This adds the palloc cache to DAT file. The palloc cache is allocated
on the extended region of nilfs_mdt_info struct. The struct
nilfs_dat_info defines the extended on memory structure of DAT.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This adds setup and cleanup routines of the persistent object
allocator cache.
According to ftrace analyses, accessing buffers of the DAT file
suffers indispensable overhead many times. To mitigate the overhead,
This introduce cache framework for the persistent object allocator
(palloc) which the DAT file and ifile are using.
struct nilfs_palloc_cache represents the cache object per metadata
file using palloc.
The cache is initialized through nilfs_palloc_setup_cache() and
destroyed by nilfs_palloc_destroy_cache(); callers of the former
function will be added to individual allocators of DAT and ifile on
successive patches.
nilfs_palloc_destroy_cache() will be called from nilfs_mdt_destroy()
if the cache is attached to a metadata file. A companion function
nilfs_palloc_clear_cache() is provided to allow releasing buffer head
references independently with the cleanup task. This adjunctive
function will be used before invalidating pages of metadata file with
the cache.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This expands a trivial address calculation in the function into its
every callsite. This expansion improves readability of the callers.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This removes the obsolete nilfs_btnode_get() function and makes
nilfs_btree_get_block() directly call nilfs_btnode_submit_block().
This expansion will provide better opportunity for code optimization.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This removes the obsolete argument from nilfs_btnode_submit_block().
This will complete separating a create function of btree node.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This displaces nilfs_btnode_get() use to create new btree node block
with nilfs_btnode_create_block.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Adds a separate routine for creating a btree node block. This is a
preparation to reduce the depth of function calls during submitting
btree node buffer.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This turns off readhead action of metadata file if nilfs_mdt_get_block
function was called with a create flag.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Previously, this function took an status code to return possible error
codes. The ("nilfs2: add local variable to cache the number of clean
segments") patch removed the possibility to return errors.
So, this simplifies the function definition to make it directly return
the number of clean segments.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This will hide a function call of nilfs_mdt_clear() in
nilfs_mdt_destroy().
This ensures nilfs_mdt_destroy() to do cleanup jobs included in
nilfs_mdt_clear().
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Will displace nilfs_mdt_read_inode_direct function with an individual
read method: nilfs_dat_read, nilfs_sufile_read, nilfs_cpfile_read.
This provides the opportunity to initialize local variables of each
metadata file after reading the inode.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This will displace nilfs_mdt_new() constructor with individual
metadata file constructors like nilfs_dat_new(), new_sufile_new(),
nilfs_cpfile_new(), and nilfs_ifile_new().
This makes it possible for each metadata file to have own
intialization code.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This adds an optional "object size" argument to nilfs_mdt_new_common()
function; the argument specifies the size of private object attached
to a newly allocated metadata file inode.
This will afford space to keep local variables for meta data files.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Previously, nilfs_bmap_add_blocks() and nilfs_bmap_sub_blocks() called
mark_inode_dirty() after they changed the number of data blocks.
This moves these calls outside bmap outermost functions like
nilfs_bmap_insert() or nilfs_bmap_truncate().
This will mitigate overhead for truncate or delete operation since
they repeatedly remove set of blocks. Nearly 10 percent improvement
was observed for removal of a large file:
# dd if=/dev/zero of=/test/aaa bs=1M count=512
# time rm /test/aaa
real 2.968s -> 2.705s
Further optimization may be possible by eliminating these
mark_inode_dirty() uses though I avoid mixing separate changes here.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Since metadata file routines mark the inode dirty after they
successfully changed bmap objects, nilfs_mdt_mark_dirty() calls in
nilfs_bmap_add_blocks() and nilfs_bmap_sub_blocks() are redundant.
This removes these overlapping calls from the bmap routines.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
lock_buffer() and unlock_buffer() uses in btree.c are eliminable
because btree functions gain buffer heads through nilfs_btnode_get(),
which never returns an on-the-fly buffer.
