. An attacker
who does not get a command prompt can hardly stay or install
custom tools on Heliza. Some commands are frequently used
by attackers to explore the compromised system. Heliza has
decided to block the command last such that the attack-
ers cannot detect other attackers on the system. The program
sudo is a convenient way to get more user privileges and is
often used for attacker maintenance work on Heliza. When
Heliza insults an attacker, the attacker needs to investigate the
situation, so spending more time on the system. The attacker
needs to determine whether the system itself initiated the
insult (i.e. provocative error messages configured by system
administrators) or if the insult is due from other attackers con-
currently connected to the system. However, if Heliza wants
to collect tools, this command should be allowed, because
it is often used for installing software on the system. If the
purpose of Heliza is to collect attacker information, the com-
mand wget should be allowed3. However, if Heliza aims to
waste an attacker’s time, a forged output should be returned.
Attackers usually download their tools as tarballs. Obviously,
when transitions favoring custom-installed tools are desired,
this transition should be allowed. If the purpose is to detain an
attacker, the command tar should lie, such that the attacker
needs to understand why the required tool is not working.
From an implementation point of view the filename passed
to the command tar is substituted with another filename.

It has been proved formally that the SARSA always con-
verges if each state is visited an infinity of times and if a
greedy learning policy is used [13]. In practice, this means
that we need to assess how many attackers are needed to
compromise the system in order to have meaningful action
value functions. We studied some relevant bash commands,
wget, sudo. The results are presented in Figs. 4, 5, 6 and 7.
The graphs 4 and 5 show estimated rewards for wget, and
the graphs 6 and 7 for sudo. In the graphs 5 and 6, Heliza
is configured to collect information; in the graphs 4 and 7,
to waste attacker’s time. Examining Fig. 5, we see that, by
iteration 340, Heliza has learned that allowing wget is the
best strategy for collecting information; in contrast to keep
the attacker on time as long as possible, the graph 4 shows
that substitution is identified as best by the 50th iteration.

2 Side effects are unknown.
3 Assuming that Heliza’s outgoing connections are strictly controlled
by an Network Intrusion Detection System aiming to avoid collateral
damage.

123

Heliza: talking dirty to the attackers

Fig. 4 Action-value evolution for wget (rd reward)

Fig. 5 Action-value evolution for wget (rt reward)

Similarly, Heliza learned after the 40th iteration that the exe-
cution of the sudo should be allowed when the purpose is to
collect attacker related tools (Fig. 6). In Fig. 7, Heliza learned
at iteration 44 that attackers should be insulted for keeping
them busy.

4.2 Honeypot comparison

In this section we evaluate the performance of Heliza by
comparing it with a standard high-interaction honeypot and a
low-interaction honeypot called Hali which emulates behav-
iors for all the commands executed by attackers. Hali is
a fake shell and was developed by ourselves. When an
attacker connects to this shell she receives a login and a
shell implemented in Python. The output of each command
is forged. By default, the standard high-interaction honeypot
allows all executions of programs; program executions are
neither blocked nor substituted nor are attackers insulted.
The purpose of this comparison is to determine whether
Heliza reveals more information from attackers than typi-
cal low- or high-interaction honeypots. Figure 8 shows that

Fig. 6 Action-value evolution for sudo (rt reward)

Fig. 7 Action-value evolution for sudo (rd reward)

attackers make more transitions to custom installed programs
on Heliza than on a regular high-interaction honeypot when
Heliza is configured to collect attacker-related information.
The x-axis shows the iteration number k, on the y-axis is the
cumulative number of transitions to custom installed com-
mands by attackers is shown.

The order of attacks may differ among the different honey-
pots. Alata et al. [23] reported that attacker launch automated
attacks against a honeypot in a first step and come later back
to perform the real attack. During the operation of a honey-
pot these two kinds of phenomena might be mixed. Hence,
the cumulative number of transitions is considered in order
to make the comparison more robust taking into account an
equal set of attacks for each honeypot. For approximately
the first 25 attackers Heliza has the same performance than
a standard high-interaction honeypot in terms of transitions
to attacker related programs. However after 347 successful
attacks, Heliza provides an increase of three times in tran-
sitions to attacker related commands. This increase is par-
tially due to blocked attacker-related programs. However,
an analysis of the actions taken by Heliza for transitions

123

G. Wagener et al.

Fig. 8 Attacker related-information collection comparison

to the execution of custom programs shows that 20% of
the attacker-related programs have been blocked. These pro-
grams have been substituted in 26% of the cases. Heliza
allowed transitions to these programs 21%. Finally, Heliza
decided in 32% of the cases to insult an attacker when such
a transition is made. The reason for not showing the com-
parison with Hali is that no installations of custom tools has
been observed for the first 350 attackers. Obviously, if every
command is forged, the installation process for attacker-tools
fails.

