The purpose of PERF_SAMPLE_CONFIG was to identify the counters,
since then we've added counter ids, use those instead.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to track the vdso also generate mmap events for
install_special_mapping().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In name of keeping it simple, only track mmap events. Userspace
will have to remove old overlapping maps when it encounters them.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Create a fork event so that we can easily clone the comm and
dso maps without having to generate all those events.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The structure isn't hw only and when I read event, I think about those
things that fall out the other end. Rename the thing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
Cc: Stephane Eranian <eranian@googlemail.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since some people worried that 4G might not be a large enough
as an mmap data window, extend it to 64 bit for capable
platforms.
Reported-by: Stephane Eranian <eranian@googlemail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
IRQ (non-NMI) sampling is not used anymore - remove the last few bits.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A few renames:
s/irq_period/sample_period/
s/irq_freq/sample_freq/
s/PERF_RECORD_/PERF_SAMPLE_/
s/record_type/sample_type/
And change both the new sample_type and read_format to u64.
Reported-by: Stephane Eranian <eranian@googlemail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Stephan raised the issue that we currently cannot distinguish between
similar counters within a group (PERF_RECORD_GROUP uses the config
value as identifier).
Therefore, generate a new ID for each counter using a global u64
sequence counter.
Reported-by: Stephane Eranian <eranian@googlemail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Stop using task_struct::pid and start using PID namespaces.
PIDs will be reported in the PID namespace of the monitoring
task at the moment of counter creation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This removes the prev_state field of struct perf_counter since
it is now unused. It was only used by the cpu migration
counter, which doesn't use it any more.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <18979.35052.915728.626374@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This fixes the cpu migration software counter to count
correctly even when contexts get swapped from one task to
another. Previously the cpu migration counts reported by perf
stat were bogus, ranging from negative to several thousand for
a single "lat_ctx 2 8 32" run. With this patch the cpu
migration count reported for "lat_ctx 2 8 32" is almost always
between 35 and 44.
This fixes the problem by adding a call into the perf_counter
code from set_task_cpu when tasks are migrated. This enables
us to use the generic swcounter code (with some modifications)
for the cpu migration counter.
This modifies the swcounter code to allow a NULL regs pointer
to be passed in to perf_swcounter_ctx_event() etc. The cpu
migration counter does this because there isn't necessarily a
pt_regs struct for the task available. In this case, the
counter will not have interrupt capability - but the migration
counter didn't have interrupt capability before, so this is no
loss.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <18979.35006.819769.416327@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This abstracts out the code for locking the context associated
with a task. Because the context might get transferred from
one task to another concurrently, we have to check after
locking the context that it is still the right context for the
task and retry if not. This was open-coded in
find_get_context() and perf_counter_init_task().
This adds a further function for pinning the context for a
task, i.e. marking it so it can't be transferred to another
task. This adds a 'pin_count' field to struct
perf_counter_context to indicate that a context is pinned,
instead of the previous method of setting the parent_gen count
to all 1s. Pinning the context with a pin_count is easier to
undo and doesn't require saving the parent_gen value. This
also adds a perf_unpin_context() to undo the effect of
perf_pin_task_context() and changes perf_counter_init_task to
use it.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <18979.34748.755674.596386@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When fork() fails we cannot use perf_counter_exit_task() since that
assumes to operate on current. Write a new helper that cleans up
unused/clean contexts.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 564c2b21 ("perf_counter: Optimize context switch between
identical inherited contexts") introduced a race where it is possible
that a counter being attached to a task could get attached to the
wrong task, if the task is one that has inherited its context from
another task via fork. This happens because the optimized context
switch could switch the context to another task after find_get_context
has read task->perf_counter_ctxp. In fact, it's possible that the
context could then get freed, if the other task then exits.
This fixes the problem by protecting both the context switch and the
critical code in find_get_context with spinlocks. The context switch
locks the cxt->lock of both the outgoing and incoming contexts before
swapping them. That means that once code such as find_get_context
has obtained the spinlock for the context associated with a task,
the context can't get swapped to another task. However, the context
may have been swapped in the interval between reading
task->perf_counter_ctxp and getting the lock, so it is necessary to
check and retry.
To make sure that none of the contexts being looked at in
find_get_context can get freed, this changes the context freeing code
to use RCU. Thus an rcu_read_lock() is sufficient to ensure that no
contexts can get freed. This part of the patch is lifted from a patch
posted by Peter Zijlstra.
This also adds a check to make sure that we can't add a counter to a
task that is exiting.
There is also a race between perf_counter_exit_task and
find_get_context; this solves the race by moving the get_ctx that
was in perf_counter_alloc into the locked region in find_get_context,
so that once find_get_context has got the context for a task, it
won't get freed even if the task calls perf_counter_exit_task. It
doesn't matter if new top-level (non-inherited) counters get attached
to the context after perf_counter_exit_task has detached the context
from the task. They will just stay there and never get scheduled in
until the counters' fds get closed, and then perf_release will remove
them from the context and eventually free the context.
With this, we are now doing the unclone in find_get_context rather
than when a counter was added to or removed from a context (actually,
we were missing the unclone_ctx() call when adding a counter to a
context). We don't need to unclone when removing a counter from a
context because we have no way to remove a counter from a cloned
context.
