num_online_nodes() is called in a number of places but most often by the
page allocator when deciding whether the zonelist needs to be filtered
based on cpusets or the zonelist cache. This is actually a heavy function
and touches a number of cache lines.
This patch stores the number of online nodes at boot time and updates the
value when nodes get onlined and offlined. The value is then used in a
number of important paths in place of num_online_nodes().
[rientjes@google.com: do not override definition of node_set_online() with macro]
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Local interrupts are disabled when freeing pages to the PCP list. Part of
that free checks what the migratetype of the pageblock the page is in but
it checks this with interrupts disabled and interupts should never be
disabled longer than necessary. This patch checks the pagetype with
interrupts enabled with the impact that it is possible a page is freed to
the wrong list when a pageblock changes type. As that block is now
already considered mixed from an anti-fragmentation perspective, it's not
of vital importance.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pages are being freed to the buddy allocator, the zone NR_FREE_PAGES
counter must be updated. In the case of bulk per-cpu page freeing, it's
updated once per page. This retouches cache lines more than necessary.
Update the counters one per per-cpu bulk free.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ALLOC_WMARK_MIN, ALLOC_WMARK_LOW and ALLOC_WMARK_HIGH determin whether
pages_min, pages_low or pages_high is used as the zone watermark when
allocating the pages. Two branches in the allocator hotpath determine
which watermark to use.
This patch uses the flags as an array index into a watermark array that is
indexed with WMARK_* defines accessed via helpers. All call sites that
use zone->pages_* are updated to use the helpers for accessing the values
and the array offsets for setting.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A number of sanity checks are made on each page allocation and free
including that the page count is zero. page_count() checks for compound
pages and checks the count of the head page if true. However, in these
paths, we do not care if the page is compound or not as the count of each
tail page should also be zero.
This patch makes two changes to the use of page_count() in the free path.
It converts one check of page_count() to a VM_BUG_ON() as the count should
have been unconditionally checked earlier in the free path. It also
avoids checking for compound pages.
[mel@csn.ul.ie: Wrote changelog]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a zonelist cache which is used to track zones that are not in the
allowed cpuset or found to be recently full. This is to reduce cache
footprint on large machines. On smaller machines, it just incurs cost for
no gain. This patch only uses the zonelist cache when there are NUMA
nodes.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_page_mlock() tests and clears PG_mlocked using locked versions of the
bit operations. If set, it disables interrupts to update counters and
this happens on every page free even though interrupts are disabled very
shortly afterwards a second time. This is wasteful.
This patch splits what free_page_mlock() does. The bit check is still
made. However, the update of counters is delayed until the interrupts are
disabled and the non-lock version for clearing the bit is used. One
potential weirdness with this split is that the counters do not get
updated if the bad_page() check is triggered but a system showing bad
pages is getting screwed already.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_pageblock_migratetype() is potentially called twice for every page
free. Once, when being freed to the pcp lists and once when being freed
back to buddy. When freeing from the pcp lists, it is known what the
pageblock type was at the time of free so use it rather than rechecking.
In low memory situations under memory pressure, this might skew
anti-fragmentation slightly but the interference is minimal and decisions
that are fragmenting memory are being made anyway.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__rmqueue_fallback() is in the slow path but has only one call site.
Because there is only one call-site, this function can then be inlined
without causing text bloat. On an x86-based config, it made no difference
as the savings were padded out by NOP instructions. Milage varies but
text will either decrease in size or remain static.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
buffered_rmqueue() is in the fast path so inline it. Because it only has
one call site, this function can then be inlined without causing text
bloat. On an x86-based config, it made no difference as the savings were
padded out by NOP instructions. Milage varies but text will either
decrease in size or remain static.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Inline __rmqueue_smallest by altering flow very slightly so that there is
only one call site. Because there is only one call-site, this function
can then be inlined without causing text bloat. On an x86-based config,
this patch reduces text by 16 bytes.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocations that specify __GFP_HIGH get the ALLOC_HIGH flag. If these
flags are equal to each other, we can eliminate a branch.
[akpm@linux-foundation.org: Suggested the hack]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Factor out the mapping between GFP and alloc_flags only once. Once
factored out, it only needs to be calculated once but some care must be
taken.
[neilb@suse.de says]
As the test:
- if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
- && !in_interrupt()) {
- if (!(gfp_mask & __GFP_NOMEMALLOC)) {
has been replaced with a slightly weaker one:
+ if (alloc_flags & ALLOC_NO_WATERMARKS) {
Without care, this would allow recursion into the allocator via direct
reclaim. This patch ensures we do not recurse when PF_MEMALLOC is set but
TF_MEMDIE callers are now allowed to directly reclaim where they would
have been prevented in the past.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Neil Brown <neilb@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP mask is converted into a migratetype when deciding which pagelist to
take a page from. However, it is happening multiple times per allocation,
at least once per zone traversed. Calculate it once.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_page_from_freelist() can be called multiple times for an allocation.
Part of this calculates the preferred_zone which is the first usable zone
in the zonelist but the zone depends on the GFP flags specified at the
beginning of the allocation call. This patch calculates preferred_zone
once. It's safe to do this because if preferred_zone is NULL at the start
of the call, no amount of direct reclaim or other actions will change the
fact the allocation will fail.
