fix the sched_child_runs_first flag: always call into ->task_new()
if we are on the same CPU, as SCHED_OTHER tasks depend on it for
correct initial setup.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Hide everything in blkdev.h with CONFIG_BLOCK isn't set, and fixup
the (few) files that fail to build because they were relying on blkdev.h
pulling in extra includes for them.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
When using rt_mutex, a NULL pointer dereference is occurred at
enqueue_task_rt. Here is a scenario;
1) there are two threads, the thread A is fair_sched_class and
thread B is rt_sched_class.
2) Thread A is boosted up to rt_sched_class, because the thread A
has a rt_mutex lock and the thread B is waiting the lock.
3) At this time, when thread A create a new thread C, the thread
C has a rt_sched_class.
4) When doing wake_up_new_task() for the thread C, the priority
of the thread C is out of the RT priority range, because the
normal priority of thread A is not the RT priority. It makes
data corruption by overflowing the rt_prio_array.
The new thread C should be fair_sched_class.
The new thread should be valid scheduler class before queuing.
This patch fixes to set the suitable scheduler class.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
add /proc/sys/kernel/sched_compat_yield to make sys_sched_yield()
more agressive, by moving the yielding task to the last position
in the rbtree.
with sched_compat_yield=0:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2539 mingo 20 0 1576 252 204 R 50 0.0 0:02.03 loop_yield
2541 mingo 20 0 1576 244 196 R 50 0.0 0:02.05 loop
with sched_compat_yield=1:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2584 mingo 20 0 1576 248 196 R 99 0.0 0:52.45 loop
2582 mingo 20 0 1576 256 204 R 0 0.0 0:00.00 loop_yield
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
the cfs_rq->wait_runtime debug/statistics counter was not maintained
properly - fix this.
this also removes some code:
text data bss dec hex filename
13420 228 1204 14852 3a04 sched.o.before
13404 228 1204 14836 39f4 sched.o.after
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
First fix the check
if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task)
with this
if (*imbalance < busiest_load_per_task)
As the current check is always false for nice 0 tasks (as
SCHED_LOAD_SCALE_FUZZ is same as busiest_load_per_task for nice 0
tasks).
With the above change, imbalance was getting reset to 0 in the corner
case condition, making the FUZZ logic fail. Fix it by not corrupting the
imbalance and change the imbalance, only when it finds that the HT/MC
optimization is needed.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
de-HZ-ification of the granularity defaults unearthed a pre-existing
property of CFS: while it correctly converges to the granularity goal,
it does not prevent run-time fluctuations in the range of
[-gran ... 0 ... +gran].
With the increase of the granularity due to the removal of HZ
dependencies, this becomes visible in chew-max output (with 5 tasks
running):
out: 28 . 27. 32 | flu: 0 . 0 | ran: 9 . 13 | per: 37 . 40
out: 27 . 27. 32 | flu: 0 . 0 | ran: 17 . 13 | per: 44 . 40
out: 27 . 27. 32 | flu: 0 . 0 | ran: 9 . 13 | per: 36 . 40
out: 29 . 27. 32 | flu: 2 . 0 | ran: 17 . 13 | per: 46 . 40
out: 28 . 27. 32 | flu: 0 . 0 | ran: 9 . 13 | per: 37 . 40
out: 29 . 27. 32 | flu: 0 . 0 | ran: 18 . 13 | per: 47 . 40
out: 28 . 27. 32 | flu: 0 . 0 | ran: 9 . 13 | per: 37 . 40
average slice is the ideal 13 msecs and the period is picture-perfect 40
msecs. But the 'ran' field fluctuates around 13.33 msecs and there's no
mechanism in CFS to keep that from happening: it's a perfectly valid
solution that CFS finds.
to fix this we add a granularity/preemption rule that knows about
the "target latency", which makes tasks that run longer than the ideal
latency run a bit less. The simplest approach is to simply decrease the
preemption granularity when a task overruns its ideal latency. For this
we have to track how much the task executed since its last preemption.