Figure 9 shows the comparison results of Heliza with Hali
and a standard high-interaction honeypot are shown in terms
of attack duration (Eq. 2). On Hali, attackers cannot install
tools. Usually they try for a while and then give up. At first
glance (k < 30), the standard high-interaction honeypot per-
forms better than Heliza in terms of keeping the attacker
busy. These short sequences of commands are often entered
by automated scripts. If Heliza interferes with them they often
fail. At the beginning of operation Heliza may take wrong
decisions inducing attackers to leave. However, after approx-
imately the 30th iteration Heliza keeps attackers longer than
the standard high-interaction honeypot.

5 Related work

Sutton’s introduction [4] and the reinforcement learning sur-
vey by Kaelbling [24] give a broad overview of the reinforce-
ment learning area. They also show numerous application
examples, mainly in the area of robotics. A classic exam-
ple is a robot that needs to find the exit of a maze. Different
reward models exist to parameterize the behavior of the robot.
Examples include punishment induced by energy constraints;
others do not punish and simply give a positive reward when
the robot finds the exit. In other examples, the agent is even
punished for bumping into walls. Reinforcement learning

Fig. 9 Maximizing attack duration comparison

often considers an agent that operates in an environment and
receives positive or negative rewards in response to taken
actions. Among the more spectacular autonomous agents
are helicopters which are able to perform aerobatic flight
manoeuvres controlled by reinforcement learning [25]. Rein-
forcement learning has also been explored and extended for
collaborating multi-agents [26]. Hierarchical learning among
agents has been studied by Barto et al. [27]. Gambardella et al.
tackle the well-known traveling salesman problem using an
experimental reinforcement-based approach [28]. Learning
agents do not always collaborate. Littman et al. explore the
possibility of learning agents that are opponents by introduc-
ing game theoretical concepts. The example of two opponents
playing soccer is given and the game is simulated.

In this article we use reinforcement learning for hon-
eypots that wish to optimize information retrieval from
attackers. In 1991 Cheswick [29] described where he
manually retrieved information from an attacker by provid-
ing forged content to the attacker and by simulating system
failures. In 1992 Bellovin [30] discussed trap programs, run-
ning dummy services, aiming to collect attacker related infor-
mation. Cohen [31] discussed various deception techniques
useful for information systems. In his Deception Tool Kit
(DDK) known vulnerabilities are emulated. However, Heliza
uses deception techniques in conjunction with machine learn-
ing techniques. In 2002 Lance Spitzner defined honeypots
as resources dedicated to be attacked [1]. McCarty stated
that there is a race between attackers and honeypot operators
[32]. Once honeypot operators have found a means to observe
and mitigate attacker actions, clever attackers find ways to
circumvent these techniques. Recently, development efforts
have been undertaken to perform the monitoring at a virtual
hardware layer. However, these approaches have some lim-
itations and could theoretically be circumvented [33]. We
deliberately do not want to participate in this race. Obvi-
ously, attackers could theoretically detect and sidestep from

123

Heliza: talking dirty to the attackers

the adaptive honeypot framework, but we focus on infor-
mation retrieval optimization from attackers, trying to lead
them to reveal as much useful information about themselves
as possible. An essential issue in operating a honeypot is to
select the emulated services. Chowdhary et al. [34] propose
to emulate services based on observed traces. In this article
we focus only on SSH attacks because SSH is popular attack
vector and is widely used [5,11].

In 2006, Alata operated a high-interaction honeypot and
described some behaviors of attackers. From the architec-
tural point of view, they added a system call into the Linux
kernel that is used by a modified SSH server aiming to iden-
tify attacker commands. During our experiments we noticed
that some attackers replaced the SSH server. Hence, we
logged all the executed programs and filtered them taking
into account process trees [6]. Similarly to Alata et al. we
recorded from legitimate production machines user-accounts
that are frequently probed and we created these accounts on
the Heliza. However, we preferred to patch the Linux authen-
tication module than just providing week passwords in order
to avoid that attackers can lock out other attackers by chang-
ing the user-account password. Cheswick [29] and Alata et al.
[11] considered typographical errors of attackers for detect-
ing their nature. Monrose et al. [35] went even further and
identified users by analyzing keystrokes dynamics. However,
applying such an approach to attackers is challenging because
the attacker profile is hardly known in advance. Moreover,
if the emotions of an attacker has been addressed with a
insults, the keystrokes dynamic may change. Alata et al. [11]
used the backspace criterion for determining if the attack
is originated by a human being. However, we compute the
Levensthein distance between the attacker’s input and all the
valid programs. This takes into account all different key-
strokes and can differentiate swear words from similar com-
mands. The first attempt to build an adaptive high-interaction
honeypots was undertaken by Wagener et al. [6]. They
explore game theory in the context of high-interaction
honeypots. In this scenario, a high-interaction honeypot
could allow or block the execution of a program. The Nash
Equilibrium is computed, resulting in a mixed equilibrium
identifying the optimal blocking probabilities for the hon-
eypot. Besides blocking or allowing command execution,
Heliza has further capabilities such as doing a Reverse Turing
Test or forging the output of command execution. Strictly fol-
lowing the state-of-the-art honeypot classification into low-
mid and high-interaction honeypots [1,34], Heliza cannot be
classified, because it sometimes behaves like a low-interac-
tion honeypot by returning a forged content. It can also accept
only malicious programs like it is the case for mid-interaction
honeypots. It also can simply accept arbitrary commands as it
is the case for high-interaction honeypots. Pouget et al. [36]
propose a methodology to compare honeypots in terms of
attacker interactions and attack patterns. In this article we