[akpm@linux-foundation.org: remove (void) casts]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On low-memory systems, anti-fragmentation gets disabled as there is
nothing it can do and it would just incur overhead shuffling pages between
lists constantly. Currently the check is made in the free page fast path
for every page. This patch moves it to a slow path. On machines with low
memory, there will be small amount of additional overhead as pages get
shuffled between lists but it should quickly settle.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The core of the page allocator is one giant function which allocates
memory on the stack and makes calculations that may not be needed for
every allocation. This patch breaks up the allocator path into fast and
slow paths for clarity. Note the slow paths are still inlined but the
entry is marked unlikely. If they were not inlined, it actally increases
text size to generate the as there is only one call site.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is possible with __GFP_THISNODE that no zones are suitable. This patch
makes sure the check is only made once.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Callers of alloc_pages_node() can optionally specify -1 as a node to mean
"allocate from the current node". However, a number of the callers in
fast paths know for a fact their node is valid. To avoid a comparison and
branch, this patch adds alloc_pages_exact_node() that only checks the nid
with VM_BUG_ON(). Callers that know their node is valid are then
converted.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Paul Mundt <lethal@linux-sh.org> [for the SLOB NUMA bits]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No user of the allocator API should be passing in an order >= MAX_ORDER
but we check for it on each and every allocation. Delete this check and
make it a VM_BUG_ON check further down the call path.
[akpm@linux-foundation.org: s/VM_BUG_ON/WARN_ON_ONCE/]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The start of a large patch series to clean up and optimise the page
allocator.
The performance improvements are in a wide range depending on the exact
machine but the results I've seen so fair are approximately;
kernbench: 0 to 0.12% (elapsed time)
0.49% to 3.20% (sys time)
aim9: -4% to 30% (for page_test and brk_test)
tbench: -1% to 4%
hackbench: -2.5% to 3.45% (mostly within the noise though)
netperf-udp -1.34% to 4.06% (varies between machines a bit)
netperf-tcp -0.44% to 5.22% (varies between machines a bit)
I haven't sysbench figures at hand, but previously they were within the
-0.5% to 2% range.
On netperf, the client and server were bound to opposite number CPUs to
maximise the problems with cache line bouncing of the struct pages so I
expect different people to report different results for netperf depending
on their exact machine and how they ran the test (different machines, same
cpus client/server, shared cache but two threads client/server, different
socket client/server etc).
I also measured the vmlinux sizes for a single x86-based config with
CONFIG_DEBUG_INFO enabled but not CONFIG_DEBUG_VM. The core of the
.config is based on the Debian Lenny kernel config so I expect it to be
reasonably typical.
This patch:
__alloc_pages_internal is the core page allocator function but essentially
it is an alias of __alloc_pages_nodemask. Naming a publicly available and
exported function "internal" is also a big ugly. This patch renames
__alloc_pages_internal() to __alloc_pages_nodemask() and deletes the old
nodemask function.
Warning - This patch renames an exported symbol. No kernel driver is
affected by external drivers calling __alloc_pages_internal() should
change the call to __alloc_pages_nodemask() without any alteration of
parameters.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On an x86_64 with 4GB ram, tcp_init()'s call to alloc_large_system_hash(),
to allocate tcp_hashinfo.ehash, is now triggering an mmotm WARN_ON_ONCE on
order >= MAX_ORDER - it's hoping for order 11. alloc_large_system_hash()
had better make its own check on the order.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: David Miller <davem@davemloft.net>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix allocating page cache/slab object on the unallowed node when memory
spread is set by updating tasks' mems_allowed after its cpuset's mems is
changed.
In order to update tasks' mems_allowed in time, we must modify the code of
memory policy. Because the memory policy is applied in the process's
context originally. After applying this patch, one task directly
manipulates anothers mems_allowed, and we use alloc_lock in the
task_struct to protect mems_allowed and memory policy of the task.
But in the fast path, we didn't use lock to protect them, because adding a
lock may lead to performance regression. But if we don't add a lock,the
task might see no nodes when changing cpuset's mems_allowed to some
non-overlapping set. In order to avoid it, we set all new allowed nodes,
then clear newly disallowed ones.
[lee.schermerhorn@hp.com:
The rework of mpol_new() to extract the adjusting of the node mask to
apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind()
with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local
allocation. Fix this by adding the check for MPOL_PREFERRED and empty
node mask to mpol_new_mpolicy().
Remove the now unneeded 'nodes = NULL' from mpol_new().
Note that mpol_new_mempolicy() is always called with a non-NULL
'nodes' parameter now that it has been removed from mpol_new().
Therefore, we don't need to test nodes for NULL before testing it for
'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to
verify this assumption.]
[lee.schermerhorn@hp.com:
I don't think the function name 'mpol_new_mempolicy' is descriptive
enough to differentiate it from mpol_new().
This function applies cpuset set context, usually constraining nodes
to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag
is set, it also translates the nodes. So I settled on
'mpol_set_nodemask()', because the comment block for mpol_new() mentions
that we need to call this function to "set nodes".
Some additional minor line length, whitespace and typo cleanup.]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Paul Menage <menage@google.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_dirty_limits() calls clip_bdi_dirty_limit() and task_dirty_limit()
with variable pbdi_dirty as one of the arguments. This variable is an
unsigned long * but both functions expect it to be a long *. This causes
the following sparse warnings:
warning: incorrect type in argument 3 (different signedness)
expected long *pbdi_dirty
got unsigned long *pbdi_dirty
warning: incorrect type in argument 2 (different signedness)
expected long *pdirty
got unsigned long *pbdi_dirty
Fix the warnings by changing the long * to unsigned long * in both
functions.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 33c120ed28 ("more aggressively use
lumpy reclaim") increased how aggressive lumpy reclaim was by isolating
both active and inactive pages for asynchronous lumpy reclaim on
costly-high-order pages and for cheap-high-order when memory pressure is
high. However, if the system is under heavy pressure and there are dirty
pages, asynchronous IO may not be sufficient to reclaim a suitable page in
time.
This patch causes the caller to enter synchronous lumpy reclaim for
costly-high-order pages and for cheap-high-order pages when under memory
pressure.