This also takes out the smp_wmb() in find_get_context, which Peter
Zijlstra pointed out was unnecessary because the cmpxchg implies a
full barrier anyway.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <18974.33033.667187.273886@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Pointed out by compiler warnings:
tip/include/linux/perf_counter.h:644: warning: no return statement in function returning non-void
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce a generic per counter interrupt throttle.
This uses the perf_counter_overflow() quick disable to throttle a specific
counter when its going too fast when a pmu->unthrottle() method is provided
which can undo the quick disable.
Power needs to implement both the quick disable and the unthrottle method.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525153931.703093461@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the x86 specific interrupt throttle
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525153931.616671838@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fail fork() when we fail inheritance for some reason (-ENOMEM most likely).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525124600.324656474@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
extra_config_len isn't used for anything, remove it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090525124600.116035832@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
now that pctrl() no longer disables other people's counters,
remove the PMU cache code that deals with that.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163013.032998331@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of en/dis-abling all counters acting on a particular
task, en/dis- able all counters we created.
[ v2: fix crash on first counter enable ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.916937244@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
s/counter->mutex/counter->child_mutex/ and make sure its only
used to protect child_list.
The usage in __perf_counter_exit_task() doesn't appear to be
problematic since ctx->mutex also covers anything related to fd
tear-down.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.533186528@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We call perf_adjust_freq() from perf_counter_task_tick() which
is is called under the rq->lock causing lock recursion.
However, it's no longer required to be called under the
rq->lock, so remove it from under it.
Also, fix up some related comments.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.476197912@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When monitoring a process and its descendants with a set of inherited
counters, we can often get the situation in a context switch where
both the old (outgoing) and new (incoming) process have the same set
of counters, and their values are ultimately going to be added together.
In that situation it doesn't matter which set of counters are used to
count the activity for the new process, so there is really no need to
go through the process of reading the hardware counters and updating
the old task's counters and then setting up the PMU for the new task.
This optimizes the context switch in this situation. Instead of
scheduling out the perf_counter_context for the old task and
scheduling in the new context, we simply transfer the old context
to the new task and keep using it without interruption. The new
context gets transferred to the old task. This means that both
tasks still have a valid perf_counter_context, so no special case
is introduced when the old task gets scheduled in again, either on
this CPU or another CPU.
The equivalence of contexts is detected by keeping a pointer in
each cloned context pointing to the context it was cloned from.
To cope with the situation where a context is changed by adding
or removing counters after it has been cloned, we also keep a
generation number on each context which is incremented every time
a context is changed. When a context is cloned we take a copy
of the parent's generation number, and two cloned contexts are
equivalent only if they have the same parent and the same
generation number. In order that the parent context pointer
remains valid (and is not reused), we increment the parent
context's reference count for each context cloned from it.
Since we don't have individual fds for the counters in a cloned
context, the only thing that can make two clones of a given parent
different after they have been cloned is enabling or disabling all
counters with prctl. To account for this, we keep a count of the
number of enabled counters in each context. Two contexts must have
the same number of enabled counters to be considered equivalent.
Here are some measurements of the context switch time as measured with
the lat_ctx benchmark from lmbench, comparing the times obtained with
and without this patch series:
-----Unmodified----- With this patch series
Counters: none 2 HW 4H+4S none 2 HW 4H+4S
2 processes:
Average 3.44 6.45 11.24 3.12 3.39 3.60
St dev 0.04 0.04 0.13 0.05 0.17 0.19
8 processes:
Average 6.45 8.79 14.00 5.57 6.23 7.57
St dev 1.27 1.04 0.88 1.42 1.46 1.42
32 processes:
Average 5.56 8.43 13.78 5.28 5.55 7.15
St dev 0.41 0.47 0.53 0.54 0.57 0.81
The numbers are the mean and standard deviation of 20 runs of
lat_ctx. The "none" columns are lat_ctx run directly without any
counters. The "2 HW" columns are with lat_ctx run under perfstat,
counting cycles and instructions. The "4H+4S" columns are lat_ctx run
under perfstat with 4 hardware counters and 4 software counters
(cycles, instructions, cache references, cache misses, task
clock, context switch, cpu migrations, and page faults).
[ Impact: performance optimization of counter context-switches ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18966.10666.517218.332164@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This replaces the struct perf_counter_context in the task_struct with
a pointer to a dynamically allocated perf_counter_context struct. The
main reason for doing is this is to allow us to transfer a
perf_counter_context from one task to another when we do lazy PMU
switching in a later patch.
This has a few side-benefits: the task_struct becomes a little smaller,
we save some memory because only tasks that have perf_counters attached
get a perf_counter_context allocated for them, and we can remove the
inclusion of <linux/perf_counter.h> in sched.h, meaning that we don't
end up recompiling nearly everything whenever perf_counter.h changes.
The perf_counter_context structures are reference-counted and freed
when the last reference is dropped. A context can have references
from its task and the counters on its task. Counters can outlive the
task so it is possible that a context will be freed well after its
task has exited.
Contexts are allocated on fork if the parent had a context, or
otherwise the first time that a per-task counter is created on a task.
In the latter case, we set the context pointer in the task struct
locklessly using an atomic compare-and-exchange operation in case we
raced with some other task in creating a context for the subject task.