focus on optimizing interaction and information retrieval,
namely downloaded customized tools and insults learned
from attackers or keeping them busy.

6 Conclusion and future work

In this article we have described Heliza a honeypot prototype
that leverages machine learning techniques in order adapt its
behavior to attackers. We define behavior in terms of several
actions that can be taken: blocking, executing the command,
returning errors, or insulting. The applicability of each action
is dependent on the context, that on the command to be exe-
cuted command as well as the history of commands. We have
leveraged an on-line reinforcement algorithm to map the con-
text of actions to the action to be taken. This work can be used
to develop a new generation of honeypots that exhibit learn-
ing capabilities and adaptability which reduces the risk of
honeypot operation. Our current work consists in extending
the underlying system with higher-order Markov chain state
models and addressing more application-specific deploy-
ment targets. Heliza could be used as information source
for studies of social backgrounds of attackers. For instance,
Heliza could swear in different languages. The keystrokes
dynamics taking into account attacker emotions could also be
explored. Heliza has the limit that clever attackers could mis-
use commands for achieving their goals. An attacker could
for instance use the state perl to list programs instead of
using the command ls. Further research needs to be done
about attackers that know how Heliza is working and who try
to poison the learning process or who try to evade or takeover
Heliza.

References

1. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA (2002)

2. Baecher, P., Koetter, M., Dornseif, M., Freiling, F.: The nepenthes
platform: an efficient approach to collect malware. In: Proceed-
ings of the 9th International Symposium on Recent Advances in
Intrusion Detection RAID, Springer, pp. 165–184 (2006)

3. Weizenbaum, J.: Eliza—a computer program for the study of natu-
ral language communication between man and machine. Commun.
ACM 9(1), 36–45 (1966)

4. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion (Adaptive Computation and Machine Learning). The MIT
Press, Cambridge, MA (1998)

5. Ramsbrock, D., Berthier, R., Cukier, M.: Profiling attacker behav-
ior following SSH compromises. In: DSN ’07: Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Washington, DC, USA, IEEE Computer
Society, 119–124 (2007)

6. Wagener, G., State, R., Dulaunoy, A., Engel, T.: Self adaptive high
interaction honeypots driven by game theory. In: SSS ’09: Proceed-
ings of the 11th International Symposium on Stabilization, Safety,

123

G. Wagener et al.

and Security of Distributed Systems, Berlin, Heidelberg, Springer-
Verlag, 741–755 (2009)

7. Newham, C., Vossen, J., Albing, C., Vossen, J.: Bash Cookbook:
Solutions and Examples for Bash Users. O’Reilly Media, Inc.,
Sebastopol (2007)

8. Xu, X., Xie, T.: A reinforcement learning approach for host-based
intrusion detection using sequences of system calls. In: ICIC (1).
995–1003 (2005)

9. Provos, N., Mcnamee, D., Mavrommatis, P., Wang, K., Modadugu,
N.G.: The ghost in the browser analysis of web-based malware. In:
Proceedings of the 1st conference on First Workshop on Hot Top-
ics in Understanding Botnets, USENIX Association, Cambridge
(2007)

10. Coates, A.L., Baird, H.S., Fateman, R.J.: Pessimal print: a Reverse
Turing Test. In: Proceedings of the International Conference on
Document Analysis and Recognition (ICDAR), 1154–1158 (2001)

11. Alata, E., Nicomette, V., Kaaniche, M., Dacier, M., Herrb, M.:
Lessons learned from the deployment of a high-interaction honey-
pot. In: EDCC ’06: Proceedings of the Sixth European Dependable
Computing Conference, Washington, DC, USA, IEEE Computer
Society, 39–46 (2006)