Minchan.kim@gmail.com said:
Andy added synchronous lumpy reclaim with
c661b078fd. At that time, lumpy reclaim is
not agressive. His intension is just for high-order users.(above
PAGE_ALLOC_COSTLY_ORDER).
After some time, Rik added aggressive lumpy reclaim with
33c120ed28. His intention was to do lumpy
reclaim when high-order users and trouble getting a small set of
contiguous pages.
So we also have to add synchronous pageout for small set of contiguous
pages.
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <Minchan.kim@gmail.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move more documentation for get_user_pages_fast into the new kerneldoc comment.
Add some comments for get_user_pages as well.
Also, move get_user_pages_fast declaration up to get_user_pages. It wasn't
there initially because it was once a static inline function.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Andy Grover <andy.grover@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we do readahead for sequential mmap reads, here is a simple
evaluation of the impacts, and one further optimization.
It's an NFS-root debian desktop system, readahead size = 60 pages.
The numbers are grabbed after a fresh boot into console.
approach pgmajfault RA miss ratio mmap IO count avg IO size(pages)
A 383 31.6% 383 11
B 225 32.4% 390 11
C 224 32.6% 307 13
case A: mmap sync/async readahead disabled
case B: mmap sync/async readahead enabled, with enforced full async readahead size
case C: mmap sync/async readahead enabled, with enforced full sync/async readahead size
or:
A = vanilla 2.6.30-rc1
B = A plus mmap readahead
C = B plus this patch
The numbers show that
- there are good possibilities for random mmap reads to trigger readahead
- 'pgmajfault' is reduced by 1/3, due to the _async_ nature of readahead
- case C can further reduce IO count by 1/4
- readahead miss ratios are not quite affected
The theory is
- readahead is _good_ for clustered random reads, and can perform
_better_ than readaround because they could be _async_.
- async readahead size is guaranteed to be larger than readaround
size, and they are _async_, hence will mostly behave better
However for B
- sync readahead size could be smaller than readaround size, hence may
make things worse by produce more smaller IOs
which will be fixed by this patch.
Final conclusion:
- mmap readahead reduced major faults by 1/3 and no obvious overheads;
- mmap io can be further reduced by 1/4 with this patch.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce page cache context based readahead algorithm.
This is to better support concurrent read streams in general.
RATIONALE
---------
The current readahead algorithm detects interleaved reads in a _passive_ way.
Given a sequence of interleaved streams 1,1001,2,1002,3,4,1003,5,1004,1005,6,...
By checking for (offset == prev_offset + 1), it will discover the sequentialness
between 3,4 and between 1004,1005, and start doing sequential readahead for the
individual streams since page 4 and page 1005.
The context readahead algorithm guarantees to discover the sequentialness no
matter how the streams are interleaved. For the above example, it will start
sequential readahead since page 2 and 1002.
The trick is to poke for page @offset-1 in the page cache when it has no other
clues on the sequentialness of request @offset: if the current requenst belongs
to a sequential stream, that stream must have accessed page @offset-1 recently,
and the page will still be cached now. So if page @offset-1 is there, we can
take request @offset as a sequential access.
BENEFICIARIES
-------------
- strictly interleaved reads i.e. 1,1001,2,1002,3,1003,...
the current readahead will take them as silly random reads;
the context readahead will take them as two sequential streams.
- cooperative IO processes i.e. NFS and SCST
They create a thread pool, farming off (sequential) IO requests to different
threads which will be performing interleaved IO.
It was not easy(or possible) to reliably tell from file->f_ra all those
cooperative processes working on the same sequential stream, since they will
have different file->f_ra instances. And NFSD's file->f_ra is particularly
unusable, since their file objects are dynamically created for each request.
The nfsd does have code trying to restore the f_ra bits, but not satisfactory.
The new scheme is to detect the sequential pattern via looking up the page
cache, which provides one single and consistent view of the pages recently
accessed. That makes sequential detection for cooperative processes possible.
USER REPORT
-----------
Vladislav recommends the addition of context readahead as a result of his SCST
benchmarks. It leads to 6%~40% performance gains in various cases and achieves
equal performance in others. http://lkml.org/lkml/2009/3/19/239
OVERHEADS
---------
In theory, it introduces one extra page cache lookup per random read. However
the below benchmark shows context readahead to be slightly faster, wondering..
Randomly reading 200MB amount of data on a sparse file, repeat 20 times for
each block size. The average throughputs are:
original ra context ra gain
4K random reads: 65.561MB/s 65.648MB/s +0.1%
16K random reads: 124.767MB/s 124.951MB/s +0.1%
64K random reads: 162.123MB/s 162.278MB/s +0.1%
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Tested-by: Vladislav Bolkhovitin <vst@vlnb.net>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split all readahead cases, and move the random one to bottom.
No behavior changes.
This is to prepare for the introduction of context readahead, and make it
easy for inserting accounting/tracing points for each case.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Vladislav Bolkhovitin <vst@vlnb.net>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mmap read-around now shares the same code style and data structure with
readahead code.
This also removes do_page_cache_readahead(). Its last user, mmap
read-around, has been changed to call ra_submit().
The no-readahead-if-congested logic is dumped by the way. Users will be
pretty sensitive about the slow loading of executables. So it's
unfavorable to disabled mmap read-around on a congested queue.
[akpm@linux-foundation.org: coding-style fixes]
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need this in one particular case and two more general ones.
