Commit graph

203 commits

Author SHA1 Message Date
Tim Blechmann
4e193bd4df perf_counter: include missing header
Impact: build fix

In order to compile a kernel with performance counter patches,
<asm/irq_regs.h> has to be included to provide the declaration of
struct pt_regs *get_irq_regs(void);

[ This bug was masked by unrelated x86 header file changes in the
  x86 tree, but occurs in the tip:perfcounters/core standalone
  tree. ]

Signed-off-by: Tim Blechmann <tim@klingt.org>
Orig-LKML-Reference: <20090314142925.49c29c17@thinkpad>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:13 +02:00
Peter Zijlstra
039fc91e06 perf_counter: fix hrtimer sampling
Impact: fix deadlock with perfstat

Fix for the perfstat fubar..

We cannot unconditionally call hrtimer_cancel() without ever having done
hrtimer_init() on the thing.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Orig-LKML-Reference: <1236959027.22447.149.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:29:46 +02:00
Peter Zijlstra
592903cdcb perf_counter: add an event_list
I noticed that the counter_list only includes top-level counters, thus
perf_swcounter_event() will miss sw-counters in groups.

Since perf_swcounter_event() also wants an RCU safe list, create a new
event_list that includes all counters and uses RCU list ops and use call_rcu
to free the counter structure.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:29:43 +02:00
Peter Zijlstra
d6d020e995 perf_counter: hrtimer based sampling for software time events
Use hrtimers to profile timer based sampling for the software time
counters.

This allows platforms without hardware counter support to still
perform sample based profiling.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:29:41 +02:00
Peter Zijlstra
ac17dc8e58 perf_counter: provide major/minor page fault software events
Provide separate sw counters for major and minor page faults.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:29:40 +02:00
Peter Zijlstra
7dd1fcc258 perf_counter: provide pagefault software events
We use the generic software counter infrastructure to provide
page fault events.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:29:37 +02:00
Peter Zijlstra
15dbf27cc1 perf_counter: software counter event infrastructure
Provide generic software counter infrastructure that supports
software events.

This will be used to allow sample based profiling based on software
events such as pagefaults. The current infrastructure can only
provide a count of such events, no place information.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:29:36 +02:00
Peter Zijlstra
755642322a perf_counter: use list_move_tail()
Instead of del/add use a move list-op.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:29:31 +02:00
Paul Mackerras
2743a5b0fa perfcounters: provide expansion room in the ABI
Impact: ABI change

This expands several fields in the perf_counter_hw_event struct and adds
a "flags" argument to the perf_counter_open system call, in order that
features can be added in future without ABI changes.

In particular the record_type field is expanded to 64 bits, and the
space for flag bits has been expanded from 32 to 64 bits.

This also adds some new fields:

* read_format (64 bits) is intended to provide a way to specify what
  userspace wants to get back when it does a read() on a simple
  (non-interrupting) counter;

* exclude_idle (1 bit) provides a way for userspace to ask that events
  that occur when the cpu is idle be excluded;

* extra_config_len will provide a way for userspace to supply an
  arbitrary amount of extra machine-specific PMU configuration data
  immediately following the perf_counter_hw_event struct, to allow
  sophisticated users to program things such as instruction matching
  CAMs and address range registers;

* __reserved_3 and __reserved_4 provide space for future expansion.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-03-04 20:36:51 +11:00
Paul Mackerras
f3dfd2656d perfcounters: fix a few minor cleanliness issues
This fixes three issues noticed by Arnd Bergmann:

- Add #ifdef __KERNEL__ and move some things around in perf_counter.h
  to make sure only the bits that userspace needs are exported to
  userspace.

- Use __u64, __s64, __u32 types in the structs exported to userspace
  rather than u64, s64, u32.

- Make the sys_perf_counter_open syscall available to the SPUs on
  Cell platforms.

And one issue that I noticed in looking at the code again:

- Wrap the perf_counter_open syscall with SYSCALL_DEFINE4 so we get
  the proper handling of int arguments on ppc64 (and some other 64-bit
  architectures).

