Both set and clear_extent_bit allow passing a cached
state struct to reduce rbtree search times. clear_extent_bit
was improperly bypassing some of the checks around making sure
the extent state fields were correct for a given operation.
The fix used here (from Yan Zheng) is to use the hit_next
goto target instead of jumping all the way down to start clearing
bits without making sure the cached state was exactly correct
for the operation we were doing.
This also fixes up the setting of the start variable for both
ops in the case where we find an overlapping extent that
begins before the range we want to change. In both cases
we were incorrectly going backwards from the original
requested change.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'bugfixes' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6:
NFS: Propagate 'fsc' mount option through automounts
sunrpc/rpc_pipe: fix kernel-doc notation
sunrpc: xdr_xcode_hyper helpers cannot presume 64-bit alignment
NFS: Add nfs_alloc_parsed_mount_data
NFS/RPC: fix problems with reestablish_timeout and related code.
NFS: Get rid of the NFS_MOUNT_VER3 and NFS_MOUNT_TCP flags
Propagate the NFS 'fsc' mount option through NFS automounts of various types.
This is now required as commit:
commit c02d7adf8c
Author: Trond Myklebust <Trond.Myklebust@netapp.com>
Date: Mon Jun 22 15:09:14 2009 -0400
NFSv4: Replace nfs4_path_walk() with VFS path lookup in a private namespace
uses VFS-driven automounting to reach all submounts barring the root, thus
preventing fscaching from being enabled on any submount other than the root.
This patch gets around that by propagating the NFS_OPTION_FSCACHE flag across
automounts. If a uniquifier is supplied to a mount then this is propagated to
all automounts of that mount too.
Signed-off-by: David Howells <dhowells@redhat.com>
[Trond: Fixed up the definition of nfs_fscache_get_super_cookie for the
case of #undef CONFIG_NFS_FSCACHE]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Allocating nfs_parsed_mount_data and setting up the defaults is nearly
the same for both nfs and nfs4 mounts.
Both paths seem to use nfs_validate_transport_protocol(), so setting a
default value for nfs_server.protocol ought to be unnecessary.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Keep it in the case of the legacy binary mount interface, but purge it from
the nfs_server structure.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
This patch adds a persistent, read-only caching facility for
9p clients using the FS-Cache caching backend.
When the fscache facility is enabled, each inode is associated
with a corresponding vcookie which is an index into the FS-Cache
indexing tree. The FS-Cache indexing tree is indexed at 3 levels:
- session object associated with each mount.
- inode/vcookie
- actual data (pages)
A cache tag is chosen randomly for each session. These tags can
be read off /sys/fs/9p/caches and can be passed as a mount-time
parameter to re-attach to the specified caching session.
Signed-off-by: Abhishek Kulkarni <adkulkar@umail.iu.edu>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
When using the cache=loose flags, the inode's size was not being
updated correctly on a remote write. Thus subsequent reads of
the whole file resulted in a truncated read. Fix it.
Signed-off-by: Abhishek Kulkarni <adkulkar@umail.iu.edu>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
Change all occurrence of inode->i_size with i_size_read() or i_size_write()
as appropriate.
Signed-off-by: Abhishek Kulkarni <adkulkar@umail.iu.edu>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
* git://git.infradead.org/mtd-2.6: (58 commits)
mtd: jedec_probe: add PSD4256G6V id
mtd: OneNand support for Nomadik 8815 SoC (on NHK8815 board)
mtd: nand: driver for Nomadik 8815 SoC (on NHK8815 board)
m25p80: Add Spansion S25FL129P serial flashes
jffs2: Use SLAB_HWCACHE_ALIGN for jffs2_raw_{dirent,inode} slabs
mtd: sh_flctl: register sh_flctl using platform_driver_probe()
mtd: nand: txx9ndfmc: transfer 512 byte at a time if possible
mtd: nand: fix tmio_nand ecc correction
mtd: nand: add __nand_correct_data helper function
mtd: cfi_cmdset_0002: add 0xFF intolerance for M29W128G
mtd: inftl: fix fold chain block number
mtd: jedec: fix compilation problem with I28F640C3B definition
mtd: nand: fix ECC Correction bug for SMC ordering for NDFC driver
mtd: ofpart: Check availability of reg property instead of name property
driver/Makefile: Initialize "mtd" and "spi" before "net"
mtd: omap: adding DMA mode support in nand prefetch/post-write
mtd: omap: add support for nand prefetch-read and post-write
mtd: add nand support for w90p910 (v2)
mtd: maps: add mtd-ram support to physmap_of
mtd: pxa3xx_nand: add single-bit error corrections reporting
...
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2: (85 commits)
ocfs2: Use buffer IO if we are appending a file.
ocfs2: add spinlock protection when dealing with lockres->purge.
dlmglue.c: add missed mlog lines
ocfs2: __ocfs2_abort() should not enable panic for local mounts
ocfs2: Add ioctl for reflink.
ocfs2: Enable refcount tree support.
ocfs2: Implement ocfs2_reflink.
ocfs2: Add preserve to reflink.
ocfs2: Create reflinked file in orphan dir.
ocfs2: Use proper parameter for some inode operation.
ocfs2: Make transaction extend more efficient.
ocfs2: Don't merge in 1st refcount ops of reflink.
ocfs2: Modify removing xattr process for refcount.
ocfs2: Add reflink support for xattr.
ocfs2: Create an xattr indexed block if needed.
ocfs2: Call refcount tree remove process properly.
ocfs2: Attach xattr clusters to refcount tree.
ocfs2: Abstract ocfs2 xattr tree extend rec iteration process.
ocfs2: Abstract the creation of xattr block.
ocfs2: Remove inode from ocfs2_xattr_bucket_get_name_value.
...
For this system call user space passes a signed long length parameter,
while the kernel side takes an unsigned long parameter and converts it
later to signed long again.
This has led to bugs in compat wrappers see e.g. dd90bbd5 "powerpc: Add
compat_sys_truncate". The s390 compat wrapper for this functions is
broken as well since it also performs zero extension instead of sign
extension for the length parameter.
In addition if hpa comes up with an automated way of generating
compat wrappers it would generate a wrong one here.
So change the length parameter from unsigned long to long.