Now we do async readahead for sequential mmap reads, and do it with the
help of PG_readahead. For normal reads, PG_readahead is the sufficient
condition to do a sequential readahead. But unfortunately, for mmap
reads, there is a tiny nuisance:
[11736.998347] readahead-init0(process: sh/23926, file: sda1/w3m, offset=0:4503599627370495, ra=0+4-3) = 4
[11737.014985] readahead-around(process: w3m/23926, file: sda1/w3m, offset=0:0, ra=290+32-0) = 17
[11737.019488] readahead-around(process: w3m/23926, file: sda1/w3m, offset=0:0, ra=118+32-0) = 32
[11737.024921] readahead-interleaved(process: w3m/23926, file: sda1/w3m, offset=0:2, ra=4+6-6) = 6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
An unfavorably small readahead. The original dumb read-around size could
be more efficient.
That happened because ld-linux.so does a read(832) in L1 before mmap(),
which triggers a 4-page readahead, with the second page tagged
PG_readahead.
L0: open("/lib/libc.so.6", O_RDONLY) = 3
L1: read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\340\342"..., 832) = 832
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L2: fstat(3, {st_mode=S_IFREG|0755, st_size=1420624, ...}) = 0
L3: mmap(NULL, 3527256, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fac6e51d000
L4: mprotect(0x7fac6e671000, 2097152, PROT_NONE) = 0
L5: mmap(0x7fac6e871000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x154000) = 0x7fac6e871000
L6: mmap(0x7fac6e876000, 16984, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fac6e876000
L7: close(3) = 0
In general, the PG_readahead flag will also be hit in cases
- sequential reads
- clustered random reads
A full readahead size is desirable in both cases.
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Auto-detect sequential mmap reads and do readahead for them.
The sequential mmap readahead will be triggered when
- sync readahead: it's a major fault and (prev_offset == offset-1);
- async readahead: minor fault on PG_readahead page with valid readahead state.
The benefits of doing readahead instead of read-around:
- less I/O wait thanks to async readahead
- double real I/O size and no more cache hits
The single stream case is improved a little.
For 100,000 sequential mmap reads:
user system cpu total
(1-1) plain -mm, 128KB readaround: 3.224 2.554 48.40% 11.838
(1-2) plain -mm, 256KB readaround: 3.170 2.392 46.20% 11.976
(2) patched -mm, 128KB readahead: 3.117 2.448 47.33% 11.607
The patched (2) has smallest total time, since it has no cache hit overheads
and less I/O block time(thanks to async readahead). Here the I/O size
makes no much difference, since there's only one single stream.
Note that (1-1)'s real I/O size is 64KB and (1-2)'s real I/O size is 128KB,
since the half of the read-around pages will be readahead cache hits.
This is going to make _real_ differences for _concurrent_ IO streams.
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This shouldn't really change behavior all that much, but the single rather
complex function with read-ahead inside a loop etc is broken up into more
manageable pieces.
The behaviour is also less subtle, with the read-ahead being done up-front
rather than inside some subtle loop and thus avoiding the now unnecessary
extra state variables (ie "did_readaround" is gone).
Fengguang: the code split in fact fixed a bug reported by Pavel Levshin:
the PGMAJFAULT accounting used to be bypassed when MADV_RANDOM is set, in
which case the original code will directly jump to no_cached_page reading.
Cc: Pavel Levshin <lpk@581.spb.su>
Cc: <wli@movementarian.org>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The readahead call scheme is error-prone in that it expects the call sites
to check for async readahead after doing a sync one. I.e.
if (!page)
page_cache_sync_readahead();
page = find_get_page();
if (page && PageReadahead(page))
page_cache_async_readahead();
This is because PG_readahead could be set by a sync readahead for the
_current_ newly faulted in page, and the readahead code simply expects one
more callback on the same page to start the async readahead. If the
caller fails to do so, it will miss the PG_readahead bits and never able
to start an async readahead.
Eliminate this insane constraint by piggy-backing the async part into the
current readahead window.
Now if an async readahead should be started immediately after a sync one,
the readahead logic itself will do it. So the following code becomes
valid: (the 'else' in particular)
if (!page)
page_cache_sync_readahead();
else if (PageReadahead(page))
page_cache_async_readahead();
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure interleaved readahead size is larger than request size. This
also makes the readahead window grow up more quickly.
Reported-by: Xu Chenfeng <xcf@ustc.edu.cn>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(hit_readahead_marker != 0) means the page at @offset is present, so we
can search for non-present page starting from @offset+1.
Reported-by: Xu Chenfeng <xcf@ustc.edu.cn>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just in case someone aggressively sets a huge readahead size.
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* create mm/init-mm.c, move init_mm there
* remove INIT_MM, initialize init_mm with C99 initializer
* unexport init_mm on all arches:
init_mm is already unexported on x86.
One strange place is some OMAP driver (drivers/video/omap/) which
won't build modular, but it's already wants get_vm_area() export.
Somebody should look there.
[akpm@linux-foundation.org: add missing #includes]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Mike Frysinger <vapier.adi@gmail.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When porting blktrace to tracepoints, we changed to trace/block.h
for trace prober declarations.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
let it rip!
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegardno@ifi.uio.no>
This adds support for tracking the initializedness of memory that
was allocated with the page allocator. Highmem requests are not
tracked.
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
[build fix for !CONFIG_KMEMCHECK]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Recent change to use slab allocations earlier exposed a bug where
SLUB can call schedule_work and try to call sysfs before it is
safe to do so.
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
We now have SLAB support for kmemcheck! This means that it doesn't matter
whether one chooses SLAB or SLUB, or indeed whether Linus chooses to chuck
SLAB or SLUB.. ;-)
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Parts of this patch were contributed by Pekka Enberg but merged for
atomicity.
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegardno@ifi.uio.no>
With kmemcheck enabled, the slab allocator needs to do this:
1. Tell kmemcheck to allocate the shadow memory which stores the status of
each byte in the allocation proper, e.g. whether it is initialized or
uninitialized.