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-26 22:43:46 +11:00
Paul Mackerras
c07c99b672 perfcounters: make context switch and migration software counters work again
Jaswinder Singh Rajput reported that commit 23a185ca8a caused the
context switch and migration software counters to report zero always.
With that commit, the software counters only count events that occur
between sched-in and sched-out for a task.  This is necessary for the
counter enable/disable prctls and ioctls to work.  However, the
context switch and migration counts are incremented after sched-out
for one task and before sched-in for the next.  Since the increment
doesn't occur while a task is scheduled in (as far as the software
counters are concerned) it doesn't count towards any counter.

Thus the context switch and migration counters need to count events
that occur at any time, provided the counter is enabled, not just
those that occur while the task is scheduled in (from the perf_counter
subsystem's point of view).  The problem though is that the software
counter code can't tell the difference between being enabled and being
scheduled in, and between being disabled and being scheduled out,
since we use the one pair of enable/disable entry points for both.
That is, the high-level disable operation simply arranges for the
counter to not be scheduled in any more, and the high-level enable
operation arranges for it to be scheduled in again.

One way to solve this would be to have sched_in/out operations in the
hw_perf_counter_ops struct as well as enable/disable.  However, this
takes a simpler approach: it adds a 'prev_state' field to the
perf_counter struct that allows a counter's enable method to know
whether the counter was previously disabled or just inactive
(scheduled out), and therefore whether the enable method is being
called as a result of a high-level enable or a schedule-in operation.

This then allows the context switch, migration and page fault counters
to reset their hw.prev_count value in their enable functions only if
they are called as a result of a high-level enable operation.
Although page faults would normally only occur while the counter is
scheduled in, this changes the page fault counter code too in case
there are ever circumstances where page faults get counted against a
task while its counters are not scheduled in.

Reported-by: Jaswinder Singh Rajput <jaswinder@kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-13 12:20:38 +01:00
Paul Mackerras
4bcf349a0f perfcounters: fix refcounting bug, take 2
Only free child_counter if it has a parent; if it doesn't, then it
has a file pointing to it and we'll free it in perf_release.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-11 14:08:44 +01:00
Mike Galbraith
5af759176c perfcounters: fix use after free in perf_release()
running...

  while true; do
    foo -d 1 -f 1 -c 100000 & sleep 1
    kerneltop -d 1 -f 1 -e 1 -c 25000 -p `pidof foo`
  done

  while true; do
    killall foo; killall kerneltop; sleep 2
  done

...in two shells with SLUB_DEBUG enabled produces flood of:
BUG task_struct: Poison overwritten.

Fix the use-after-free bug in perf_release().

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-11 11:30:10 +01:00
Paul Mackerras
0475f9ea8e perf_counters: allow users to count user, kernel and/or hypervisor events
Impact: new perf_counter feature

This extends the perf_counter_hw_event struct with bits that specify
that events in user, kernel and/or hypervisor mode should not be
counted (i.e. should be excluded), and adds code to program the PMU
mode selection bits accordingly on x86 and powerpc.

For software counters, we don't currently have the infrastructure to
distinguish which mode an event occurs in, so we currently fail the
counter initialization if the setting of the hw_event.exclude_* bits
would require us to distinguish.  Context switches and CPU migrations
are currently considered to occur in kernel mode.

On x86, this changes the previous policy that only root can count
kernel events.  Now non-root users can count kernel events or exclude
them.  Non-root users still can't use NMI events, though.  On x86 we
don't appear to have any way to control whether hypervisor events are
counted or not, so hw_event.exclude_hv is ignored.

On powerpc, the selection of whether to count events in user, kernel
and/or hypervisor mode is PMU-wide, not per-counter, so this adds a
check that the hw_event.exclude_* settings are the same as other events
on the PMU.  Counters being added to a group have to have the same
settings as the other hardware counters in the group.  Counters and
groups can only be enabled in hw_perf_group_sched_in or power_perf_enable
if they have the same settings as any other counters already on the
PMU.  If we are not running on a hypervisor, the exclude_hv setting
is ignored (by forcing it to 0) since we can't ever get any
hypervisor events.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 15:06:59 +11:00
Paul Mackerras
23a185ca8a perf_counters: make software counters work as per-cpu counters
Impact: kernel crash fix

Yanmin Zhang reported that using a PERF_COUNT_TASK_CLOCK software
counter as a per-cpu counter would reliably crash the system, because
it calls __task_delta_exec with a null pointer.  The page fault,
context switch and cpu migration counters also won't function
correctly as per-cpu counters since they reference the current task.