This also removes the task pointer from the perf_counter struct. The
task pointer was not used anywhere and would make it harder to move a
context from one task to another. Anything that needed to know which
task a counter was attached to was already using counter->ctx->task.
The __perf_counter_init_context function moves up in perf_counter.c
so that it can be called from find_get_context, and now initializes
the refcount, but is otherwise unchanged.
We were potentially calling list_del_counter twice: once from
__perf_counter_exit_task when the task exits and once from
__perf_counter_remove_from_context when the counter's fd gets closed.
This adds a check in list_del_counter so it doesn't do anything if
the counter has already been removed from the lists.
Since perf_counter_task_sched_in doesn't do anything if the task doesn't
have a context, and leaves cpuctx->task_ctx = NULL, this adds code to
__perf_install_in_context to set cpuctx->task_ctx if necessary, i.e. in
the case where the current task adds the first counter to itself and
thus creates a context for itself.
This also adds similar code to __perf_counter_enable to handle a
similar situation which can arise when the counters have been disabled
using prctl; that also leaves cpuctx->task_ctx = NULL.
[ Impact: refactor counter context management to prepare for new feature ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18966.10075.781053.231153@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For the dynamic irq_period code, log whenever we change the period so that
analyzing code can normalize the event flow.
[ Impact: add new feature to allow more precise profiling ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090520102553.298769743@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of disabling RR scheduling of the counters, use a different list
that does not get rotated to iterate the counters on inheritance.
[ Impact: cleanup, optimization ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090520102553.237504544@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Context rotation should not occur when we are in the middle of
walking the counter list when inheriting counters ...
[ Impact: fix occasionally incorrect perf stat results ]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
At present the values we put in overflow events for the misc
flags indicating processor mode and the instruction pointer are
obtained using the standard user_mode() and
instruction_pointer() functions. Those functions tell you where
the performance monitor interrupt was taken, which might not be
exactly where the counter overflow occurred, for example
because interrupts were disabled at the point where the
overflow occurred, or because the processor had many
instructions in flight and chose to complete some more
instructions beyond the one that caused the counter overflow.
Some architectures (e.g. powerpc) can supply more precise
information about where the counter overflow occurred and the
processor mode at that point. This introduces new functions,
perf_misc_flags() and perf_instruction_pointer(), which arch
code can override to provide more precise information if
available. They have default implementations which are
identical to the existing code.
This also adds a new misc flag value,
PERF_EVENT_MISC_HYPERVISOR, for the case where a counter
overflow occurred in the hypervisor. We encode the processor
mode in the 2 bits previously used to indicate user or kernel
mode; the values for user and kernel mode are unchanged and
hypervisor mode is indicated by both bits being set.
[ Impact: generalize perfcounter core facilities ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18956.1272.818511.561835@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of specifying the irq_period for a counter, provide a target interrupt
frequency and dynamically adapt the irq_period to match this frequency.
[ Impact: new perf-counter attribute/feature ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <20090515132018.646195868@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The current disable/enable mechanism is:
token = hw_perf_save_disable();
...
/* do bits */
...
hw_perf_restore(token);
This works well, provided that the use nests properly. Except we don't.
x86 NMI/INT throttling has non-nested use of this, breaking things. Therefore
provide a reference counter disable/enable interface, where the first disable
disables the hardware, and the last enable enables the hardware again.
[ Impact: refactor, simplify the PMU disable/enable logic ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Allow recording the CPU number the event was generated on.
RFC: this leaves a u32 as reserved, should we fill in the
node_id() there, or leave this open for future extention,
as userspace can already easily do the cpu->node mapping
if needed.
[ Impact: extend perfcounter output record format ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090508170029.008627711@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Much like CONFIG_RECORD_GROUP records the hw_event.config to
identify the values, allow to record this for all counters.
[ Impact: extend perfcounter output record format ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090508170028.923228280@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Corey noticed that ioctl()s on grouped counters didn't work on
the whole group. This extends the ioctl() interface to take a
second argument that is interpreted as a flags field. We then
provide PERF_IOC_FLAG_GROUP to toggle the behaviour.
Having this flag gives the greatest flexibility, allowing you
to individually enable/disable/reset counters in a group, or
all together.
[ Impact: fix group counter enable/disable semantics ]
Reported-by: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <20090508170028.837558214@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a threshold to relax the mlock accounting, increasing usability.
Each counter gets perf_counter_mlock_kb for free.
[ Impact: allow more mmap buffering ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090505155437.112113632@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a way to reset an existing counter - this eases PAPI
libraries around perfcounters.
Similar to read() it doesn't collapse pending child counters.
[ Impact: new perfcounter fd ioctl method to reset counters ]
Suggested-by: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <20090505155437.022272933@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Keep data_head up-to-date irrespective of notifications. This fixes
the case where you disable a counter and don't get a notification for
the last few pending events, and it also allows polling usage.
[ Impact: increase precision of perfcounter mmap-ed fields ]
Suggested-by: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <20090505155436.925084300@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
percpu scheduling for perfcounters wants to take the context lock,
but that lock first needs to be initialized. Currently it is an
early_initcall() - but that is too late, the task tick runs much
sooner than that.