( this adds a new field to task_struct, but we can eliminate that
overhead in 2.6.24 by putting all the scheduler timestamps into an
anonymous union. )
with this change in place, chew-max output is fluctuation-less all
around:
out: 28 . 27. 39 | flu: 0 . 2 | ran: 13 . 13 | per: 41 . 40
out: 28 . 27. 39 | flu: 0 . 2 | ran: 13 . 13 | per: 41 . 40
out: 28 . 27. 39 | flu: 0 . 2 | ran: 13 . 13 | per: 41 . 40
out: 28 . 27. 39 | flu: 0 . 2 | ran: 13 . 13 | per: 41 . 40
out: 28 . 27. 39 | flu: 0 . 1 | ran: 13 . 13 | per: 41 . 40
out: 28 . 27. 39 | flu: 0 . 1 | ran: 13 . 13 | per: 41 . 40
this patch has no impact on any fastpath or on any globally observable
scheduling property. (unless you have sharp enough eyes to see
millisecond-level ruckles in glxgears smoothness :-)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
runtime limit and wakeup granularity used to be a function of
granularity and that was incorrect changed to sched_latency.
Fix this to make wakeup granularity a function of min-granularity,
and the runtime limit equal to latency.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
due to adaptive granularity scheduling the role of sched_granularity
has changed to "minimum granularity", so rename the variable (and the
tunable) accordingly.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Instead of specifying the preemption granularity, specify the wanted
latency. By fixing the granlarity to a constany the wakeup latency
it a function of the number of running tasks on the rq.
Invert this relation.
sysctl_sched_granularity becomes a minimum for the dynamic granularity
computed from the new sysctl_sched_latency.
Then use this latency to do more intelligent granularity decisions: if
there are fewer tasks running then we can schedule coarser. This helps
performance while still always keeping the latency target.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove HZ dependency from the granularity default. Use 10 msec for
the base granularity, 1 msec for wakeup granularity and 25 msec for
batch wakeup granularity. (These defaults are close to the values
that the default HZ=250 setting got previously, and thus it's the
most common setting.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Michael Gerdau reported reniced task CPU usage weirdnesses.
Such symptoms can be caused by limit underruns so double the
sched_runtime_limit.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Was playing with sched_smt_power_savings/sched_mc_power_savings and
found out that while the scheduler domains are reconstructed when sysfs
settings change, rebalance_domains() can get triggered with null domain
on other cpus, which is setting next_balance to jiffies + 60*HZ.
Resulting in no idle/busy balancing for 60 seconds.
Fix this.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On a four package system with HT - HT load balancing optimizations were
broken. For example, if two tasks end up running on two logical threads
of one of the packages, scheduler is not able to pull one of the tasks
to a completely idle package.
In this scenario, for nice-0 tasks, imbalance calculated by scheduler
will be 512 and find_busiest_queue() will return 0 (as each cpu's load
is 1024 > imbalance and has only one task running).
Similarly MC scheduler optimizations also get fixed with this patch.
[ mingo@elte.hu: restored fair balancing by increasing the fuzz and
adding it back to the power decision, without the /2
factor. ]
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are two remaining gotchas:
- The directories have impossible permissions (writeable).
- The ctl_name for the kernel directory is inconsistent with
everything else. It should be CTL_KERN.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
construct a more or less wall-clock time out of sched_clock(), by
using ACPI-idle's existing knowledge about how much time we spent
idling. This allows the rq clock to work around TSC-stops-in-C2,
TSC-gets-corrupted-in-C3 type of problems.