This fixes the problem by redirecting the task_clock counter to the
cpu_clock counter when used as a per-cpu counter, and by implementing
per-cpu page fault, context switch and cpu migration counters.

Along the way, this:

- Initializes counter->ctx earlier, in perf_counter_alloc, so that
  sw_perf_counter_init can use it
- Adds code to kernel/sched.c to count task migrations into each
  cpu, in rq->nr_migrations_in
- Exports the per-cpu context switch and task migration counts
  via new functions added to kernel/sched.c
- Makes sure that if sw_perf_counter_init fails, we don't try to
  initialize the counter as a hardware counter.  Since the user has
  passed a negative, non-raw event type, they clearly don't intend
  for it to be interpreted as a hardware event.

Reported-by: "Zhang Yanmin" <yanmin_zhang@linux.intel.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-09 12:47:16 +01:00
Mike Galbraith
65d370862f perfcounters: fix refcounting bug
don't kfree in use counters.

Running...

	while true; do perfstat -e 1 -c true; done

...on all cores for a while doesn't seem to be eating ram, and my oops
is gone.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-29 14:25:23 +01:00
Paul Mackerras
d859e29fe3 perf_counter: Add counter enable/disable ioctls
Impact: New perf_counter features

This primarily adds a way for perf_counter users to enable and disable
counters and groups.  Enabling or disabling a counter or group also
enables or disables all of the child counters that have been cloned
from it to monitor children of the task monitored by the top-level
counter.  The userspace interface to enable/disable counters is via
ioctl on the counter file descriptor.

Along the way this extends the code that handles child counters to
handle child counter groups properly.  A group with multiple counters
will be cloned to child tasks if and only if the group leader has the
hw_event.inherit bit set - if it is set the whole group is cloned as a
group in the child task.

In order to be able to enable or disable all child counters of a given
top-level counter, we need a way to find them all.  Hence I have added
a child_list field to struct perf_counter, which is the head of the
list of children for a top-level counter, or the link in that list for
a child counter.  That list is protected by the perf_counter.mutex
field.

This also adds a mutex to the perf_counter_context struct.  Previously
the list of counters was protected just by the lock field in the
context, which meant that perf_counter_init_task had to take that lock
and then take whatever lock/mutex protects the top-level counter's
child_list.  But the counter enable/disable functions need to take
that lock in order to traverse the list, then for each counter take
the lock in that counter's context in order to change the counter's
state safely, which will lead to a deadlock.

To solve this, we now have both a mutex and a spinlock in the context,
and taking either is sufficient to ensure the list of counters can't
change - you have to take both before changing the list.  Now
perf_counter_init_task takes the mutex instead of the lock (which
incidentally means that inherit_counter can use GFP_KERNEL instead of
GFP_ATOMIC) and thus avoids the possible deadlock.  Similarly the new
enable/disable functions can take the mutex while traversing the list
of child counters without incurring a possible deadlock when the
counter manipulation code locks the context for a child counter.

We also had an misfeature that the first counter added to a context
would possibly not go on until the next sched-in, because we were
using ctx->nr_active to detect if the context was running on a CPU.
But nr_active is the number of active counters, and if that was zero
(because the context didn't have any counters yet) it would look like
the context wasn't running on a cpu and so the retry code in
__perf_install_in_context wouldn't retry.  So this adds an 'is_active'
field that is set when the context is on a CPU, even if it has no
counters.  The is_active field is only used for task contexts, not for
per-cpu contexts.