Call it explicitly from the scheduler init sequence instead.
[ Impact: fix access-before-init crash ]
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When two (or more) contexts output to the same buffer, it is possible
to observe half written output.
Suppose we have CPU0 doing perf_counter_mmap(), CPU1 doing
perf_counter_overflow(). If CPU1 does a wakeup and exposes head to
user-space, then CPU2 can observe the data CPU0 is still writing.
[ Impact: fix occasionally corrupted profiling records ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090501102533.007821627@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The type of counter index is sometimes implemented as unsigned
int. This patch changes this to have a consistent usage of int.
[ Impact: cleanup ]
Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1241002046-8832-21-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch renames struct hw_perf_counter_ops into struct pmu. It
introduces a structure to describe a cpu specific pmu (performance
monitoring unit). It may contain ops and data. The new name of the
structure fits better, is shorter, and thus better to handle. Where it
was appropriate, names of function and variable have been changed too.
[ Impact: cleanup ]
Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1241002046-8832-7-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is only needed for CONFIG_PERF_COUNTERS enabled.
[ Impact: cleanup ]
Signed-off-by: Robert Richter <robert.richter@amd.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1241002046-8832-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add sysctl for paranoid/relaxed perfcounters policy
Allow the use of system wide perf counters to everybody, but provide
a sysctl to disable it for the paranoid security minded.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090409085524.514046352@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Paul suggested we allow for data addresses to be recorded along with
the traditional IPs as power can provide these.
For now, only the software pagefault events provide data addresses,
but in the future power might as well for some events.
x86 doesn't seem capable of providing this atm.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130409.394816925@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move PERF_RECORD_TIME so that all the fixed length items come before
the variable length ones.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130409.307926436@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Similar to the mmap data stream, add one that tracks the task COMM field,
so that the userspace reporting knows what to call a task.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130409.127422406@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a few comments because I was forgetting what field what for what
functionality.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130409.036984214@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Push the PERF_EVENT_COUNTER_OVERFLOW bit into the misc field so that
we can have the full 32bit for PERF_RECORD_ bits.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130408.891867663@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Limit the size of each record to 64k (or should we count in multiples
of u64 and have a 512K limit?), this gives 16 bits or spare room in the
header, which we can use for misc bits, so as to not have to grow the
record with u64 every time we have a few bits to report.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130408.769271806@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since perf_counter_context is switched along with tasks, we can
maintain the context time without using the task runtime clock.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094518.353552838@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently the definition of an event is slightly ambiguous. We have
wakeup events, for poll() and SIGIO, which are either generated
when a record crosses a page boundary (hw_events.wakeup_events == 0),
or every wakeup_events new records.
Now a record can be either a counter overflow record, or a number of
different things, like the mmap PROT_EXEC region notifications.
Then there is the PERF_COUNTER_IOC_REFRESH event limit, which only
considers counter overflows.
This patch changes then wakeup_events and SIGIO notification to only
consider overflow events. Furthermore it changes the SIGIO notification
to report SIGHUP when the event limit is reached and the counter will
be disabled.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094518.266679874@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide means to auto-disable the counter after 'n' overflow events.
Create the counter with hw_event.disabled = 1, and then issue an
ioctl(fd, PREF_COUNTER_IOC_REFRESH, n); to set the limit and enable
the counter.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094518.083139737@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
By popular request, provide means to log a timestamp along with the
counter overflow event.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094518.024173282@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Prepare for more generic overflow handling. The new perf_counter_overflow()
method will handle the generic bits of the counter overflow, and can return
a !0 return value, in which case the counter should be (soft) disabled, so
that it won't count until it's properly disabled.
XXX: do powerpc and swcounter
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.812109629@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Prepare the pending infrastructure to do more than wakeups.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.634732847@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide support for fcntl() I/O availability signals.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.579788800@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change the callchain context entries to u16, so as to gain some space.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.457320003@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Update the userspace read method.
Paul noted that:
- userspace cannot observe ->lock & 1 on the same cpu.
- we need a barrier() between reading ->lock and ->index
to ensure we read them in that prticular order.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.368446033@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Paul noted that we don't need SMP barriers for the mmap() counter read
because its always on the same cpu (otherwise you can't access the hw
counter anyway).
So remove the SMP barriers and replace them with regular compiler
barriers.
Further, update the comment to include a race free method of reading
said hardware counter. The primary change is putting the pmc_read
inside the seq-loop, otherwise we can still race and read rubbish.
Noticed-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Orig-LKML-Reference: <20090402091319.577951445@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Put in counts to tell which ips belong to what context.
-----
| | hv
| --
nr | | kernel
| --
| | user
-----
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Orig-LKML-Reference: <20090402091319.493101305@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
By request, provide a way to request a wakeup every 'n' events instead
of every page of output.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Orig-LKML-Reference: <20090402091319.323309784@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Per suggestion from Paul, move the event overflow bits to record_type
and sanitize the enums a bit.
Breaks the ABI -- again ;-)
Suggested-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Orig-LKML-Reference: <20090402091319.151921176@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide the generic callchain support bits. If hw_event->callchain is
set the arch specific perf_callchain() function is called upon to
provide a perf_callchain_entry structure filled with the current
callchain.