( Besides the scheduler's statistics this also benefits blktrace and
printk-timestamps as well. )
Furthermore, the precise before-C2/C3-sleep and after-C2/C3-wakeup
callbacks allow the scheduler to get out the most of the period where
the CPU has a reliable TSC. This results in slightly more precise
task statistics.
the ACPI bits were acked by Len.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Len Brown <len.brown@intel.com>
rebalance_domains(SCHED_IDLE) looks strange (typo), change it to CPU_IDLE.
the effect of this bug was slightly more agressive idle-balancing on
SMP than intended.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch makes the following needlessly global code static:
- arch_reinit_sched_domains()
- struct attr_sched_mc_power_savings
- struct attr_sched_smt_power_savings
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
improve the rq-clock overflow logic: limit the absolute rq->clock
delta since the last scheduler tick, instead of limiting the delta
itself.
tested by Arjan van de Ven - whole laptop was misbehaving due to
an incorrectly calibrated cpu_khz confusing sched_clock().
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
round a tiny bit better in high-frequency rescheduling scenarios,
by rounding around zero instead of rounding down.
(this is pretty theoretical though)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
optimize update_rq_clock() calls in the load-balancer: update them
right after locking the runqueue(s) so that the pull functions do
not have to call it.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
optimize activate_task() by removing update_rq_clock() from it.
(and add update_rq_clock() to all callsites of activate_task() that
did not have it before.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
move the __update_rq_clock() call from update_cpu_load() to
scheduler_tick().
( identity transformation that causes no change in functionality. )
this allows the direct use of rq->clock in ->task_tick() functions.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
final step: remove all (now superfluous) 'u64 now' variables.
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from deactivate_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from dequeue_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from enqueue_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from dec_nr_running().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from inc_nr_running().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from dec_load().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from inc_load().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from update_curr_load().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->task_new().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->put_prev_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from pick_next_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->pick_next_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->dequeue_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->enqueue_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
change all 'now' timestamp uses in assignments to rq->clock.
( this is an identity transformation that causes no functionality change:
all such new rq->clock is necessarily preceded by an update_rq_clock()
call. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
eliminate __rq_clock() use by changing it to:
__update_rq_clock(rq)
now = rq->clock;
identity transformation - no change in behavior.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
eliminate rq_clock() use by changing it to:
update_rq_clock(rq)
now = rq->clock;
identity transformation - no change in behavior.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
add the [__]update_rq_clock(rq) functions. (No change in functionality,
just reorganization to prepare for elimination of the heavy 64-bit
timestamp-passing in the scheduler.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are two problems with balance_tasks() and how it used:
1. The variables best_prio and best_prio_seen (inherited from the old
move_tasks()) were only required to handle problems caused by the
active/expired arrays, the order in which they were processed and the
possibility that the task with the highest priority could be on either.
These issues are no longer present and the extra overhead associated
with their use is unnecessary (and possibly wrong).
2. In the absence of CONFIG_FAIR_GROUP_SCHED being set, the same
this_best_prio variable needs to be used by all scheduling classes or
there is a risk of moving too much load. E.g. if the highest priority
task on this at the beginning is a fairly low priority task and the rt
class migrates a task (during its turn) then that moved task becomes the
new highest priority task on this_rq but when the sched_fair class
initializes its copy of this_best_prio it will get the priority of the
original highest priority task as, due to the run queue locks being
held, the reschedule triggered by pull_task() will not have taken place.
This could result in inappropriate overriding of skip_for_load and
excessive load being moved.
The attached patch addresses these problems by deleting all reference to
best_prio and best_prio_seen and making this_best_prio a reference
parameter to the various functions involved.
load_balance_fair() has also been modified so that this_best_prio is
only reset (in the loop) if CONFIG_FAIR_GROUP_SCHED is set. This should
preserve the effect of helping spread groups' higher priority tasks
around the available CPUs while improving system performance when
CONFIG_FAIR_GROUP_SCHED isn't set.
Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kernel.sched_domain hierarchy is under CTL_UNNUMBERED and thus
unreachable to sysctl(2). Generating .ctl_number's in such situation is
not useful.
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
speed up schedule(): share the 'now' parameter that deactivate_task()
was calculating internally.
( this also fixes the small accounting window between the deactivate
call and the pick_next_task() call. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>