If we enable a subsidiary counter in a group that is active on a CPU,
and the arch code can't enable the counter, then we have to pull the
whole group off the CPU.  We do this with group_sched_out, which gets
moved up in the file so it comes before all its callers.  This also
adds similar logic to __perf_install_in_context so that the "all on,
or none" invariant of groups is preserved when adding a new counter to
a group.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-17 18:10:22 +11:00
Paul Mackerras
3b6f9e5cb2 perf_counter: Add support for pinned and exclusive counter groups
Impact: New perf_counter features

A pinned counter group is one that the user wants to have on the CPU
whenever possible, i.e. whenever the associated task is running, for
a per-task group, or always for a per-cpu group.  If the system
cannot satisfy that, it puts the group into an error state where
it is not scheduled any more and reads from it return EOF (i.e. 0
bytes read).  The group can be released from error state and made
readable again using prctl(PR_TASK_PERF_COUNTERS_ENABLE).  When we
have finer-grained enable/disable controls on counters we'll be able
to reset the error state on individual groups.

An exclusive group is one that the user wants to be the only group
using the CPU performance monitor hardware whenever it is on.  The
counter group scheduler will not schedule an exclusive group if there
are already other groups on the CPU and will not schedule other groups
onto the CPU if there is an exclusive group scheduled (that statement
does not apply to groups containing only software counters, which can
always go on and which do not prevent an exclusive group from going on).
With an exclusive group, we will be able to let users program PMU
registers at a low level without the concern that those settings will
perturb other measurements.

Along the way this reorganizes things a little:
- is_software_counter() is moved to perf_counter.h.
- cpuctx->active_oncpu now records the number of hardware counters on
  the CPU, i.e. it now excludes software counters.  Nothing was reading
  cpuctx->active_oncpu before, so this change is harmless.
- A new cpuctx->exclusive field records whether we currently have an
  exclusive group on the CPU.
- counter_sched_out moves higher up in perf_counter.c and gets called
  from __perf_counter_remove_from_context and __perf_counter_exit_task,
  where we used to have essentially the same code.
- __perf_counter_sched_in now goes through the counter list twice, doing
  the pinned counters in the first loop and the non-pinned counters in
  the second loop, in order to give the pinned counters the best chance
  to be scheduled in.

Note that only a group leader can be exclusive or pinned, and that
attribute applies to the whole group.  This avoids some awkwardness in
some corner cases (e.g. where a group leader is closed and the other
group members get added to the context list).  If we want to relax that
restriction later, we can, and it is easier to relax a restriction than
to apply a new one.

This doesn't yet handle the case where a pinned counter is inherited
and goes into error state in the child - the error state is not
propagated up to the parent when the child exits, and arguably it
should.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-14 21:00:30 +11:00
Paul Mackerras
01d0287f06 powerpc/perf_counter: Make sure PMU gets enabled properly
This makes sure that we call the platform-specific ppc_md.enable_pmcs
function on each CPU before we try to use the PMU on that CPU.  If the
CPU goes off-line and then on-line, we need to do the enable_pmcs call
again, so we use the hw_perf_counter_setup hook to ensure that.  It gets
called as each CPU comes online, but it isn't called on the CPU that is
coming up, so this adds the CPU number as an argument to it (there were
no non-empty instances of hw_perf_counter_setup before).

This also arranges to set the pmcregs_in_use field of the lppaca (data
structure shared with the hypervisor) on each CPU when we are using the
PMU and clear it when we are not.  This allows the hypervisor to optimize
partition switches by not saving/restoring the PMU registers when we
aren't using the PMU.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-14 13:44:19 +11:00
Paul Mackerras
dd0e6ba22e perf_counter: Always schedule all software counters in
Software counters aren't subject to the limitations imposed by the
fixed number of hardware counter registers, so there is no reason not
to enable them all in __perf_counter_sched_in.  Previously we used to
break out of the loop when we got to a group that wouldn't fit on the
PMU; with this we continue through the list but only schedule in
software counters (or groups containing only software counters) from
there on.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-12 15:12:50 +11:00
Paul Mackerras
4eb96fcfe0 perf_counter: Add dummy perf_counter_print_debug function
Impact: minimize requirements on architectures

Currently, an architecture just enabling CONFIG_PERF_COUNTERS but not
providing any extra functions will fail to build with
perf_counter_print_debug being undefined, since we don't provide an
empty dummy definition like we do with the hw_perf_* functions.