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unlike on most other architectures ino_t is an unsigned int on s390. So
add an explicit cast to avoid this compile warning:
fs/ext2/namei.c: In function 'ext2_lookup':
fs/ext2/namei.c:73: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t'
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a few places in the Minix FS code where the "inode" field of a
minix_dir_entry is used without checking first to see if the dirent is
really a minix3_dir_entry. The inode number in a V1/V2 dirent is 16 bits,
whereas that in a V3 dirent is 32 bits.
Accessing it as a 16 bit field when it really should be accessed as a 32
bit field probably kinda sorta works on a little-endian machine, but leads
to some rather odd behaviour on big-endian machines.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Doug Graham <dgraham@nortel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want to check for s_inode's existence, not inode's one (inode is always
valid in this function).
This takes care of the following entry from Dan's list:
fs/ncpfs/ioctl.c +445 __ncp_ioctl(180) warning: variable derefenced before check 'inode'
Reported-by: Dan Carpenter <error27@gmail.com>
Cc: Julia Lawall <julia@diku.dk>
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Cc: Petr Vandrovec <vandrove@vc.cvut.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function uses signed integers for the unix_date and local variables -
if a negative number is supplied and the leap-year condition is not met,
month will be 0, leading to a later read of day_n[-1]
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Cc: Petr Vandrovec <VANDROVE@vc.cvut.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
initramfs userspace likes to use this magic number.
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: maximilian attems <max@stro.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After memory hotplug (or other events in future), kcore size can be
modified.
To update inode->i_size, we have to know inode/dentry but we can't get it
from inside /proc directly. But considerinyg memory hotplug, kcore image
is updated only when it's opened. Then, updating inode->i_size at open()
is enough.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently the size of /proc/kcore which can be read by 'ls -l' is 0. But
it's not the correct value.
On x86-64, ls -l shows
... root root 140737486266368 2009-09-17 10:29 /proc/kcore
Then, 7FFFFFFE02000. This comes from vmalloc area's size.
(*) This shows "core" size, not memory size.
This patch shows the size by updating "size" field in struct
proc_dir_entry. Later, lookup routine will create inode and fill
inode->i_size based on this value. Then, this has a problem.
- Once inode is cached, inode->i_size will never be updated.
Then, this patch is not memory-hotplug-aware.
To update inode->i_size, we have to know dentry or inode.
But there is no way to lookup them by inside kernel. Hmmm....
Next patch will try it.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some archs define MODULED_VADDR/MODULES_END which is not in VMALLOC area.
This is handled only in x86-64. This patch make it more generic. And we
can use vread/vwrite to access the area. Fix it.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Benjamin Herrenschmidt <benh@kernel.crashing.org> pointed out that vmemmap
range is not included in KCORE_RAM, KCORE_VMALLOC ....
This adds KCORE_VMEMMAP if SPARSEMEM_VMEMMAP is used. By this, vmemmap
can be readable via /proc/kcore
Because it's not vmalloc area, vread/vwrite cannot be used. But the range
is static against the memory layout, this patch handles vmemmap area by
the same scheme with physical memory.
This patch assumes SPARSEMEM_VMEMMAP range is not in VMALLOC range. It's
correct now.
[akpm@linux-foundation.org: fix typo]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For /proc/kcore, each arch registers its memory range by kclist_add().
In usual,
- range of physical memory
- range of vmalloc area
- text, etc...
are registered but "range of physical memory" has some troubles. It
doesn't updated at memory hotplug and it tend to include unnecessary
memory holes. Now, /proc/iomem (kernel/resource.c) includes required
physical memory range information and it's properly updated at memory
hotplug. Then, it's good to avoid using its own code(duplicating
information) and to rebuild kclist for physical memory based on
/proc/iomem.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some 64bit arch has special segment for mapping kernel text. It should be
entried to /proc/kcore in addtion to direct-linear-map, vmalloc area.
This patch unifies KCORE_TEXT entry scattered under x86 and ia64.
I'm not familiar with other archs (mips has its own even after this patch)
but range of [_stext ..._end) is a valid area of text and it's not in
direct-map area, defining CONFIG_ARCH_PROC_KCORE_TEXT is only a necessary
thing to do.
Note: I left mips as it is now.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For /proc/kcore, vmalloc areas are registered per arch. But, all of them
registers same range of [VMALLOC_START...VMALLOC_END) This patch unifies
them. By this. archs which have no kclist_add() hooks can see vmalloc
area correctly.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, kclist_add() only eats start address and size as its arguments.
Considering to make kclist dynamically reconfigulable, it's necessary to
know which kclists are for System RAM and which are not.
This patch add kclist types as
KCORE_RAM
KCORE_VMALLOC
KCORE_TEXT
KCORE_OTHER
This "type" is used in a patch following this for detecting KCORE_RAM.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is for /proc/kcore. With this,
- many per-arch hooks are removed.
- /proc/kcore will know really valid physical memory area.
- /proc/kcore will be aware of memory hotplug.
- /proc/kcore will be architecture independent i.e.
if an arch supports CONFIG_MMU, it can use /proc/kcore.
(if the arch uses usual memory layout.)
This patch:
/proc/kcore uses its own list handling codes. It's better to use
generic list codes.
No changes in logic. just clean up.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A patch to give a better overview of the userland application stack usage,
especially for embedded linux.
Currently you are only able to dump the main process/thread stack usage
which is showed in /proc/pid/status by the "VmStk" Value. But you get no
information about the consumed stack memory of the the threads.
There is an enhancement in the /proc/<pid>/{task/*,}/*maps and which marks
the vm mapping where the thread stack pointer reside with "[thread stack
xxxxxxxx]". xxxxxxxx is the maximum size of stack. This is a value
information, because libpthread doesn't set the start of the stack to the
top of the mapped area, depending of the pthread usage.