If it does so, it is added to the overflow output event.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090330171024.254266860@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Breaks ABI yet again :-)
Change the event type so that [0, 2^31-1] are regular event types, but
[2^31, 2^32-1] forms a bitmask for overflow events.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090330171024.047961770@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently the profiling information returns userspace IPs but no way
to correlate them to userspace code. Userspace could look into
/proc/$pid/maps but that might not be current or even present anymore
at the time of analyzing the IPs.
Therefore provide means to track the mmap information and provide it
in the output stream.
XXX: only covers mmap()/munmap(), mremap() and mprotect() are missing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Orig-LKML-Reference: <20090330171023.417259499@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It just occured to me it is possible to have multiple contending
updates of the userpage (mmap information vs overflow vs counter).
This would break the seqlock logic.
It appear the arch code uses this from NMI context, so we cannot
possibly serialize its use, therefore separate the data_head update
from it and let it return to its original use.
The arch code needs to make sure there are no contending callers by
disabling the counter before using it -- powerpc appears to do this
nicely.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090330171023.241410660@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While going over the wakeup code I noticed delayed wakeups only work
for hardware counters but basically all software counters rely on
them.
This patch unifies and generalizes the delayed wakeup to fix this
issue.
Since we're dealing with NMI context bits here, use a cmpxchg() based
single link list implementation to track counters that have pending
wakeups.
[ This should really be generic code for delayed wakeups, but since we
cannot use cmpxchg()/xchg() in generic code, I've let it live in the
perf_counter code. -- Eric Dumazet could use it to aggregate the
network wakeups. ]
Furthermore, the x86 method of using TIF flags was flawed in that its
quite possible to end up setting the bit on the idle task, loosing the
wakeup.
The powerpc method uses per-cpu storage and does appear to be
sufficient.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090330171023.153932974@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new functionality
Currently, if there are more counters enabled than can fit on the CPU,
the kernel will multiplex the counters on to the hardware using
round-robin scheduling. That isn't too bad for sampling counters, but
for counting counters it means that the value read from a counter
represents some unknown fraction of the true count of events that
occurred while the counter was enabled.
This remedies the situation by keeping track of how long each counter
is enabled for, and how long it is actually on the cpu and counting
events. These times are recorded in nanoseconds using the task clock
for per-task counters and the cpu clock for per-cpu counters.
These values can be supplied to userspace on a read from the counter.
Userspace requests that they be supplied after the counter value by
setting the PERF_FORMAT_TOTAL_TIME_ENABLED and/or
PERF_FORMAT_TOTAL_TIME_RUNNING bits in the hw_event.read_format field
when creating the counter. (There is no way to change the read format
after the counter is created, though it would be possible to add some
way to do that.)
Using this information it is possible for userspace to scale the count
it reads from the counter to get an estimate of the true count:
true_count_estimate = count * total_time_enabled / total_time_running
This also lets userspace detect the situation where the counter never
got to go on the cpu: total_time_running == 0.
This functionality has been requested by the PAPI developers, and will
be generally needed for interpreting the count values from counting
counters correctly.
In the implementation, this keeps 5 time values (in nanoseconds) for
each counter: total_time_enabled and total_time_running are used when
the counter is in state OFF or ERROR and for reporting back to
userspace. When the counter is in state INACTIVE or ACTIVE, it is the
tstamp_enabled, tstamp_running and tstamp_stopped values that are
relevant, and total_time_enabled and total_time_running are determined
from them. (tstamp_stopped is only used in INACTIVE state.) The
reason for doing it like this is that it means that only counters
being enabled or disabled at sched-in and sched-out time need to be
updated. There are no new loops that iterate over all counters to
update total_time_enabled or total_time_running.
This also keeps separate child_total_time_running and
child_total_time_enabled fields that get added in when reporting the
totals to userspace. They are separate fields so that they can be
atomic. We don't want to use atomics for total_time_running,
total_time_enabled etc., because then we would have to use atomic
sequences to update them, which are slower than regular arithmetic and
memory accesses.
It is possible to measure total_time_running by adding a task_clock
counter to each group of counters, and total_time_enabled can be
measured approximately with a top-level task_clock counter (though
inaccuracies will creep in if you need to disable and enable groups
since it is not possible in general to disable/enable the top-level
task_clock counter simultaneously with another group). However, that
adds extra overhead - I measured around 15% increase in the context
switch latency reported by lat_ctx (from lmbench) when a task_clock
counter was added to each of 2 groups, and around 25% increase when a
task_clock counter was added to each of 4 groups. (In both cases a
top-level task-clock counter was also added.)
In contrast, the code added in this commit gives better information
with no overhead that I could measure (in fact in some cases I
measured lower times with this code, but the differences were all less
than one standard deviation).
[ v2: address review comments by Andrew Morton. ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Orig-LKML-Reference: <18890.6578.728637.139402@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Allow cpu wide counters to profile userspace by providing what process
the sample belongs to.
This raises the first issue with the output type, lots of these
options: group, tid, callchain, etc.. are non-exclusive and could be
combined, suggesting a bitfield.
However, things like the mmap() data stream doesn't fit in that.
How to split the type field...
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Orig-LKML-Reference: <20090325113317.013775235@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a {type,size} header for each output entry.