2. Tell kmemcheck which parts of memory that should be marked uninitialized.
There are actually a few more states, such as "not yet allocated" and
"recently freed".
If a slab cache is set up using the SLAB_NOTRACK flag, it will never return
memory that can take page faults because of kmemcheck.
If a slab cache is NOT set up using the SLAB_NOTRACK flag, callers can still
request memory with the __GFP_NOTRACK flag. This does not prevent the page
faults from occuring, however, but marks the object in question as being
initialized so that no warnings will ever be produced for this object.
In addition to (and in contrast to) __GFP_NOTRACK, the
__GFP_NOTRACK_FALSE_POSITIVE flag indicates that the allocation should
not be tracked _because_ it would produce a false positive. Their values
are identical, but need not be so in the future (for example, we could now
enable/disable false positives with a config option).
Parts of this patch were contributed by Pekka Enberg but merged for
atomicity.
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
We must check for __GFP_NOFAIL like the page allocator does; otherwise we end
up with false positives. While at it, add the printk_ratelimit() check in SLUB
as well.
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Fix this build error when CONFIG_SLUB_DEBUG is not set:
mm/slub.c: In function 'slab_out_of_memory':
mm/slub.c:1551: error: 'struct kmem_cache_node' has no member named 'nr_slabs'
mm/slub.c:1552: error: 'struct kmem_cache_node' has no member named 'total_objects'
[ penberg@cs.helsinki.fi: cleanups ]
Signed-off-by: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Move the SLAB struct kmem_cache definition to <linux/slab_def.h> like
with SLUB so kmemcheck can access ->ctor and ->flags.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
* 'for-linus' of git://git390.marist.edu/pub/scm/linux-2.6: (30 commits)
[S390] wire up sys_perf_counter_open
[S390] wire up sys_rt_tgsigqueueinfo
[S390] ftrace: add system call tracer support
[S390] ftrace: add function graph tracer support
[S390] ftrace: add function trace mcount test support
[S390] ftrace: add dynamic ftrace support
[S390] kprobes: use probe_kernel_write
[S390] maccess: arch specific probe_kernel_write() implementation
[S390] maccess: add weak attribute to probe_kernel_write
[S390] profile_tick called twice
[S390] dasd: forward internal errors to dasd_sleep_on caller
[S390] dasd: sync after async probe
[S390] dasd: check_characteristics cleanup
[S390] dasd: no High Performance FICON in 31-bit mode
[S390] dcssblk: revert devt conversion
[S390] qdio: fix access beyond ARRAY_SIZE of irq_ptr->{in,out}put_qs
[S390] vmalloc: add vmalloc kernel parameter support
[S390] uaccess: use might_fault() instead of might_sleep()
[S390] 3270: lock dependency fixes
[S390] 3270: do not register with tty_register_device
...
Remove the shrinking of memory from the suspend-to-RAM code, where
it is not really necessary.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@tuxonice.net>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
As explained by Benjamin Herrenschmidt:
Oh and btw, your patch alone doesn't fix powerpc, because it's missing
a whole bunch of GFP_KERNEL's in the arch code... You would have to
grep the entire kernel for things that check slab_is_available() and
even then you'll be missing some.
For example, slab_is_available() didn't always exist, and so in the
early days on powerpc, we used a mem_init_done global that is set form
mem_init() (not perfect but works in practice). And we still have code
using that to do the test.
Therefore, mask out __GFP_WAIT, __GFP_IO, and __GFP_FS in the slab allocators
in early boot code to avoid enabling interrupts.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
probe_kernel_write() gets used to write to the kernel address space.
E.g. to patch the kernel (kgdb, ftrace, kprobes...). Some architectures
however enable write protection for the kernel text section, so that
writes to this region would fault.
This patch allows to specify an architecture specific version of
probe_kernel_write() which allows to handle and bypass write protection
of the text segment.
That way it is still possible to catch random writes to kernel text
and explicitly allow writes via this interface.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Now, SLAB is configured in very early stage and it can be used in
init routine now.
But replacing alloc_bootmem() in FLAT/DISCONTIGMEM's page_cgroup()
initialization breaks the allocation, now.
(Works well in SPARSEMEM case...it supports MEMORY_HOTPLUG and
size of page_cgroup is in reasonable size (< 1 << MAX_ORDER.)
This patch revive FLATMEM+memory cgroup by using alloc_bootmem.
In future,
We stop to support FLATMEM (if no users) or rewrite codes for flatmem
completely.But this will adds more messy codes and overheads.
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Tested-by: Li Zefan <lizf@cn.fujitsu.com>
Tested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* 'for-linus' of git://linux-arm.org/linux-2.6:
kmemleak: Add the corresponding MAINTAINERS entry
kmemleak: Simple testing module for kmemleak
kmemleak: Enable the building of the memory leak detector
kmemleak: Remove some of the kmemleak false positives
kmemleak: Add modules support
kmemleak: Add kmemleak_alloc callback from alloc_large_system_hash
kmemleak: Add the vmalloc memory allocation/freeing hooks
kmemleak: Add the slub memory allocation/freeing hooks
kmemleak: Add the slob memory allocation/freeing hooks
kmemleak: Add the slab memory allocation/freeing hooks
kmemleak: Add documentation on the memory leak detector
kmemleak: Add the base support
Manual conflict resolution (with the slab/earlyboot changes) in:
drivers/char/vt.c
init/main.c
mm/slab.c
* 'perfcounters-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (574 commits)
perf_counter: Turn off by default
perf_counter: Add counter->id to the throttle event
perf_counter: Better align code
perf_counter: Rename L2 to LL cache
perf_counter: Standardize event names
perf_counter: Rename enums
perf_counter tools: Clean up u64 usage
perf_counter: Rename perf_counter_limit sysctl
perf_counter: More paranoia settings
perf_counter: powerpc: Implement generalized cache events for POWER processors
perf_counters: powerpc: Add support for POWER7 processors
perf_counter: Accurate period data
perf_counter: Introduce struct for sample data
perf_counter tools: Normalize data using per sample period data
perf_counter: Annotate exit ctx recursion
perf_counter tools: Propagate signals properly
perf_counter tools: Small frequency related fixes
perf_counter: More aggressive frequency adjustment
perf_counter/x86: Fix the model number of Intel Core2 processors
perf_counter, x86: Correct some event and umask values for Intel processors
...