A sample output of /proc/<pid>/task/<tid>/maps looks like:
08048000-08049000 r-xp 00000000 03:00 8312 /opt/z
08049000-0804a000 rw-p 00001000 03:00 8312 /opt/z
0804a000-0806b000 rw-p 00000000 00:00 0 [heap]
a7d12000-a7d13000 ---p 00000000 00:00 0
a7d13000-a7f13000 rw-p 00000000 00:00 0 [thread stack: 001ff4b4]
a7f13000-a7f14000 ---p 00000000 00:00 0
a7f14000-a7f36000 rw-p 00000000 00:00 0
a7f36000-a8069000 r-xp 00000000 03:00 4222 /lib/libc.so.6
a8069000-a806b000 r--p 00133000 03:00 4222 /lib/libc.so.6
a806b000-a806c000 rw-p 00135000 03:00 4222 /lib/libc.so.6
a806c000-a806f000 rw-p 00000000 00:00 0
a806f000-a8083000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0
a8083000-a8084000 r--p 00013000 03:00 14462 /lib/libpthread.so.0
a8084000-a8085000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0
a8085000-a8088000 rw-p 00000000 00:00 0
a8088000-a80a4000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2
a80a4000-a80a5000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2
a80a5000-a80a6000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2
afaf5000-afb0a000 rw-p 00000000 00:00 0 [stack]
ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
Also there is a new entry "stack usage" in /proc/<pid>/{task/*,}/status
which will you give the current stack usage in kb.
A sample output of /proc/self/status looks like:
Name: cat
State: R (running)
Tgid: 507
Pid: 507
.
.
.
CapBnd: fffffffffffffeff
voluntary_ctxt_switches: 0
nonvoluntary_ctxt_switches: 0
Stack usage: 12 kB
I also fixed stack base address in /proc/<pid>/{task/*,}/stat to the base
address of the associated thread stack and not the one of the main
process. This makes more sense.
[akpm@linux-foundation.org: fs/proc/array.c now needs walk_page_range()]
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove obfuscated zero-length input check and return -EINVAL instead of
-EIO error to make the error message clear to user. Add whitespace
stripping. No functionality changes.
The old code:
echo 1 > /proc/pid/make-it-fail (ok)
echo 1foo > /proc/pid/make-it-fail (-bash: echo: write error: Input/output error)
The new code:
echo 1 > /proc/pid/make-it-fail (ok)
echo 1foo > /proc/pid/make-it-fail (-bash: echo: write error: Invalid argument)
This patch is conservative in changes to not breaking existing
scripts/applications.
Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew Morton pointed out similar string hacking and obfuscated check for
zero-length input at the end of the function, David Rientjes suggested to
use strict_strtol to replace simple_strtol, this patch cover above
suggestions, add removing of leading and trailing whitespace from user
input. It does not change function behavious.
Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Amerigo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In 9063c61fd5 ("x86, 64-bit: Clean up user address masking") Linus
fixed the wrong size of /proc/kcore problem.
But its size still looks insane, since it never equals the size of
physical memory.
Signed-off-by: WANG Cong <amwang@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Tao Ma <tao.ma@oracle.com>
Cc: <mtk.manpages@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The exiting sub-thread flushes /proc/pid only, but this doesn't buy too
much: ps and friends mostly use /proc/tid/task/pid.
Remove "if (thread_group_leader())" checks from proc_flush_task() path,
this means we always remove /proc/tid/task/pid dentry on exit, and this
actually matches the comment above proc_flush_task().
The test-case:
static void* tfunc(void *arg)
{
char name[256];
sprintf(name, "/proc/%d/task/%ld/status", getpid(), gettid());
close(open(name, O_RDONLY));
return NULL;
}
int main(void)
{
pthread_t t;
for (;;) {
if (!pthread_create(&t, NULL, &tfunc, NULL))
pthread_join(t, NULL);
}
}
slabtop shows that pid/proc_inode_cache/etc grow quickly and
"indefinitely" until the task is killed or shrink_slab() is called, not
good. And the main thread needs a lot of time to exit.
The same can happen if something like "ps -efL" runs continuously, while
some application spawns short-living threads.
Reported-by: "James M. Leddy" <jleddy@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dominic Duval <dduval@redhat.com>
Cc: Frank Hirtz <fhirtz@redhat.com>
Cc: "Fuller, Johnray" <Johnray.Fuller@gs.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Paul Batkowski <pbatkowski@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/$pid/limits should show RLIMIT_CPU as seconds, which is the unit
used in kernel/posix-cpu-timers.c:
unsigned long psecs = cputime_to_secs(ptime);
...
if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
...
__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
qnx4 wrte support has never been fully implement, is broken since the dawn
of time and hasn't been actively developed since before git history
started.
Instead of letting it further bitrot and complicate API transition (like
the new truncate code) remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Anders Larsen <al@alarsen.net>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_sync_write() does the right thing for turning the aio_writev method
into a normal non-vectored synchronous write, no need to duplicate it in
ntfs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Anton Altaparmakov <aia21@cantab.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split the anonfd interface into a bare file pointer creation one, and a
file pointer creation plus install one.
There are cases, like the usage of eventfds inside other kernel
interfaces, where the file pointer created by anonfd needs to be used
inside the initialization of other structures.
As it is right now, as soon as anon_inode_getfd() returns, the kenrle can
race with userspace closing the newly installed file descriptor.
This patch, while keeping the old anon_inode_getfd(), introduces a new
anon_inode_getfile() (whose services are reused in anon_inode_getfd())
that allows to split the file creation phase and the fd install one.
Once all the kernel structures are initialized, the code can call the
proper fd_install().
Gregory manifested the need for something like this inside KVM.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Gregory Haskins <ghaskins@novell.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As mentioned in Documentation/CodingStyle, move EXPORT* macro's
to the line immediately after the closing function brace line.
Also, move the __initcall() similarly.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
According to Documentation/CodingStyle the EXPORT* macro should follow
immediately after the closing function brace line.
Also, mark_buffer_async_write_endio() and do_thaw_all() are not used
elsewhere so they should be marked as static.
In addition, file_fsync() is actually in fs/sync.c so move the EXPORT* to
that file.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have had a report of bad memory allocation latency during DVD-RAM (UDF)
writing. This is causing the user's desktop session to become unusable.