This should provide extensible output, and the ability to mix multiple streams.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Orig-LKML-Reference: <20090325113316.831607932@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix kerneltop 100% CPU usage
Only return a poll event when there's actually been one, poll_wait()
doesn't actually wait for the waitq you pass it, it only enqueues
you on it.
Only once all FDs have been iterated and none of thm returned a
poll-event will it schedule().
Also make it return POLL_HUP when there's not mmap() area to read from.
Further, fix a silly bug in the write code.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arjan van de Ven <arjan@infradead.org>
Orig-LKML-Reference: <1237897096.24918.181.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: Rework the perfcounter output ABI
use sys_read() only for instant data and provide mmap() output for all
async overflow data.
The first mmap() determines the size of the output buffer. The mmap()
size must be a PAGE_SIZE multiple of 1+pages, where pages must be a
power of 2 or 0. Further mmap()s of the same fd must have the same
size. Once all maps are gone, you can again mmap() with a new size.
In case of 0 extra pages there is no data output and the first page
only contains meta data.
When there are data pages, a poll() event will be generated for each
full page of data. Furthermore, the output is circular. This means
that although 1 page is a valid configuration, its useless, since
we'll start overwriting it the instant we report a full page.
Future work will focus on the output format (currently maintained)
where we'll likey want each entry denoted by a header which includes a
type and length.
Further future work will allow to splice() the fd, also containing the
async overflow data -- splice() would be mutually exclusive with
mmap() of the data.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090323172417.470536358@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new feature giving performance improvement
This adds the ability for userspace to do an mmap on a hardware counter
fd and get access to a read-only page that contains the information
needed to translate a hardware counter value to the full 64-bit
counter value that would be returned by a read on the fd. This is
useful on architectures that allow user programs to read the hardware
counters, such as PowerPC.
The mmap will only succeed if the counter is a hardware counter
monitoring the current process.
On my quad 2.5GHz PowerPC 970MP machine, userspace can read a counter
and translate it to the full 64-bit value in about 30ns using the
mmapped page, compared to about 830ns for the read syscall on the
counter, so this does give a significant performance improvement.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Orig-LKML-Reference: <20090323172417.297057964@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Tracepoint events like lock_acquire and software counters like
pagefaults can recurse into the perf counter code again, avoid that.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090323172417.152096433@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the bitfields turned into a bit of a mess, remove them and rely on
good old masks.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090323172417.059499915@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix for powerpc
Commit db3a944aca35ae61 ("perf_counter: revamp syscall input ABI")
expanded the hw_event.type field into a union of structs containing
bitfields. In particular it introduced a type field and a raw_type
field, with the intention that the 1-bit raw_type field should
overlay the most-significant bit of the 8-bit type field, and in fact
perf_counter_alloc() now assumes that (or at least, assumes that
raw_type doesn't overlay any of the bits that are 1 in the values of
PERF_TYPE_{HARDWARE,SOFTWARE,TRACEPOINT}).
Unfortunately this is not true on big-endian systems such as PowerPC,
where bitfields are laid out from left to right, i.e. from most
significant bit to least significant. This means that setting
hw_event.type = PERF_TYPE_SOFTWARE will set hw_event.raw_type to 1.
This fixes it by making the layout depend on whether or not
__BIG_ENDIAN_BITFIELD is defined. It's a bit ugly, but that's what
we get for using bitfields in a user/kernel ABI.
Also, that commit didn't fix up some places in arch/powerpc/kernel/
perf_counter.c where hw_event.raw and hw_event.event_id were used.
This fixes them too.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Impact: cleanup
Having 3 slightly different copies of the same code around does nobody
any good. First step in revamping the output format.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194233.929962222@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: modify ABI
The hardware/software classification in hw_event->type became a little
strained due to the addition of tracepoint tracing.
Instead split up the field and provide a type field to explicitly specify
the counter type, while using the event_id field to specify which event to
use.
Raw counters still work as before, only the raw config now goes into
raw_event.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194233.836807573@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new perfcounters feature
Enable usage of tracepoints as perf counter events.
tracepoint event ids can be found in /debug/tracing/event/*/*/id
and (for now) are represented as -65536+id in the type field.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194233.744044174@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I noticed that the counter_list only includes top-level counters, thus
perf_swcounter_event() will miss sw-counters in groups.
Since perf_swcounter_event() also wants an RCU safe list, create a new
event_list that includes all counters and uses RCU list ops and use call_rcu
to free the counter structure.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use hrtimers to profile timer based sampling for the software time
counters.
This allows platforms without hardware counter support to still
perform sample based profiling.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide separate sw counters for major and minor page faults.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide generic software counter infrastructure that supports
software events.
This will be used to allow sample based profiling based on software
events such as pagefaults. The current infrastructure can only
provide a count of such events, no place information.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The sum of bits is 65 currently not 64 - so reduce the # of reserved bits
from 55 to 54.
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: ABI change
This expands several fields in the perf_counter_hw_event struct and adds
a "flags" argument to the perf_counter_open system call, in order that
features can be added in future without ABI changes.
In particular the record_type field is expanded to 64 bits, and the
space for flag bits has been expanded from 32 to 64 bits.