This provides an empty dummy perf_counter_print_debug() to make it
easier for architectures to turn on CONFIG_PERF_COUNTERS.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-09 17:24:34 +11:00
Paul Mackerras
3cbed429a9 perf_counter: Add optional hw_perf_group_sched_in arch function
Impact: extend perf_counter infrastructure

This adds an optional hw_perf_group_sched_in() arch function that enables
a whole group of counters in one go.  It returns 1 if it added the group
successfully, 0 if it did nothing (and therefore the core needs to add
the counters individually), or a negative number if an error occurred.
It should add all the counters and enable any software counters in the
group, or else add none of them and return an error.

There are a couple of related changes/improvements in the group handling
here:

* As an optimization, group_sched_out() and group_sched_in() now check the
  state of the group leader, and do nothing if the leader is not active
  or disabled.

* We now call hw_perf_save_disable/hw_perf_restore around the complete
  set of counter enable/disable calls in __perf_counter_sched_in/out,
  to give the arch code the opportunity to defer updating the hardware
  state until the hw_perf_restore call if it wants.

* We no longer stop adding groups after we get to a group that has more
  than one counter.  We will ultimately add an option for a group to be
  exclusive.  The current code doesn't really implement exclusive groups
  anyway, since a group could end up going on with other counters that
  get added before it.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-09 16:43:42 +11:00
Paul Mackerras
9abf8a08bc perf_counter: Fix the cpu_clock software counter
Impact: bug fix

Currently if you do (e.g.) timec -e -1 ls, it will report 0 for the
value of the cpu_clock counter.  The reason is that the core assumes
that a counter's count field is up-to-date when the counter is inactive,
and doesn't call the counter's read function.  However, the cpu_clock
counter code only updates the count in the read function.

This fixes it by making both the read and disable functions update the
count.  It also makes the counter ignore time passing while the counter
is disabled, by making the enable function update the hw.prev_count field.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-09 16:26:43 +11:00
Paul Mackerras
ff6f05416e perf_counter: Fix return value from dummy hw_perf_counter_init
Impact: fix oops-causing bug

Currently, if you try to use perf_counters on an architecture that has
no hardware support, and you select an event that doesn't map to any of
the defined software counters, you get an oops rather than an error.
This is because the dummy hw_perf_counter_init returns ERR_PTR(-EINVAL)
but the caller (perf_counter_alloc) only tests for NULL.

This makes the dummy hw_perf_counter_init return NULL instead.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-09 16:19:25 +11:00
Yinghai Lu
01ea1ccaa2 perf_counter: more barrier in blank weak function
Impact: fix panic possible panic

Some versions of GCC inline the weak global function if it's empty.
Add a barrier() to work it around.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-27 11:58:48 +01:00
Ingo Molnar
235c7fc7c5 perfcounters: generalize the counter scheduler
Impact: clean up and refactor code

refactor the counter scheduler: separate out in/out functions and
introduce a counter-rotation function as well.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:23 +01:00
Ingo Molnar
8fe91e61cd perfcounters: remove ->nr_inherited
Impact: remove dead code

nr_inherited was not maintained correctly (not decremented) - and also
not used - remove it.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:22 +01:00
Ingo Molnar
95cdd2e785 perfcounters: enable lowlevel pmc code to schedule counters
Allow lowlevel ->enable() op to return an error if a counter can not be
added. This can be used to handle counter constraints.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:19 +01:00
Ingo Molnar
aa9c4c0f96 perfcounters: fix task clock counter
Impact: fix per task clock counter precision

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:14 +01:00
Ingo Molnar
7671581f16 perfcounters: hw ops rename
Impact: rename field names

Shorten them.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:13 +01:00
Ingo Molnar
7995888fcb perfcounters: tweak group scheduling
Impact: schedule in groups atomically

If there are multiple groups in a task, make sure they are scheduled
in and out atomically.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:09 +01:00
Ingo Molnar
8fb9331391 perfcounters: remove warnings
Impact: remove debug checks

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-23 12:45:08 +01:00
Ingo Molnar
a86ed50859 perfcounters: use hw_event.disable flag
Impact: implement default-off counters

Make sure that counters that are created with counter.hw_event.disabled=1,
get created in disabled state.