Although nilfs_clear_dirty_page() and nilfs_copy_back_pages() in
nilfs_commit_gcdat_inode() juggle btree node buffers of DAT, this is
safe because these operations are protected by a log writer lock or
the metadata file semaphore of DAT.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This lock is eliminable because inodes on the buffer can be updated
independently. Although a log writer also fills in bmap data on the
on-disk inodes, this update is exclusively done by a log writer lock.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Since most of fs using nofoobar style option,
modified barrier=off option as nobarrier.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This is a trivial patch to expose struct nilfs_fs_btree_node.
The struct should be exposed outside of kernel, for it is disk format.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
The current btree lookup routines make a kernel oops when detected
inconsistency in btree blocks. These routines should instead return a
proper error code because the inconsistency usually comes from
corruption of on-disk metadata.
This fixes the issue by converting BUG_ON calls to proper error
handlings.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
The comment says, "Caller of this function MUST lock s_inode_lock",
however just above the comment, it locks s_inode_lock in the function.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This fixes an -rc1 regression brought by the commit:
1cf58fa840 ("nilfs2: shorten freeze
period due to GC in write operation v3").
Although the patch moved out a function call of
nilfs_ioctl_move_blocks() to nilfs_ioctl_clean_segments() from
nilfs_ioctl_prepare_clean_segments(), it didn't move corresponding
cleanup job needed for the error case.
This will move the missing cleanup job to the destination function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: Jiro SEKIBA <jir@unicus.jp>
This fixes a kernel oops reported by Markus Trippelsdorf in the email
titled "[NILFS users] kernel Oops while running nilfs_cleanerd".
The oops was caused by a bug of error path in
nilfs_ioctl_move_blocks() function, which was inlined in
nilfs_ioctl_clean_segments().
nilfs_ioctl_move_blocks checks duplication of blocks which will be
moved in garbage collection. But, the check should have be done
within nilfs_ioctl_move_inode_block() to prevent list corruption among
buffers storing the target blocks.
To fix the kernel oops, this moves forward the duplication check
before the list insertion.
I also tested this for stable trees [2.6.30, 2.6.31].
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: stable <stable@kernel.org>
Adds missing initialization of newly allocated b-tree node buffers.
This avoids garbage data to be mixed in b-tree node blocks.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
When nilfs flushes out dirty data to reduce memory pressure, creation
of checkpoints is wrongly postponed. This bug causes irregular
checkpoint creation especially in small footprint systems.
To correct this issue, a timer for the checkpoint creation has to be
continued if a log writer does not create a checkpoint.
This will do the correction.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Bruno Prémont and Dunphy, Bill noticed me that NILFS will certainly
hang on ARM-based targets.
I found this was caused by an underflow of dirty pages counter. A
b-tree cache routine was marking page dirty without adjusting page
account information.
This fixes the dirty page accounting leak and resolves the hang on
arm-based targets.
Reported-by: Bruno Prémont <bonbons@linux-vserver.org>
Reported-by: Dunphy, Bill <WDunphy@tandbergdata.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Bruno Prémont <bonbons@linux-vserver.org>
Cc: stable <stable@kernel.org>
The i_dir_start_lookup field in nilfs_inode_info objects should be
cleared when the objects are allocated, but the the initialization was
missing in case of reading from disk. This adds the initialization.
Since the variable just gives a start page on directory lookups, the
bug was nonfatal until now.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This will fix file system corruption which infrequently happens after
mount. The problem was reported from users with the title "[NILFS
users] Fail to mount NILFS." (Message-ID:
<200908211918.34720.yuri@itinteg.net>), and so forth. I've also
experienced the corruption multiple times on kernel 2.6.30 and 2.6.31.
The problem turned out to be caused due to discordance between
mapping->nrpages of a btree node cache and the actual number of pages
hung on the cache; if the mapping->nrpages becomes zero even as it has
pages, truncate_inode_pages() returns without doing anything. Usually
this is harmless except it may cause page leak, but garbage collection
fairly infrequently sees a stale page remained in the btree node cache
of DAT (i.e. disk address translation file of nilfs), and induces the
corruption.
I identified a missing initialization in btree node caches was the
root cause. This corrects the bug.
I've tested this for kernel 2.6.30 and 2.6.31.