12. Navarro, G.: A guided tour to approximate string matching. ACM
Comput. Surv. 33(1), 31–88 (2001)

13. Singh, S.P., Jaakkola, T., Littman, M.L., Szepesvári, C.: Con-
vergence results for single-step on-policy reinforcement-learning
algorithms. Mach. Learn. 38(3), 287–308 (2000)

14. Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F.,
Rückstieß, T., Schmidhuber, J.: PyBrain. J. Mach. Learn. Res. 11,
743–746 (2010)

15. Wright, C., Cowan, C., Morris, J.: Linux security modules: General
security support for the linux kernel. In: Proceedings of the 11th
USENIX Security Symposium. 17–31 (2002)

16. Holz, T., Raynal, F.: Detecting honeypots and other suspicious envi-
ronments. In: 6th IEEE Information Assurance Workshop, United
States Military Academy, West Point (2005)

17. Garfinkel, T., Rosenblum, M.: A virtual machine introspection
based architecture for intrusion detection. In: Proceedings Network
and Distributed Systems Security Symposium, 191–206 (2003)

18. Love, R.: Kernel korner: intro to inotify. Linux J. 2005(139),
8–12 (2005)

19. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escala-
tion. In: SSYM’03: Proceedings of the 12th conference on USENIX
Security Symposium, Berkeley, CA, USA, USENIX Association,
231–242 (2003)

20. Wagener, G.: Aha source code repository. http://git.quuxlabs.com

21. Owens, M.: Embedding an SQL database with SQLite. Linux
J. 2003(110), 2–5 (2003)

22. Wagener, G.: Aha dataset. http://quuxlabs.com/~gerard/datasets
23. Alata, E., Nicomette, V., Kaaniche, M., Dacier, M., Herrb, M.:

Lessons learned from the deployment of a high-interaction hon-
eypot. In: Dependable Computing Conference, 2006. EDCC’06.
Sixth European, 39–46 (2006)

24. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning:
A survey. J. Artif. Intell. Res. 4, 237–285 (1996)

25. Abbeel, P., Coates, A., Quigley, M., Ng, A.Y.: An application of
reinforcement learning to aerobatic helicopter flight. In: Advances
in Neural Information Processing Systems 19, MIT Press (2007)

26. Tan, M.: Multi-agent reinforcement learning: independent vs.
cooperative agents. In: Proceedings of the Tenth International Con-
ference on Machine Learning, Morgan Kaufmann, 330–337 (1993)

27. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical rein-
forcement learning. Discrete Event Dyn. Syst. 13(1–2), 41–77
(2003)

28. Gambardella, L.M., Dorigo, M.: Ant-Q: a reinforcement learning
approach to the traveling salesman problem. In: Proceedings of
the ML-95, 12th International Conference on Machine Learning,
Morgan Kaufmann, 252–260 (1995)

29. Cheswick, B.: An evening with Berferd in which a cracker is lured,
endured, and studied. In: Proceedings of Winter USENIX Confer-
ence, 163–174 (1992)

30. Bellovin, S.M.: There be dragons. In: Proceedings of the Third
Usenix Unix Security Symposium, 1–16, September 1992

31. Cohen, F.: A note on the role of deception in information protec-
tion. Computers & Security 17(6), 483–506 (1998)

32. McCarty, B.: The honeynet arms race. IEEE Secur Priv 1(6),
79–82 (2003)

33. Xuxian, J., Xinyuan, W.: “out-of-the-box” Monitoring of VM-
Based High-Interaction honeypots. In: RAID, 198–218 (2007)

34. Chowdhary, V., Tongaonkar, A., Chiueh, T.: Towards automatic
learning of valid services for honeypots. In: ICDCIT, 469–470
(2004)

35. Monrose, F., Rubin, A.: Authentication via keystroke dynamics.
In: CCS ’97: Proceedings of the 4th ACM Conference on Com-
puter and Communications Security, New York, NY, USA, ACM,
48–56 (1997)

36. Pouget, F., Pouget, F., Holz, T., Holz, T.: A pointillist approach for
comparing honeypots. In: Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2005), LNCS 3448, Springer-
Verlag, 51–68 (2005)

123

View publication statsView publication stats

http://git.quuxlabs.com
http://quuxlabs.com/~gerard/datasets
https://www.researchgate.net/publication/220673421

	Heliza: talking dirty to the attackers
	Abstract
	1 Introduction
	2 Adaptive honeypots
	2.1 Environment
	2.2 Honeypot actions
	2.3 Rewards
	2.4 Learning agent

	3 Adaptive honeypot framework
	4 Experiments
	4.1 Learning analysis
	4.2 Honeypot comparison

	5 Related work
	6 Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