They can be enabled via:

        prctl(PR_TASK_PERF_COUNTERS_ENABLE);

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-17 01:02:21 +01:00
Ingo Molnar
0cc0c027d4 perfcounters: release CPU context when exiting task counters
If counters are exiting via do_exit() not via filp close, then
the CPU context needs to be released - otherwise future percpu
counter creations might fail.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 23:25:02 +01:00
Ingo Molnar
088e2852c8 perfcounters, x86: fix sw counters on non-PMC CPUs
Make perf_max_counters default to at least 1 - this allows the sw
counters to be used.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 20:31:29 +01:00
Ingo Molnar
e06c61a879 perfcounters: add nr-of-faults counter
Impact: add new feature, new sw counter

Add a counter that counts the number of pagefaults a task
is experiencing.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 20:31:27 +01:00
Ingo Molnar
6c594c21fc perfcounters: add task migrations counter
Impact: add new feature, new sw counter

Add a counter that counts the number of cross-CPU migrations a
task is suffering.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 20:31:26 +01:00
Ingo Molnar
5d6a27d8a0 perfcounters: add context switch counter
Impact: add new feature, new sw counter

Add a counter that counts the number of context-switches a task
is doing.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 20:31:23 +01:00
Ingo Molnar
8cb391e878 perfcounters: fix task clock counter
Impact: bugfix

Update the task clock counter to the new math.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 20:30:50 +01:00
Ingo Molnar
9b51f66dcb perfcounters: implement "counter inheritance"
Impact: implement new performance feature

Counter inheritance can be used to run performance counters in a workload,
transparently - and pipe back the counter results to the parent counter.

Inheritance for performance counters works the following way: when creating
a counter it can be marked with the .inherit=1 flag. Such counters are then
'inherited' by all child tasks (be they fork()-ed or clone()-ed). These
counters get inherited through exec() boundaries as well (except through
setuid boundaries).

The counter values get added back to the parent counter(s) when the child
task(s) exit - much like stime/utime statistics are gathered. So inherited
counters are ideal to gather summary statistics about an application's
behavior via shell commands, without having to modify that application.

The timec.c command utilizes counter inheritance:

  http://redhat.com/~mingo/perfcounters/timec.c

Sample output:

   $ ./timec -e 1 -e 3 -e 5 ls -lR /usr/include/ >/dev/null

   Performance counter stats for 'ls':

           163516953 instructions
                2295 cache-misses
             2855182 branch-misses

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 20:30:49 +01:00
Ingo Molnar
ee06094f82 perfcounters: restructure x86 counter math
Impact: restructure code

Change counter math from absolute values to clear delta logic.

We try to extract elapsed deltas from the raw hw counter - and put
that into the generic counter.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-14 20:30:48 +01:00
Ingo Molnar
6a930700c8 perf counters: clean up state transitions
Impact: cleanup

Introduce a proper enum for the 3 states of a counter:

	PERF_COUNTER_STATE_OFF		= -1
	PERF_COUNTER_STATE_INACTIVE	=  0
	PERF_COUNTER_STATE_ACTIVE	=  1

and rename counter->active to counter->state and propagate the
changes everywhere.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:56 +01:00
Ingo Molnar
1d1c7ddbfa perf counters: add prctl interface to disable/enable counters
Add a way for self-monitoring tasks to disable/enable counters summarily,
via a prctl:

	PR_TASK_PERF_COUNTERS_DISABLE		31
	PR_TASK_PERF_COUNTERS_ENABLE		32

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:55 +01:00
Ingo Molnar
bae43c9945 perf counters: implement PERF_COUNT_TASK_CLOCK
Impact: add new perf-counter type

The 'task clock' counter counts the amount of time a task is executing,
in nanoseconds. It stops ticking when a task is scheduled out either due
to it blocking, sleeping or it being preempted.