Reported-by: Yuri Chislov <yuri@itinteg.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: stable <stable@kernel.org>
* mark struct vm_area_struct::vm_ops as const
* mark vm_ops in AGP code
But leave TTM code alone, something is fishy there with global vm_ops
being used.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It has been unused since it was introduced in:
commit 520808bf20e90fdbdb320264ba7dd5cf9d47dcac
Author: Andrew Morton <akpm@osdl.org>
Date: Fri May 21 00:46:17 2004 -0700
[PATCH] block device layer: separate backing_dev_info infrastructure
So lets just kill it.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Some people asked me questions like the following:
On Wed, 15 Jul 2009 13:11:21 +0200, Leon Woestenberg wrote:
> just wondering, any reasons why NILFS2 is one of the miscellaneous
> filesystems and, for example, btrfs, is not in Kconfig?
Actually, nilfs is NOT a filesystem came from other operating systems,
but a filesystem created purely for Linux. Nor is it a flash
filesystem but that for generic block devices.
So, this moves nilfs outside the misc category as I responded in LKML
"Re: Why does NILFS2 hide under Miscellaneous filesystems?"
(Message-Id: <20090716.002526.93465395.ryusuke@osrg.net>).
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
The nilfs_bmap_lookup() is now a wrapper function of
nilfs_bmap_lookup_at_level().
This moves the nilfs_bmap_lookup() to a header file converting it to
an inline function and gives an opportunity for optimization.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
The current btree code is written so that btree functions call dat
operations via wrapper functions in bmap.c when they allocate, free,
or modify virtual block addresses.
This abstraction requires additional function calls and causes
frequent call of nilfs_bmap_get_dat() function since it is used in the
every wrapper function.
This removes the wrapper functions and makes them available from
btree.c and direct.c, which will increase the opportunity of
compiler optimization.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This is a preparation for the successive cleanup ("nilfs2: allow btree
to directly call dat operations").
This adds functions bundling a few operations to change an entry of
virtual block address on the dat file.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This gets rid of NILFS_CPFILE_GFP, NILFS_SUFILE_GFP, NILFS_DAT_GFP,
and NILFS_IFILE_GFP. All of these constants refer to NILFS_MDT_GFP,
and can be removed.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
The btree path object is cleared just before it is freed.
This will remove the code doing the unnecessary clear operation.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Even though many btree functions take a btree object as their first
argument, most of them are not used in their functions.
This sticky use of the btree argument is hurting code readability and
giving the possibility of inefficient code generation.
So, this removes the unnecessary btree arguments.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This is a re-revised patch to shorten freeze period.
This version include a fix of the bug Konishi-san mentioned last time.
When GC is runnning, GC moves live block to difference segments.
Copying live blocks into memory is done in a transaction,
however it is not necessarily to be in the transaction.
This patch will get the nilfs_ioctl_move_blocks() out from
transaction lock and put it before the transaction.
I ran sysbench fileio test against nilfs partition.
I copied some DVD/CD images and created snapshot to create live blocks
before starting the benchmark.
Followings are summary of rc8 and rc8 w/ the patch of per-request
statistics, which is min/max and avg. I ran each test three times and
bellow is average of those numers.
According to this benchmark result, average time is slightly degrated.
However, worstcase (max) result is significantly improved.
This can address a few seconds write freeze.
- random write per-request performance of rc8
min 0.843ms
max 680.406ms
avg 3.050ms
- random write per-request performance of rc8 w/ this patch
min 0.843ms -> 100.00%
max 380.490ms -> 55.90%
avg 3.233ms -> 106.00%
- sequential write per-request performance of rc8
min 0.736ms
max 774.343ms
avg 2.883ms
- sequential write per-request performance of rc8 w/ this patch
min 0.720ms -> 97.80%
max 644.280ms-> 83.20%
avg 3.130ms -> 108.50%
-----8<-----8<-----nilfs_cleanerd.conf-----8<-----8<-----
protection_period 150
selection_policy timestamp # timestamp in ascend order
nsegments_per_clean 2
cleaning_interval 2
retry_interval 60
use_mmap
log_priority info
-----8<-----8<-----nilfs_cleanerd.conf-----8<-----8<-----
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
nilfs2: Add more safeguard routines and protections in mount process,
which also makes nilfs2 report consistency error messages when
checkpoint number is invalid.
Signed-off-by: Zhu Yanhai <zhu.yanhai@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>