* 'topic/slab/earlyboot' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
vgacon: use slab allocator instead of the bootmem allocator
irq: use kcalloc() instead of the bootmem allocator
sched: use slab in cpupri_init()
sched: use alloc_cpumask_var() instead of alloc_bootmem_cpumask_var()
memcg: don't use bootmem allocator in setup code
irq/cpumask: make memoryless node zero happy
x86: remove some alloc_bootmem_cpumask_var calling
vt: use kzalloc() instead of the bootmem allocator
sched: use kzalloc() instead of the bootmem allocator
init: introduce mm_init()
vmalloc: use kzalloc() instead of alloc_bootmem()
slab: setup allocators earlier in the boot sequence
bootmem: fix slab fallback on numa
bootmem: use slab if bootmem is no longer available
* 'for-2.6.31' of git://git.kernel.dk/linux-2.6-block: (153 commits)
block: add request clone interface (v2)
floppy: fix hibernation
ramdisk: remove long-deprecated "ramdisk=" boot-time parameter
fs/bio.c: add missing __user annotation
block: prevent possible io_context->refcount overflow
Add serial number support for virtio_blk, V4a
block: Add missing bounce_pfn stacking and fix comments
Revert "block: Fix bounce limit setting in DM"
cciss: decode unit attention in SCSI error handling code
cciss: Remove no longer needed sendcmd reject processing code
cciss: change SCSI error handling routines to work with interrupts enabled.
cciss: separate error processing and command retrying code in sendcmd_withirq_core()
cciss: factor out fix target status processing code from sendcmd functions
cciss: simplify interface of sendcmd() and sendcmd_withirq()
cciss: factor out core of sendcmd_withirq() for use by SCSI error handling code
cciss: Use schedule_timeout_uninterruptible in SCSI error handling code
block: needs to set the residual length of a bidi request
Revert "block: implement blkdev_readpages"
block: Fix bounce limit setting in DM
Removed reference to non-existing file Documentation/PCI/PCI-DMA-mapping.txt
...
Manually fix conflicts with tracing updates in:
block/blk-sysfs.c
drivers/ide/ide-atapi.c
drivers/ide/ide-cd.c
drivers/ide/ide-floppy.c
drivers/ide/ide-tape.c
include/trace/events/block.h
kernel/trace/blktrace.c
The bootmem allocator is no longer available for page_cgroup_init() because we
set up the kernel slab allocator much earlier now.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
We can call vmalloc_init() after kmem_cache_init() and use kzalloc() instead of
the bootmem allocator when initializing vmalloc data structures.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch makes kmalloc() available earlier in the boot sequence so we can get
rid of some bootmem allocations. The bulk of the changes are due to
kmem_cache_init() being called with interrupts disabled which requires some
changes to allocator boostrap code.
Note: 32-bit x86 does WP protect test in mem_init() so we must setup traps
before we call mem_init() during boot as reported by Ingo Molnar:
We have a hard crash in the WP-protect code:
[ 0.000000] Checking if this processor honours the WP bit even in supervisor mode...BUG: Int 14: CR2 ffcff000
[ 0.000000] EDI 00000188 ESI 00000ac7 EBP c17eaf9c ESP c17eaf8c
[ 0.000000] EBX 000014e0 EDX 0000000e ECX 01856067 EAX 00000001
[ 0.000000] err 00000003 EIP c10135b1 CS 00000060 flg 00010002
[ 0.000000] Stack: c17eafa8 c17fd410 c16747bc c17eafc4 c17fd7e5 000011fd f8616000 c18237cc
[ 0.000000] 00099800 c17bb000 c17eafec c17f1668 000001c5 c17f1322 c166e039 c1822bf0
[ 0.000000] c166e033 c153a014 c18237cc 00020800 c17eaff8 c17f106a 00020800 01ba5003
[ 0.000000] Pid: 0, comm: swapper Not tainted 2.6.30-tip-02161-g7a74539-dirty #52203
[ 0.000000] Call Trace:
[ 0.000000] [<c15357c2>] ? printk+0x14/0x16
[ 0.000000] [<c10135b1>] ? do_test_wp_bit+0x19/0x23
[ 0.000000] [<c17fd410>] ? test_wp_bit+0x26/0x64
[ 0.000000] [<c17fd7e5>] ? mem_init+0x1ba/0x1d8
[ 0.000000] [<c17f1668>] ? start_kernel+0x164/0x2f7
[ 0.000000] [<c17f1322>] ? unknown_bootoption+0x0/0x19c
[ 0.000000] [<c17f106a>] ? __init_begin+0x6a/0x6f
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
If the user requested bootmem allocation on a specific node, we should use
kzalloc_node() for the fallback allocation.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
As a preparation for initializing the slab allocator early, make sure the
bootmem allocator does not crash and burn if someone calls it after slab is up;
otherwise we'd need a flag day for switching to early slab.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch adds a loadable module that deliberately leaks memory. It
is used for testing various memory leaking scenarios.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds the Kconfig.debug and Makefile entries needed for
building kmemleak into the kernel.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The alloc_large_system_hash function is called from various places in
the kernel and it contains pointers to other allocated structures. It
therefore needs to be traced by kmemleak.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds the callbacks to kmemleak_(alloc|free) functions from the
slub allocator.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch adds the callbacks to kmemleak_(alloc|free) functions from the
slob allocator.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch adds the callbacks to kmemleak_(alloc|free) functions from
the slab allocator. The patch also adds the SLAB_NOLEAKTRACE flag to
avoid recursive calls to kmemleak when it allocates its own data
structures.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch adds the base support for the kernel memory leak
detector. It traces the memory allocation/freeing in a way similar to
the Boehm's conservative garbage collector, the difference being that
the unreferenced objects are not freed but only shown in
/sys/kernel/debug/kmemleak. Enabling this feature introduces an
overhead to memory allocations.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
As suggested by Mel Gorman, add out-of-memory diagnostics to the SLUB allocator
to make debugging OOM conditions easier. This patch helped hunt down a nasty
OOM issue that popped up every now that was caused by SLUB debugging code which
forced 4096 byte allocations to use order 1 pages even in the fallback case.