This counter type is a Linux kernel based abstraction, it is available
even if the hardware does not support native hardware performance counters.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:54 +01:00
Ingo Molnar
01b2838c42 perf counters: consolidate hw_perf save/restore APIs
Impact: cleanup

Rename them to better match up the usual IRQ disable/enable APIs:

 hw_perf_disable_all()  => hw_perf_save_disable()
 hw_perf_restore_ctrl() => hw_perf_restore()

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:53 +01:00
Ingo Molnar
5c92d12411 perf counters: implement PERF_COUNT_CPU_CLOCK
Impact: add new perf-counter type

The 'CPU clock' counter counts the amount of CPU clock time that is
elapsing, in nanoseconds. (regardless of how much of it the task is
spending on a CPU executing)

This counter type is a Linux kernel based abstraction, it is available
even if the hardware does not support native hardware performance counters.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:52 +01:00
Ingo Molnar
621a01eac8 perf counters: hw driver API
Impact: restructure code, introduce hw_ops driver abstraction

Introduce this abstraction to handle counter details:

 struct hw_perf_counter_ops {
	void (*hw_perf_counter_enable)	(struct perf_counter *counter);
	void (*hw_perf_counter_disable)	(struct perf_counter *counter);
	void (*hw_perf_counter_read)	(struct perf_counter *counter);
 };

This will be useful to support assymetric hw details, and it will also
be useful to implement "software counters". (Counters that count kernel
managed sw events such as pagefaults, context-switches, wall-clock time
or task-local time.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:51 +01:00
Ingo Molnar
ccff286d85 perf counters: group counter, fixes
Impact: bugfix

Check that a group does not span outside the context of a CPU or a task.

Also, do not allow deep recursive hierarchies.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:50 +01:00
Ingo Molnar
04289bb989 perf counters: add support for group counters
Impact: add group counters

This patch adds the "counter groups" abstraction.

Groups of counters behave much like normal 'single' counters, with a
few semantic and behavioral extensions on top of that.

A counter group is created by creating a new counter with the open()
syscall's group-leader group_fd file descriptor parameter pointing
to another, already existing counter.

Groups of counters are scheduled in and out in one atomic group, and
they are also roundrobin-scheduled atomically.

Counters that are member of a group can also record events with an
(atomic) extended timestamp that extends to all members of the group,
if the record type is set to PERF_RECORD_GROUP.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:49 +01:00
Ingo Molnar
9f66a3810f perf counters: restructure the API
Impact: clean up new API

Thorough cleanup of the new perf counters API, we now get clean separation
of the various concepts:

 - introduce perf_counter_hw_event to separate out the event source details

 - move special type flags into separate attributes: PERF_COUNT_NMI,
   PERF_COUNT_RAW

 - extend the type to u64 and reserve it fully to the architecture in the
   raw type case.

And make use of all these changes in the core and x86 perfcounters code.

Also change the syscall signature to:

  asmlinkage int sys_perf_counter_open(

	struct perf_counter_hw_event	*hw_event_uptr		__user,
	pid_t				pid,
	int				cpu,
	int				group_fd);

( Note that group_fd is unused for now - it's reserved for the counter
  groups abstraction. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:48 +01:00
Thomas Gleixner
dfa7c899b4 perf counters: expand use of counter->event
Impact: change syscall, cleanup

Make use of the new perf_counters event type.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:47 +01:00
Thomas Gleixner
eab656ae04 perf counters: clean up 'raw' type API
Impact: cleanup

Introduce a separate hw_event type.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-11 15:45:46 +01:00
Thomas Gleixner
0793a61d4d performance counters: core code
Implement the core kernel bits of Performance Counters subsystem.

The Linux Performance Counter subsystem provides an abstraction of
performance counter hardware capabilities. It provides per task and per
CPU counters, and it provides event capabilities on top of those.

Performance counters are accessed via special file descriptors.
There's one file descriptor per virtual counter used.

The special file descriptor is opened via the perf_counter_open()
system call:

 int
 perf_counter_open(u32 hw_event_type,
                   u32 hw_event_period,
                   u32 record_type,
                   pid_t pid,
                   int cpu);

The syscall returns the new fd. The fd can be used via the normal
VFS system calls: read() can be used to read the counter, fcntl()
can be used to set the blocking mode, etc.

Multiple counters can be kept open at a time, and the counters
can be poll()ed.

See more details in Documentation/perf-counters.txt.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-08 15:47:03 +01:00