This also adds some new fields:
* read_format (64 bits) is intended to provide a way to specify what
userspace wants to get back when it does a read() on a simple
(non-interrupting) counter;
* exclude_idle (1 bit) provides a way for userspace to ask that events
that occur when the cpu is idle be excluded;
* extra_config_len will provide a way for userspace to supply an
arbitrary amount of extra machine-specific PMU configuration data
immediately following the perf_counter_hw_event struct, to allow
sophisticated users to program things such as instruction matching
CAMs and address range registers;
* __reserved_3 and __reserved_4 provide space for future expansion.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This fixes three issues noticed by Arnd Bergmann:
- Add #ifdef __KERNEL__ and move some things around in perf_counter.h
to make sure only the bits that userspace needs are exported to
userspace.
- Use __u64, __s64, __u32 types in the structs exported to userspace
rather than u64, s64, u32.
- Make the sys_perf_counter_open syscall available to the SPUs on
Cell platforms.
And one issue that I noticed in looking at the code again:
- Wrap the perf_counter_open syscall with SYSCALL_DEFINE4 so we get
the proper handling of int arguments on ppc64 (and some other 64-bit
architectures).
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Jaswinder Singh Rajput reported that commit 23a185ca8a caused the
context switch and migration software counters to report zero always.
With that commit, the software counters only count events that occur
between sched-in and sched-out for a task. This is necessary for the
counter enable/disable prctls and ioctls to work. However, the
context switch and migration counts are incremented after sched-out
for one task and before sched-in for the next. Since the increment
doesn't occur while a task is scheduled in (as far as the software
counters are concerned) it doesn't count towards any counter.
Thus the context switch and migration counters need to count events
that occur at any time, provided the counter is enabled, not just
those that occur while the task is scheduled in (from the perf_counter
subsystem's point of view). The problem though is that the software
counter code can't tell the difference between being enabled and being
scheduled in, and between being disabled and being scheduled out,
since we use the one pair of enable/disable entry points for both.
That is, the high-level disable operation simply arranges for the
counter to not be scheduled in any more, and the high-level enable
operation arranges for it to be scheduled in again.
One way to solve this would be to have sched_in/out operations in the
hw_perf_counter_ops struct as well as enable/disable. However, this
takes a simpler approach: it adds a 'prev_state' field to the
perf_counter struct that allows a counter's enable method to know
whether the counter was previously disabled or just inactive
(scheduled out), and therefore whether the enable method is being
called as a result of a high-level enable or a schedule-in operation.
This then allows the context switch, migration and page fault counters
to reset their hw.prev_count value in their enable functions only if
they are called as a result of a high-level enable operation.
Although page faults would normally only occur while the counter is
scheduled in, this changes the page fault counter code too in case
there are ever circumstances where page faults get counted against a
task while its counters are not scheduled in.
Reported-by: Jaswinder Singh Rajput <jaswinder@kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new perf_counter feature
This extends the perf_counter_hw_event struct with bits that specify
that events in user, kernel and/or hypervisor mode should not be
counted (i.e. should be excluded), and adds code to program the PMU
mode selection bits accordingly on x86 and powerpc.
For software counters, we don't currently have the infrastructure to
distinguish which mode an event occurs in, so we currently fail the
counter initialization if the setting of the hw_event.exclude_* bits
would require us to distinguish. Context switches and CPU migrations
are currently considered to occur in kernel mode.
On x86, this changes the previous policy that only root can count
kernel events. Now non-root users can count kernel events or exclude
them. Non-root users still can't use NMI events, though. On x86 we
don't appear to have any way to control whether hypervisor events are
counted or not, so hw_event.exclude_hv is ignored.
On powerpc, the selection of whether to count events in user, kernel
and/or hypervisor mode is PMU-wide, not per-counter, so this adds a
check that the hw_event.exclude_* settings are the same as other events
on the PMU. Counters being added to a group have to have the same
settings as the other hardware counters in the group. Counters and
groups can only be enabled in hw_perf_group_sched_in or power_perf_enable
if they have the same settings as any other counters already on the
PMU. If we are not running on a hypervisor, the exclude_hv setting
is ignored (by forcing it to 0) since we can't ever get any
hypervisor events.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Ratelimit performance counter interrupts to 100KHz per CPU.
This replaces the irq-delta-time based method.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Starting kerneltop with only -c 100 seems to be a bad idea, it can
easily lock the system due to perfcounter IRQ overload.
So add throttling: if a new IRQ arrives in a shorter than
PERFMON_MIN_PERIOD_NS time, turn off perfcounters and untrottle them
from the next timer tick.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: New perf_counter features
This primarily adds a way for perf_counter users to enable and disable
counters and groups. Enabling or disabling a counter or group also
enables or disables all of the child counters that have been cloned
from it to monitor children of the task monitored by the top-level
counter. The userspace interface to enable/disable counters is via
ioctl on the counter file descriptor.
Along the way this extends the code that handles child counters to
handle child counter groups properly. A group with multiple counters
will be cloned to child tasks if and only if the group leader has the
hw_event.inherit bit set - if it is set the whole group is cloned as a
group in the child task.