Jan tracked the cause of this down to UDF inode reclaim blocking:
gnome-screens D ffff810006d1d598 0 20686 1
ffff810006d1d508 0000000000000082 ffff810037db6718 0000000000000800
ffff810006d1d488 ffffffff807e4280 ffffffff807e4280 ffff810006d1a580
ffff8100bccbc140 ffff810006d1a8c0 0000000006d1d4e8 ffff810006d1a8c0
Call Trace:
[<ffffffff804477f3>] io_schedule+0x63/0xa5
[<ffffffff802c2587>] sync_buffer+0x3b/0x3f
[<ffffffff80447d2a>] __wait_on_bit+0x47/0x79
[<ffffffff80447dc6>] out_of_line_wait_on_bit+0x6a/0x77
[<ffffffff802c24f6>] __wait_on_buffer+0x1f/0x21
[<ffffffff802c442a>] __bread+0x70/0x86
[<ffffffff88de9ec7>] :udf:udf_tread+0x38/0x3a
[<ffffffff88de0fcf>] :udf:udf_update_inode+0x4d/0x68c
[<ffffffff88de26e1>] :udf:udf_write_inode+0x1d/0x2b
[<ffffffff802bcf85>] __writeback_single_inode+0x1c0/0x394
[<ffffffff802bd205>] write_inode_now+0x7d/0xc4
[<ffffffff88de2e76>] :udf:udf_clear_inode+0x3d/0x53
[<ffffffff802b39ae>] clear_inode+0xc2/0x11b
[<ffffffff802b3ab1>] dispose_list+0x5b/0x102
[<ffffffff802b3d35>] shrink_icache_memory+0x1dd/0x213
[<ffffffff8027ede3>] shrink_slab+0xe3/0x158
[<ffffffff8027fbab>] try_to_free_pages+0x177/0x232
[<ffffffff8027a578>] __alloc_pages+0x1fa/0x392
[<ffffffff802951fa>] alloc_page_vma+0x176/0x189
[<ffffffff802822d8>] __do_fault+0x10c/0x417
[<ffffffff80284232>] handle_mm_fault+0x466/0x940
[<ffffffff8044b922>] do_page_fault+0x676/0xabf
This blocks with iprune_mutex held, which then blocks other reclaimers:
X D ffff81009d47c400 0 17285 14831
ffff8100844f3728 0000000000000086 0000000000000000 ffff81000000e288
ffff81000000da00 ffffffff807e4280 ffffffff807e4280 ffff81009d47c400
ffffffff805ff890 ffff81009d47c740 00000000844f3808 ffff81009d47c740
Call Trace:
[<ffffffff80447f8c>] __mutex_lock_slowpath+0x72/0xa9
[<ffffffff80447e1a>] mutex_lock+0x1e/0x22
[<ffffffff802b3ba1>] shrink_icache_memory+0x49/0x213
[<ffffffff8027ede3>] shrink_slab+0xe3/0x158
[<ffffffff8027fbab>] try_to_free_pages+0x177/0x232
[<ffffffff8027a578>] __alloc_pages+0x1fa/0x392
[<ffffffff8029507f>] alloc_pages_current+0xd1/0xd6
[<ffffffff80279ac0>] __get_free_pages+0xe/0x4d
[<ffffffff802ae1b7>] __pollwait+0x5e/0xdf
[<ffffffff8860f2b4>] :nvidia:nv_kern_poll+0x2e/0x73
[<ffffffff802ad949>] do_select+0x308/0x506
[<ffffffff802adced>] core_sys_select+0x1a6/0x254
[<ffffffff802ae0b7>] sys_select+0xb5/0x157
Now I think the main problem is having the filesystem block (and do IO) in
inode reclaim. The problem is that this doesn't get accounted well and
penalizes a random allocator with a big latency spike caused by work
generated from elsewhere.
I think the best idea would be to avoid this. By design if possible, or
by deferring the hard work to an asynchronous context. If the latter,
then the fs would probably want to throttle creation of new work with
queue size of the deferred work, but let's not get into those details.
Anyway, the other obvious thing we looked at is the iprune_mutex which is
causing the cascading blocking. We could turn this into an rwsem to
improve concurrency. It is unreasonable to totally ban all potentially
slow or blocking operations in inode reclaim, so I think this is a cheap
way to get a small improvement.
This doesn't solve the whole problem of course. The process doing inode
reclaim will still take the latency hit, and concurrent processes may end
up contending on filesystem locks. So fs developers should keep these
problems in mind.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jan Kara <jack@ucw.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make all seq_operations structs const, to help mitigate against
revectoring user-triggerable function pointers.
This is derived from the grsecurity patch, although generated from scratch
because it's simpler than extracting the changes from there.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move various magic-number definitions into magic.h.
Signed-off-by: Nick Black <dank@qemfd.net>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__estimate_accuracy() was prone to integer overflow, for example if *tv ==
{2147, 483648000} on a 32 bit computer (or even for delays as small as
{429, 500000000} if the task is niced).
Because the result was already forced between 0 and 100ms, the effect of
the overflow was not too problematic, but the use of the hrtimer range
feature was not optimal in overflow cases.
This patch ensures that there can not be an integer overflow in this
function.
Signed-off-by: Guillaume Knispel <gknispel@proformatique.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function uses signed integers for the unix_date and local variables -
if a negative number is supplied and the leap-year condition is not met,
month will be 0, leading to a read of day_n[-1]
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When calling vfs_unlink() on the lower dentry, d_delete() turns the
dentry into a negative dentry when the d_count is 1. This eventually
caused a NULL pointer deref when a read() or write() was done and the
negative dentry's d_inode was dereferenced in
ecryptfs_read_update_atime() or ecryptfs_getxattr().
Placing mutt's tmpdir in an eCryptfs mount is what initially triggered
the oops and I was able to reproduce it with the following sequence:
open("/tmp/upper/foo", O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW, 0600) = 3
link("/tmp/upper/foo", "/tmp/upper/bar") = 0
unlink("/tmp/upper/foo") = 0
open("/tmp/upper/bar", O_RDWR|O_CREAT|O_NOFOLLOW, 0600) = 4
unlink("/tmp/upper/bar") = 0
write(4, "eCryptfs test\n"..., 14 <unfinished ...>
+++ killed by SIGKILL +++
https://bugs.launchpad.net/ecryptfs/+bug/387073
Reported-by: Loïc Minier <loic.minier@canonical.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: ecryptfs-devel@lists.launchpad.net
Cc: stable <stable@kernel.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Errors returned from vfs_read() and vfs_write() calls to the lower
filesystem were being masked as -EINVAL. This caused some confusion to
users who saw EINVAL instead of ENOSPC when the disk was full, for
instance.
Also, the actual bytes read or written were not accessible by callers to
ecryptfs_read_lower() and ecryptfs_write_lower(), which may be useful in
some cases. This patch updates the error handling logic where those
functions are called in order to accept positive return codes indicating
success.
