Don't make smp_{r,w,}mb() interpolate a MEMBAR instruction when CONFIG_SMP=n as
SMP memory barries on UP systems should interpolate a compiler barrier only.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the FRV cmpxchg_local by breaking the following header dependency loop :
linux/kernel.h -> linux/bitops.h -> asm-frv/bitops.h -> asm-frv/atomic.h
-> asm-frv/system.h ->
asm-generic/cmpxchg_local.h -> typecheck() defined in linux/kernel.h
and
linux/kernel.h -> linux/bitops.h -> asm-frv/bitops.h -> asm-frv/atomic.h ->
asm-generic/cmpxchg_local.h -> typecheck() defined in linux/kernel.h
In order to fix this :
- Move the atomic_test_and_ *_mask inlines from asm-frv/atomic.h (why are they
there at all anyway ? They are not touching atomic_t variables!) to
asm-frv/bitops.h.
Also fix a build issue with cmpxchg : it does not cast to (unsigned long *)
like other architectures, to deal with it in the cmpxchg_local macro.
FRV builds fine with this patch.
Thanks to Adrian Bunk <bunk@kernel.org> for spotting this bug.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the new generic cmpxchg_local (disables interrupt) for 8, 16 and 64 bits
arguments. Use the 32 bits cmpxchg available on the architecture for 32 bits
arguments.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In file included from /usr/src/linux-2.6-2/net/ipv4/ip_input.c:118:
include2/asm/system.h:245: error: parse error before "__cmpxchg_32"
include2/asm/system.h:245: error: parse error before '*' token
include2/asm/system.h:245: warning: type defaults to `int' in declaration of `__cmpxchg_32'
include2/asm/system.h:245: warning: function declaration isn't a prototype
include2/asm/system.h:245: warning: data definition has no type or storage class
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
atomic_add_unless as inline. Remove system.h atomic.h circular dependency.
I agree (with Andi Kleen) this typeof is not needed and more error
prone. All the original atomic.h code that uses cmpxchg (which includes
the atomic_add_unless) uses defines instead of inline functions,
probably to circumvent a circular dependency between system.h and
atomic.h on powerpc (which my patch addresses). Therefore, it makes
sense to use inline functions that will provide type checking.
atomic_add_unless as inline. Remove system.h atomic.h circular dependency.
Digging into the FRV architecture shows me that it is also affected by
such a circular dependency. Here is the diff applying this against the
rest of my atomic.h patches.
It applies over the atomic.h standardization patches.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_wmb should not be used in the kernel because it just confuses the
code more and has no benefit. Since it is not currently used in the
kernel this patch removes it so that new code does not include it.
All archs define set_wmb(var, value) to do { var = value; wmb(); }
while(0) except ia64 and sparc which use a mb() instead. But this is
still moot since it is not used anyway.
Hasn't been tested on any archs but x86 and x86_64 (and only compiled
tested)
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make the FRV arch use virtual interrupt disablement because accesses to the
processor status register (PSR) are relatively slow and because we will
soon have the need to deal with multiple interrupt controls at the same
time (separate h/w and inter-core interrupts).
The way this is done is to dedicate one of the four integer condition code
registers (ICC2) to maintaining a virtual interrupt disablement state
whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate
whether the interrupts are virtually disabled and the ICC2.C flag (Carry)
to indicate whether the interrupts are physically disabled.
ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set
to indicate interrupts are physically enabled. Under normal running
conditions Z==0 and C==1.
Disabling interrupts with local_irq_disable() doesn't then actually
physically disable interrupts - it merely sets ICC2.Z to 1. Should an
interrupt then happen, the exception prologue will note ICC2.Z is set and
branch out of line using one instruction (an unlikely BEQ). Here it will
physically disable interrupts and clear ICC2.C.
When it comes time to enable interrupts (local_irq_enable()), this simply
clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are
clear (the HI integer condition). This can be done with the TIHI
conditional trap instruction.
The trap then physically reenables interrupts and sets ICC2.C again. Upon
returning the interrupt will be taken as interrupts will then be enabled.
Note that whilst processing the trap, the whole exceptions system is
disabled, and so an interrupt can't happen till it returns.
If no pending interrupt had happened, ICC2.C would still be set, the HI
condition would not be fulfilled, and no trap will happen.
Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z
flag out of the CCR register, shifting it down and masking it off. This
gives a result of 0 if interrupts were enabled and 1 if they weren't.
Restoring interrupts (local_irq_restore) is then a matter of taking the
saved value mentioned previously and XOR'ing it against 1. If it was one,
the result will be zero, and if it was zero the result will be non-zero.
This result is then used to affect the ICC2.Z flag directly (it is a
condition code flag after all). An XOR instruction does not affect the
Carry flag, and so that bit of state is unchanged. The two flags can then
be sampled to see if they're both zero using the trap (TIHI) as for the
unconditional reenablement (local_irq_enable).
This patch also:
(1) Modifies the debugging stub (break.S) to handle single-stepping crossing
into the trap #2 handler and into virtually disabled interrupts.
(2) Removes superseded fixup pointers from the second instructions in the trap
tables (there's no a separate fixup table for this).
(3) Declares the trap #3 vector for use in .org directives in the trap table.
(4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with
virtual interrupt handling, and removes the duplicate code that has now
been folded into irq_exit() (softirq and preemption handling).
(5) Tells the compiler in the arch Makefile that ICC2 is now reserved.
(6) Documents the in-kernel ABI, including the virtual interrupts.
(7) Renames the old irq management functions to different names.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!