An example print out looks like this:
<snip page allocator out-of-memory message>
SLUB: Unable to allocate memory on node -1 (gfp=20)
cache: kmalloc-4096, object size: 4096, buffer size: 4168, default order: 3, min order: 1
node 0: slabs: 95, objs: 665, free: 0
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* 'tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (244 commits)
Revert "x86, bts: reenable ptrace branch trace support"
tracing: do not translate event helper macros in print format
ftrace/documentation: fix typo in function grapher name
tracing/events: convert block trace points to TRACE_EVENT(), fix !CONFIG_BLOCK
tracing: add protection around module events unload
tracing: add trace_seq_vprint interface
tracing: fix the block trace points print size
tracing/events: convert block trace points to TRACE_EVENT()
ring-buffer: fix ret in rb_add_time_stamp
ring-buffer: pass in lockdep class key for reader_lock
tracing: add annotation to what type of stack trace is recorded
tracing: fix multiple use of __print_flags and __print_symbolic
tracing/events: fix output format of user stack
tracing/events: fix output format of kernel stack
tracing/trace_stack: fix the number of entries in the header
ring-buffer: discard timestamps that are at the start of the buffer
ring-buffer: try to discard unneeded timestamps
ring-buffer: fix bug in ring_buffer_discard_commit
ftrace: do not profile functions when disabled
tracing: make trace pipe recognize latency format flag
...
* 'percpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
percpu: remove rbtree and use page->index instead
percpu: don't put the first chunk in reverse-map rbtree
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (22 commits)
x86: fix system without memory on node0
x86, mm: Fix node_possible_map logic
mm, x86: remove MEMORY_HOTPLUG_RESERVE related code
x86: make sparse mem work in non-NUMA mode
x86: process.c, remove useless headers
x86: merge process.c a bit
x86: use sparse_memory_present_with_active_regions() on UMA
x86: unify 64-bit UMA and NUMA paging_init()
x86: Allow 1MB of slack between the e820 map and SRAT, not 4GB
x86: Sanity check the e820 against the SRAT table using e820 map only
x86: clean up and and print out initial max_pfn_mapped
x86/pci: remove rounding quirk from e820_setup_gap()
x86, e820, pci: reserve extra free space near end of RAM
x86: fix typo in address space documentation
x86: 46 bit physical address support on 64 bits
x86, mm: fault.c, use printk_once() in is_errata93()
x86: move per-cpu mmu_gathers to mm/init.c
x86: move max_pfn_mapped and max_low_pfn_mapped to setup.c
x86: unify noexec handling
x86: remove (null) in /sys kernel_page_tables
...
With the "security: use mmap_min_addr indepedently of security models"
change, mmap_min_addr is used in common areas, which susbsequently blows
up the nommu build. This stubs in the definition in the nommu case as
well.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
--
mm/nommu.c | 3 +++
1 file changed, 3 insertions(+)
Signed-off-by: James Morris <jmorris@namei.org>
TRACE_EVENT is a more generic way to define tracepoints. Doing so adds
these new capabilities to this tracepoint:
- zero-copy and per-cpu splice() tracing
- binary tracing without printf overhead
- structured logging records exposed under /debug/tracing/events
- trace events embedded in function tracer output and other plugins
- user-defined, per tracepoint filter expressions
...
Cons:
- no dev_t info for the output of plug, unplug_timer and unplug_io events.
no dev_t info for getrq and sleeprq events if bio == NULL.
no dev_t info for rq_abort,...,rq_requeue events if rq->rq_disk == NULL.
This is mainly because we can't get the deivce from a request queue.
But this may change in the future.
- A packet command is converted to a string in TP_assign, not TP_print.
While blktrace do the convertion just before output.
Since pc requests should be rather rare, this is not a big issue.
- In blktrace, an event can have 2 different print formats, but a TRACE_EVENT
has a unique format, which means we have some unused data in a trace entry.
The overhead is minimized by using __dynamic_array() instead of __array().
I've benchmarked the ioctl blktrace vs the splice based TRACE_EVENT tracing:
dd dd + ioctl blktrace dd + TRACE_EVENT (splice)
1 7.36s, 42.7 MB/s 7.50s, 42.0 MB/s 7.41s, 42.5 MB/s
2 7.43s, 42.3 MB/s 7.48s, 42.1 MB/s 7.43s, 42.4 MB/s
3 7.38s, 42.6 MB/s 7.45s, 42.2 MB/s 7.41s, 42.5 MB/s
So the overhead of tracing is very small, and no regression when using
those trace events vs blktrace.