Cc: Eric Sandeen <esandeen@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: ecryptfs-devel@lists.launchpad.net
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
When searching through the global authentication tokens for a given key
signature, verify that a matching key has not been revoked and has not
expired. This allows the `keyctl revoke` command to be properly used on
keys in use by eCryptfs.
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: ecryptfs-devel@lists.launchpad.net
Cc: stable <stable@kernel.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Returns -ENOTSUPP when attempting to use filename encryption with
something other than a password authentication token, such as a private
token from openssl. Using filename encryption with a userspace eCryptfs
key module is a future goal. Until then, this patch handles the
situation a little better than simply using a BUG_ON().
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: ecryptfs-devel@lists.launchpad.net
Cc: stable <stable@kernel.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
If the lower inode is read-only, don't attempt to open the lower file
read/write and don't hand off the open request to the privileged
eCryptfs kthread for opening it read/write. Instead, only try an
unprivileged, read-only open of the file and give up if that fails.
This patch fixes an oops when eCryptfs is mounted on top of a read-only
mount.
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Eric Sandeen <esandeen@redhat.com>
Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: ecryptfs-devel@lists.launchpad.net
Cc: stable <stable@kernel.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Returns an error when an unrecognized cipher code is present in a tag 3
packet or an ecryptfs_crypt_stat cannot be initialized. Also sets an
crypt_stat->tfm error pointer to NULL to ensure that it will not be
incorrectly freed in ecryptfs_destroy_crypt_stat().
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: ecryptfs-devel@lists.launchpad.net
Cc: stable <stable@kernel.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
So, I compiled a 2.6.31-rc5 kernel with ecryptfs and loaded its module.
When it came time to mount my filesystem, I got this in dmesg, and it
refused to mount:
[93577.776637] Unable to allocate crypto cipher with name [aes]; rc = [-2]
[93577.783280] Error attempting to initialize key TFM cipher with name = [aes]; rc = [-2]
[93577.791183] Error attempting to initialize cipher with name = [aes] and key size = [32]; rc = [-2]
[93577.800113] Error parsing options; rc = [-22]
I figured from the error message that I'd either forgotten to load "aes"
or that my key size was bogus. Neither one of those was the case. In
fact, I was missing the CRYPTO_ECB config option and the 'ecb' module.
Unfortunately, there's no trace of 'ecb' in that error message.
I've done two things to fix this. First, I've modified ecryptfs's
Kconfig entry to select CRYPTO_ECB and CRYPTO_CBC. I also took CRYPTO
out of the dependencies since the 'select' will take care of it for us.
I've also modified the error messages to print a string that should
contain both 'ecb' and 'aes' in my error case. That will give any
future users a chance of finding the right modules and Kconfig options.
I also wonder if we should:
select CRYPTO_AES if !EMBEDDED
since I think most ecryptfs users are using AES like me.
Cc: ecryptfs-devel@lists.launchpad.net
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Dustin Kirkland <kirkland@canonical.com>
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
[tyhicks@linux.vnet.ibm.com: Removed extra newline, 80-char violation]
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Lockdep reports the following valid-looking possible AB-BA deadlock with
global_auth_tok_list_mutex and keysig_list_mutex:
ecryptfs_new_file_context() ->
ecryptfs_copy_mount_wide_sigs_to_inode_sigs() ->
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
-> ecryptfs_add_keysig() ->
mutex_lock(&crypt_stat->keysig_list_mutex);
vs
ecryptfs_generate_key_packet_set() ->
mutex_lock(&crypt_stat->keysig_list_mutex);
-> ecryptfs_find_global_auth_tok_for_sig() ->
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
ie the two mutexes are taken in opposite orders in the two different
code paths. I'm not sure if this is a real bug where two threads could
actually hit the two paths in parallel and deadlock, but it at least
makes lockdep impossible to use with ecryptfs since this report triggers
every time and disables future lockdep reporting.
Since ecryptfs_add_keysig() is called only from the single callsite in
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(), the simplest fix seems to
be to move the lock of keysig_list_mutex back up outside of the where
global_auth_tok_list_mutex is taken. This patch does that, and fixes
the lockdep report on my system (and ecryptfs still works OK).
The full output of lockdep fixed by this patch is:
=======================================================
[ INFO: possible circular locking dependency detected ]
2.6.31-2-generic #14~rbd2
-------------------------------------------------------
gdm/2640 is trying to acquire lock:
(&mount_crypt_stat->global_auth_tok_list_mutex){+.+.+.}, at: [<ffffffff8121591e>] ecryptfs_find_global_auth_tok_for_sig+0x2e/0x90