In order to be able to enable or disable all child counters of a given
top-level counter, we need a way to find them all. Hence I have added
a child_list field to struct perf_counter, which is the head of the
list of children for a top-level counter, or the link in that list for
a child counter. That list is protected by the perf_counter.mutex
field.
This also adds a mutex to the perf_counter_context struct. Previously
the list of counters was protected just by the lock field in the
context, which meant that perf_counter_init_task had to take that lock
and then take whatever lock/mutex protects the top-level counter's
child_list. But the counter enable/disable functions need to take
that lock in order to traverse the list, then for each counter take
the lock in that counter's context in order to change the counter's
state safely, which will lead to a deadlock.
To solve this, we now have both a mutex and a spinlock in the context,
and taking either is sufficient to ensure the list of counters can't
change - you have to take both before changing the list. Now
perf_counter_init_task takes the mutex instead of the lock (which
incidentally means that inherit_counter can use GFP_KERNEL instead of
GFP_ATOMIC) and thus avoids the possible deadlock. Similarly the new
enable/disable functions can take the mutex while traversing the list
of child counters without incurring a possible deadlock when the
counter manipulation code locks the context for a child counter.
We also had an misfeature that the first counter added to a context
would possibly not go on until the next sched-in, because we were
using ctx->nr_active to detect if the context was running on a CPU.
But nr_active is the number of active counters, and if that was zero
(because the context didn't have any counters yet) it would look like
the context wasn't running on a cpu and so the retry code in
__perf_install_in_context wouldn't retry. So this adds an 'is_active'
field that is set when the context is on a CPU, even if it has no
counters. The is_active field is only used for task contexts, not for
per-cpu contexts.
If we enable a subsidiary counter in a group that is active on a CPU,
and the arch code can't enable the counter, then we have to pull the
whole group off the CPU. We do this with group_sched_out, which gets
moved up in the file so it comes before all its callers. This also
adds similar logic to __perf_install_in_context so that the "all on,
or none" invariant of groups is preserved when adding a new counter to
a group.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Impact: New perf_counter features
A pinned counter group is one that the user wants to have on the CPU
whenever possible, i.e. whenever the associated task is running, for
a per-task group, or always for a per-cpu group. If the system
cannot satisfy that, it puts the group into an error state where
it is not scheduled any more and reads from it return EOF (i.e. 0
bytes read). The group can be released from error state and made
readable again using prctl(PR_TASK_PERF_COUNTERS_ENABLE). When we
have finer-grained enable/disable controls on counters we'll be able
to reset the error state on individual groups.
An exclusive group is one that the user wants to be the only group
using the CPU performance monitor hardware whenever it is on. The
counter group scheduler will not schedule an exclusive group if there
are already other groups on the CPU and will not schedule other groups
onto the CPU if there is an exclusive group scheduled (that statement
does not apply to groups containing only software counters, which can
always go on and which do not prevent an exclusive group from going on).
With an exclusive group, we will be able to let users program PMU
registers at a low level without the concern that those settings will
perturb other measurements.
Along the way this reorganizes things a little:
- is_software_counter() is moved to perf_counter.h.
- cpuctx->active_oncpu now records the number of hardware counters on
the CPU, i.e. it now excludes software counters. Nothing was reading
cpuctx->active_oncpu before, so this change is harmless.
- A new cpuctx->exclusive field records whether we currently have an
exclusive group on the CPU.
- counter_sched_out moves higher up in perf_counter.c and gets called
from __perf_counter_remove_from_context and __perf_counter_exit_task,
where we used to have essentially the same code.
- __perf_counter_sched_in now goes through the counter list twice, doing
the pinned counters in the first loop and the non-pinned counters in
the second loop, in order to give the pinned counters the best chance
to be scheduled in.
Note that only a group leader can be exclusive or pinned, and that
attribute applies to the whole group. This avoids some awkwardness in
some corner cases (e.g. where a group leader is closed and the other
group members get added to the context list). If we want to relax that
restriction later, we can, and it is easier to relax a restriction than
to apply a new one.
This doesn't yet handle the case where a pinned counter is inherited
and goes into error state in the child - the error state is not
propagated up to the parent when the child exits, and arguably it
should.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Impact: extend perf_counter infrastructure
This adds an optional hw_perf_group_sched_in() arch function that enables
a whole group of counters in one go. It returns 1 if it added the group
successfully, 0 if it did nothing (and therefore the core needs to add
the counters individually), or a negative number if an error occurred.
It should add all the counters and enable any software counters in the
group, or else add none of them and return an error.
There are a couple of related changes/improvements in the group handling
here:
* As an optimization, group_sched_out() and group_sched_in() now check the
state of the group leader, and do nothing if the leader is not active
or disabled.
* We now call hw_perf_save_disable/hw_perf_restore around the complete
set of counter enable/disable calls in __perf_counter_sched_in/out,
to give the arch code the opportunity to defer updating the hardware
state until the hw_perf_restore call if it wants.
* We no longer stop adding groups after we get to a group that has more
than one counter. We will ultimately add an option for a group to be
exclusive. The current code doesn't really implement exclusive groups
anyway, since a group could end up going on with other counters that
get added before it.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Impact: build fix on ia64
KOSAKI Motohiro reported that -tip doesnt build on ia64 because
asm/perf_counter.h only exists on x86 for now. Fix it.
Reported-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>