And the binary output of TRACE_EVENT is much smaller than blktrace:
# ls -l -h
-rw-r--r-- 1 root root 8.8M 06-09 13:24 sda.blktrace.0
-rw-r--r-- 1 root root 195K 06-09 13:24 sda.blktrace.1
-rw-r--r-- 1 root root 2.7M 06-09 13:25 trace_splice.out
Following are some comparisons between TRACE_EVENT and blktrace:
plug:
kjournald-480 [000] 303.084981: block_plug: [kjournald]
kjournald-480 [000] 303.084981: 8,0 P N [kjournald]
unplug_io:
kblockd/0-118 [000] 300.052973: block_unplug_io: [kblockd/0] 1
kblockd/0-118 [000] 300.052974: 8,0 U N [kblockd/0] 1
remap:
kjournald-480 [000] 303.085042: block_remap: 8,0 W 102736992 + 8 <- (8,8) 33384
kjournald-480 [000] 303.085043: 8,0 A W 102736992 + 8 <- (8,8) 33384
bio_backmerge:
kjournald-480 [000] 303.085086: block_bio_backmerge: 8,0 W 102737032 + 8 [kjournald]
kjournald-480 [000] 303.085086: 8,0 M W 102737032 + 8 [kjournald]
getrq:
kjournald-480 [000] 303.084974: block_getrq: 8,0 W 102736984 + 8 [kjournald]
kjournald-480 [000] 303.084975: 8,0 G W 102736984 + 8 [kjournald]
bash-2066 [001] 1072.953770: 8,0 G N [bash]
bash-2066 [001] 1072.953773: block_getrq: 0,0 N 0 + 0 [bash]
rq_complete:
konsole-2065 [001] 300.053184: block_rq_complete: 8,0 W () 103669040 + 16 [0]
konsole-2065 [001] 300.053191: 8,0 C W 103669040 + 16 [0]
ksoftirqd/1-7 [001] 1072.953811: 8,0 C N (5a 00 08 00 00 00 00 00 24 00) [0]
ksoftirqd/1-7 [001] 1072.953813: block_rq_complete: 0,0 N (5a 00 08 00 00 00 00 00 24 00) 0 + 0 [0]
rq_insert:
kjournald-480 [000] 303.084985: block_rq_insert: 8,0 W 0 () 102736984 + 8 [kjournald]
kjournald-480 [000] 303.084986: 8,0 I W 102736984 + 8 [kjournald]
Changelog from v2 -> v3:
- use the newly introduced __dynamic_array().
Changelog from v1 -> v2:
- use __string() instead of __array() to minimize the memory required
to store hex dump of rq->cmd().
- support large pc requests.
- add missing blk_fill_rwbs_rq() in block_rq_requeue TRACE_EVENT.
- some cleanups.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4A2DF669.5070905@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Some JIT compilers allocate memory for generated code with
posix_memalign() + mprotect() so we need to hook into mprotect()
to make sure 'perf' is aware that we're executing code in
anonymous memory.
[ penberg@cs.helsinki.fi: move the hook to sys_mprotect() ]
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
LKML-Reference: <Pine.LNX.4.64.0906082111030.12407@melkki.cs.Helsinki.FI>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to track the vdso also generate mmap events for
install_special_mapping().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In name of keeping it simple, only track mmap events. Userspace
will have to remove old overlapping maps when it encounters them.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch removes the dependency of mmap_min_addr on CONFIG_SECURITY.
It also sets a default mmap_min_addr of 4096.
mmapping of addresses below 4096 will only be possible for processes
with CAP_SYS_RAWIO.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Eric Paris <eparis@redhat.com>
Looks-ok-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
Merge reason: merge almost-rc8 into perfcounters/core, which was -rc6
based - to pick up the latest upstream fixes.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As suggested by Alan Cox, document the fact that kzfree() can zero out a great
deal more memory than the what the user requested from kmalloc().
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Fix build warning, "mem_cgroup_is_obsolete defined but not used" when
CONFIG_DEBUG_VM is not set. Also avoid checking for !mem again and again.
Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302
hugetlbfs reserves huge pages but does not fault them at mmap() time to
ensure that future faults succeed. The reservation behaviour differs
depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE.
For MAP_SHARED mappings, hugepages are reserved when mmap() is first
called and are tracked based on information associated with the inode.
Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE
track the reservations based on the VMA created as part of the mmap()
operation. Each process mapping MAP_PRIVATE must make its own
reservation.
hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag
and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs,
VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened
read-write. If a shared memory mapping was mapped shared-read-write for
populating of data and mapped shared-read-only by other processes, then
hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This
causes processes to fail to map the file MAP_SHARED even though it should
succeed as the reservation is there.
This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE
when the intent of the code was to check whether the VMA was mapped
MAP_SHARED or MAP_PRIVATE.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: <stable@kernel.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <starlight@binnacle.cx>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mapping->tree_lock can be acquired from interrupt context. Then,
following dead lock can occur.
Assume "A" as a page.
CPU0:
lock_page_cgroup(A)
interrupted
-> take mapping->tree_lock.
CPU1:
take mapping->tree_lock
-> lock_page_cgroup(A)
This patch tries to fix above deadlock by moving memcg's hook to out of
mapping->tree_lock. charge/uncharge of pagecache/swapcache is protected
by page lock, not tree_lock.
After this patch, lock_page_cgroup() is not called under mapping->tree_lock.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When /proc/sys/vm/oom_dump_tasks is enabled, it is possible to get a NULL
pointer for tasks that have detached mm's since task_lock() is not held
during the tasklist scan. Add the task_lock().
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all external users of queue limits to using wrapper functions
instead of poking the request queue variables directly.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>