but task is already holding lock:
(&crypt_stat->keysig_list_mutex){+.+.+.}, at: [<ffffffff81217728>] ecryptfs_generate_key_packet_set+0x58/0x2b0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&crypt_stat->keysig_list_mutex){+.+.+.}:
[<ffffffff8108c897>] check_prev_add+0x2a7/0x370
[<ffffffff8108cfc1>] validate_chain+0x661/0x750
[<ffffffff8108d2e7>] __lock_acquire+0x237/0x430
[<ffffffff8108d585>] lock_acquire+0xa5/0x150
[<ffffffff815526cd>] __mutex_lock_common+0x4d/0x3d0
[<ffffffff81552b56>] mutex_lock_nested+0x46/0x60
[<ffffffff8121526a>] ecryptfs_add_keysig+0x5a/0xb0
[<ffffffff81213299>] ecryptfs_copy_mount_wide_sigs_to_inode_sigs+0x59/0xb0
[<ffffffff81214b06>] ecryptfs_new_file_context+0xa6/0x1a0
[<ffffffff8120e42a>] ecryptfs_initialize_file+0x4a/0x140
[<ffffffff8120e54d>] ecryptfs_create+0x2d/0x60
[<ffffffff8113a7d4>] vfs_create+0xb4/0xe0
[<ffffffff8113a8c4>] __open_namei_create+0xc4/0x110
[<ffffffff8113d1c1>] do_filp_open+0xa01/0xae0
[<ffffffff8112d8d9>] do_sys_open+0x69/0x140
[<ffffffff8112d9f0>] sys_open+0x20/0x30
[<ffffffff81013132>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
-> #0 (&mount_crypt_stat->global_auth_tok_list_mutex){+.+.+.}:
[<ffffffff8108c675>] check_prev_add+0x85/0x370
[<ffffffff8108cfc1>] validate_chain+0x661/0x750
[<ffffffff8108d2e7>] __lock_acquire+0x237/0x430
[<ffffffff8108d585>] lock_acquire+0xa5/0x150
[<ffffffff815526cd>] __mutex_lock_common+0x4d/0x3d0
[<ffffffff81552b56>] mutex_lock_nested+0x46/0x60
[<ffffffff8121591e>] ecryptfs_find_global_auth_tok_for_sig+0x2e/0x90
[<ffffffff812177d5>] ecryptfs_generate_key_packet_set+0x105/0x2b0
[<ffffffff81212f49>] ecryptfs_write_headers_virt+0xc9/0x120
[<ffffffff8121306d>] ecryptfs_write_metadata+0xcd/0x200
[<ffffffff8120e44b>] ecryptfs_initialize_file+0x6b/0x140
[<ffffffff8120e54d>] ecryptfs_create+0x2d/0x60
[<ffffffff8113a7d4>] vfs_create+0xb4/0xe0
[<ffffffff8113a8c4>] __open_namei_create+0xc4/0x110
[<ffffffff8113d1c1>] do_filp_open+0xa01/0xae0
[<ffffffff8112d8d9>] do_sys_open+0x69/0x140
[<ffffffff8112d9f0>] sys_open+0x20/0x30
[<ffffffff81013132>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
other info that might help us debug this:
2 locks held by gdm/2640:
#0: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8113cb8b>] do_filp_open+0x3cb/0xae0
#1: (&crypt_stat->keysig_list_mutex){+.+.+.}, at: [<ffffffff81217728>] ecryptfs_generate_key_packet_set+0x58/0x2b0
stack backtrace:
Pid: 2640, comm: gdm Tainted: G C 2.6.31-2-generic #14~rbd2
Call Trace:
[<ffffffff8108b988>] print_circular_bug_tail+0xa8/0xf0
[<ffffffff8108c675>] check_prev_add+0x85/0x370
[<ffffffff81094912>] ? __module_text_address+0x12/0x60
[<ffffffff8108cfc1>] validate_chain+0x661/0x750
[<ffffffff81017275>] ? print_context_stack+0x85/0x140
[<ffffffff81089c68>] ? find_usage_backwards+0x38/0x160
[<ffffffff8108d2e7>] __lock_acquire+0x237/0x430
[<ffffffff8108d585>] lock_acquire+0xa5/0x150
[<ffffffff8121591e>] ? ecryptfs_find_global_auth_tok_for_sig+0x2e/0x90
[<ffffffff8108b0b0>] ? check_usage_backwards+0x0/0xb0
[<ffffffff815526cd>] __mutex_lock_common+0x4d/0x3d0
[<ffffffff8121591e>] ? ecryptfs_find_global_auth_tok_for_sig+0x2e/0x90
[<ffffffff8121591e>] ? ecryptfs_find_global_auth_tok_for_sig+0x2e/0x90
[<ffffffff8108c02c>] ? mark_held_locks+0x6c/0xa0
[<ffffffff81125b0d>] ? kmem_cache_alloc+0xfd/0x1a0
[<ffffffff8108c34d>] ? trace_hardirqs_on_caller+0x14d/0x190
[<ffffffff81552b56>] mutex_lock_nested+0x46/0x60
[<ffffffff8121591e>] ecryptfs_find_global_auth_tok_for_sig+0x2e/0x90
[<ffffffff812177d5>] ecryptfs_generate_key_packet_set+0x105/0x2b0
[<ffffffff81212f49>] ecryptfs_write_headers_virt+0xc9/0x120
[<ffffffff8121306d>] ecryptfs_write_metadata+0xcd/0x200
[<ffffffff81210240>] ? ecryptfs_init_persistent_file+0x60/0xe0
[<ffffffff8120e44b>] ecryptfs_initialize_file+0x6b/0x140
[<ffffffff8120e54d>] ecryptfs_create+0x2d/0x60
[<ffffffff8113a7d4>] vfs_create+0xb4/0xe0
[<ffffffff8113a8c4>] __open_namei_create+0xc4/0x110
[<ffffffff8113d1c1>] do_filp_open+0xa01/0xae0
[<ffffffff8129a93e>] ? _raw_spin_unlock+0x5e/0xb0
[<ffffffff8155410b>] ? _spin_unlock+0x2b/0x40
[<ffffffff81139e9b>] ? getname+0x3b/0x240
[<ffffffff81148a5a>] ? alloc_fd+0xfa/0x140
[<ffffffff8112d8d9>] do_sys_open+0x69/0x140
[<ffffffff81553b8f>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[<ffffffff8112d9f0>] sys_open+0x20/0x30
[<ffffffff81013132>] system_call_fastpath+0x16/0x1b
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
In ecryptfs_destroy_inode(), inode_info->lower_file_mutex is locked,
and just after the mutex is unlocked, the code does:
kmem_cache_free(ecryptfs_inode_info_cache, inode_info);
This means that if another context could possibly try to take the same
mutex as ecryptfs_destroy_inode(), then it could end up getting the
mutex just before the data structure containing the mutex is freed.
So any such use would be an obvious use-after-free bug (catchable with
slab poisoning or mutex debugging), and therefore the locking in
ecryptfs_destroy_inode() is not needed and can be dropped.
Similarly, in ecryptfs_destroy_crypt_stat(), crypt_stat->keysig_list_mutex
is locked, and then the mutex is unlocked just before the code does:
memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
Therefore taking this mutex is similarly not necessary.
Removing this locking fixes false-positive lockdep reports such as the
following (and they are false-positives for exactly the same reason
that the locking is not needed):
=================================
[ INFO: inconsistent lock state ]
2.6.31-2-generic #14~rbd3
---------------------------------
inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage.
kswapd0/323 [HC0[0]:SC0[0]:HE1:SE1] takes:
(&inode_info->lower_file_mutex){+.+.?.}, at: [<ffffffff81210d34>] ecryptfs_destroy_inode+0x34/0x100
{RECLAIM_FS-ON-W} state was registered at:
[<ffffffff8108c02c>] mark_held_locks+0x6c/0xa0
[<ffffffff8108c10f>] lockdep_trace_alloc+0xaf/0xe0
[<ffffffff81125a51>] kmem_cache_alloc+0x41/0x1a0
[<ffffffff8113117a>] get_empty_filp+0x7a/0x1a0
[<ffffffff8112dd46>] dentry_open+0x36/0xc0
[<ffffffff8121a36c>] ecryptfs_privileged_open+0x5c/0x2e0
[<ffffffff81210283>] ecryptfs_init_persistent_file+0xa3/0xe0
[<ffffffff8120e838>] ecryptfs_lookup_and_interpose_lower+0x278/0x380
[<ffffffff8120f97a>] ecryptfs_lookup+0x12a/0x250
[<ffffffff8113930a>] real_lookup+0xea/0x160
[<ffffffff8113afc8>] do_lookup+0xb8/0xf0
[<ffffffff8113b518>] __link_path_walk+0x518/0x870
[<ffffffff8113bd9c>] path_walk+0x5c/0xc0
[<ffffffff8113be5b>] do_path_lookup+0x5b/0xa0
[<ffffffff8113bfe7>] user_path_at+0x57/0xa0
[<ffffffff811340dc>] vfs_fstatat+0x3c/0x80
[<ffffffff8113424b>] vfs_stat+0x1b/0x20
[<ffffffff81134274>] sys_newstat+0x24/0x50
[<ffffffff81013132>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
irq event stamp: 7811
hardirqs last enabled at (7811): [<ffffffff810c037f>] call_rcu+0x5f/0x90
hardirqs last disabled at (7810): [<ffffffff810c0353>] call_rcu+0x33/0x90
softirqs last enabled at (3764): [<ffffffff810631da>] __do_softirq+0x14a/0x220
softirqs last disabled at (3751): [<ffffffff8101440c>] call_softirq+0x1c/0x30
other info that might help us debug this:
2 locks held by kswapd0/323:
#0: (shrinker_rwsem){++++..}, at: [<ffffffff810f67ed>] shrink_slab+0x3d/0x190
#1: (&type->s_umount_key#35){.+.+..}, at: [<ffffffff811429a1>] prune_dcache+0xd1/0x1b0
stack backtrace:
Pid: 323, comm: kswapd0 Tainted: G C 2.6.31-2-generic #14~rbd3
Call Trace:
[<ffffffff8108ad6c>] print_usage_bug+0x18c/0x1a0
[<ffffffff8108aff0>] ? check_usage_forwards+0x0/0xc0
[<ffffffff8108bac2>] mark_lock_irq+0xf2/0x280
[<ffffffff8108bd87>] mark_lock+0x137/0x1d0
[<ffffffff81164710>] ? fsnotify_clear_marks_by_inode+0x30/0xf0
[<ffffffff8108bee6>] mark_irqflags+0xc6/0x1a0
[<ffffffff8108d337>] __lock_acquire+0x287/0x430
[<ffffffff8108d585>] lock_acquire+0xa5/0x150
[<ffffffff81210d34>] ? ecryptfs_destroy_inode+0x34/0x100
[<ffffffff8108d2e7>] ? __lock_acquire+0x237/0x430
[<ffffffff815526ad>] __mutex_lock_common+0x4d/0x3d0
[<ffffffff81210d34>] ? ecryptfs_destroy_inode+0x34/0x100
[<ffffffff81164710>] ? fsnotify_clear_marks_by_inode+0x30/0xf0
[<ffffffff81210d34>] ? ecryptfs_destroy_inode+0x34/0x100
[<ffffffff8129a91e>] ? _raw_spin_unlock+0x5e/0xb0
[<ffffffff81552b36>] mutex_lock_nested+0x46/0x60
[<ffffffff81210d34>] ecryptfs_destroy_inode+0x34/0x100
[<ffffffff81145d27>] destroy_inode+0x87/0xd0
[<ffffffff81146b4c>] generic_delete_inode+0x12c/0x1a0
[<ffffffff81145832>] iput+0x62/0x70
[<ffffffff811423c8>] dentry_iput+0x98/0x110
[<ffffffff81142550>] d_kill+0x50/0x80
[<ffffffff81142623>] prune_one_dentry+0xa3/0xc0
[<ffffffff811428b1>] __shrink_dcache_sb+0x271/0x290
[<ffffffff811429d9>] prune_dcache+0x109/0x1b0
[<ffffffff81142abf>] shrink_dcache_memory+0x3f/0x50
[<ffffffff810f68dd>] shrink_slab+0x12d/0x190
[<ffffffff810f9377>] balance_pgdat+0x4d7/0x640
[<ffffffff8104c4c0>] ? finish_task_switch+0x40/0x150
[<ffffffff810f63c0>] ? isolate_pages_global+0x0/0x60
[<ffffffff810f95f7>] kswapd+0x117/0x170
[<ffffffff810777a0>] ? autoremove_wake_function+0x0/0x40
[<ffffffff810f94e0>] ? kswapd+0x0/0x170
[<ffffffff810773be>] kthread+0x9e/0xb0
[<ffffffff8101430a>] child_rip+0xa/0x20
[<ffffffff81013c90>] ? restore_args+0x0/0x30
[<ffffffff81077320>] ? kthread+0x0/0xb0
[<ffffffff81014300>] ? child_rip+0x0/0x20
Signed-off-by: Roland Dreier <roland@digitalvampire.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
In ocfs2_file_aio_write, we will prevent direct io if
we find that we are appending(changing i_size) and call
generic_file_aio_write_nolock. But actually O_DIRECT flag
is there and this function will call generic_file_direct_write
eventually which will update i_size and leave di->i_size
alone. The bug is
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1173.
So this patch let ocfs2_direct_IO returns 0 directly if we
are appending so that buffered write will be called and
di->i_size get updated successfully. And this is also
what we want in ocfs2_file_aio_write.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
when we check/modify lockres->purge, we should with the protection of lockres->spinlock.
in dlm_purge_lockres(), the checking/modifying is not with the protectin.
this patch fixes it.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch adds the missed mlog_exit() and mlog_exit_void() lines when routines
return.
Signed-off-by: Coly Li <coly.li@suse.de>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In a clustered setup, we have to panic the box on journal abort. This is
because we don't have the facility to go hard readonly. With hard ro, another
node would detect node failure and initiate recovery.
Having said that, we shouldn't force panic if the volume is mounted locally.
This patch defers the handling to the mount option, errors.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The ioctl will take 3 parameters: old_path, new_path and
preserve and call vfs_reflink. It is useful when we backport
reflink features to old kernels.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
reflink has 2 options for the destination file:
1. snapshot: reflink will attempt to preserve ownership, permissions,
and all other security state in order to create a full snapshot.
2. new file: it will acquire the data extent sharing but will see the
file's security state and attributes initialized as a new file.
So add the option to ocfs2.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
reflink is a very complicated process, so it can't be integrated
into one transaction. So if the system panic in the operation, we
may leave a unfinished inode in the destication directory.
So we will try to create an inode in orphan_dir first, reflink it
to the src file and then move it to the destication file in the end.
In that way we won't be afraid of any corruption during the reflink.
This patch adds 2 functions for orphan_dir operation:
1. Create a new inode in orphand dir.
2. Move an inode to a target dir.
Note:
fsck.ocfs2 should work for us to remove the unfinished file in the
orphan_dir.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
In order to make the original function more suitable for reflink,
we modify the following inode operations. Both are tiny.
1. ocfs2_mknod_locked only use dentry for mlog, so move it to
the caller so that reflink can use it without dentry.
2. ocfs2_prepare_orphan_dir only want inode to get its ip_blkno.
So use ip_blkno instead.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
In ocfs2_extend_rotate_transaction, op_credits is the orignal
credits in the handle and we only want to extend the credits
for the rotation, but the old solution always double it. It
is harmless for some minor operations, but for actions like
reflink we may rotate tree many times and cause the credits
increase dramatically. So this patch try to only increase
the desired credits.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Actually the whole reflink will touch refcount tree 2 times:
1. It will add the clusters in the extent record to the tree if it
isn't refcounted before.
2. It will add 1 refcount to these clusters when it add these
extent records to the tree.
So actually we shouldn't do merge in the 1st operation since the 2nd
one will soon be called and we may have to split it again. Do a merge
first and split soon is a waste of time. So we only merge in the 2nd
round. This is done by adding a new internal __ocfs2_increase_refcount
and call it with "not-merge" for 1st refcount operation in reflink.
This also has a side-effect that we don't need to worry too much about
the metadata allocation in the 2nd round since it will only merge and
no split will happen for those records.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
The old xattr value remove is quite simple, it just erase the
tree and free the clusters. But as we have added refcount support,
The process is a little complicated.
We have to lock the refcount tree at the beginning, what's more,
we may split the refcount tree in some cases, so meta/credits are
needed.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
With reflink, there is a need that we create a new xattr indexed
block from the very beginning. So add a new parameter for
ocfs2_create_xattr_block.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Now with xattr refcount support, we need to check whether
we have xattr refcounted before we remove the refcount tree.
Now the mechanism is:
1) Check whether i_clusters == 0, if no, exit.
2) check whether we have i_xattr_loc in dinode. if yes, exit.
2) Check whether we have inline xattr stored outside, if yes, exit.
4) Remove the tree.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
In ocfs2, when xattr's value is larger than OCFS2_XATTR_INLINE_SIZE,
it will be kept outside of the blocks we store xattr entry. And they
are stored in a b-tree also. So this patch try to attach all these
clusters to refcount tree also.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Currently we have ocfs2_iterate_xattr_buckets which can receive
a para and a callback to iterate a series of bucket. It is good.
But actually the 2 callers ocfs2_xattr_tree_list_index_block and
ocfs2_delete_xattr_index_block are almost the same. The only
difference is that the latter need to handle the extent record
also. So add a new function named ocfs2_iterate_xattr_index_block.
It can be given func callback which are used for exten record.
So now we only have one iteration function for the xattr index
block. Ane what's more, it is useful for our future reflink
operations.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
In order to make 2 transcation(xattr and cow) independent with each other,
we CoW the whole xattr out in case we are setting them.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
We currently use pagecache to duplicate clusters in CoW,
but it isn't suitable for xattr case. So abstract it out
so that the caller can decide which method it use.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
With the new refcount tree, xattr value can also be refcounted
among multiple files. So return the appropriate extent flags
so that CoW can used it later.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
A reflink creates a snapshot of a file, that means the attributes
must be identical except for three exceptions - nlink, ino, and ctime.
As for time changes, Here is a brief description:
1. Source file:
1) atime: Ignore. Let the lazy atime code handle that.
2) mtime: don't touch.
3) ctime: If we change the tree (adding REFCOUNTED to at least one
extent), update it.
2. Destination file:
1) atime: ignore.
2) mtime: we want it to appear identical to the source.
3) ctime: update.
The idea here is that an ls -l will show the same time for the
src and target - it shows mtime. Backup software like rsync and tar
will treat the new file correctly too.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
2 major functions are added in this patch.
ocfs2_attach_refcount_tree will create a new refcount tree to the
old file if it doesn't have one and insert all the extent records
to the tree if they are not refcounted.
ocfs2_create_reflink_node will:
1. set the refcount tree to the new file.
2. call ocfs2_duplicate_extent_list which will iterate all the
extents for the old file, insert it to the new file and increase
the corresponding referennce count.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
When we truncate a file to a specific size which resides in a reflinked
cluster, we need to CoW it since ocfs2_zero_range_for_truncate will
zero the space after the size(just another type of write).
So we add a "max_cpos" in ocfs2_refcount_cow so that it will stop when
it hit the max cluster offset.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
When we use mmap, we CoW the refcountd clusters in
ocfs2_write_begin_nolock. While for normal file
io(including directio), we do CoW in
ocfs2_prepare_inode_for_write.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
During CoW, if the old extent record is refcounted, we allocate
som new clusters and do CoW. Actually we can have some improvement
here. If the old extent has refcount=1, that means now it is only
used by this file. So we don't need to allocate new clusters, just
remove the refcounted flag and it is OK. We also have to remove
it from the refcount tree while not deleting it.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
This patch try CoW support for a refcounted record.
the whole process will be:
1. Calculate how many clusters we need to CoW and where we start.
Extents that are not completely encompassed by the write will
be broken on 1MB boundaries.
2. Do CoW for the clusters with the help of page cache.
3. Change the b-tree structure with the new allocated clusters.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Add 'Decrement refcount for delete' in to the normal truncate
process. So for a refcounted extent record, call refcount rec
decrementation instead of cluster free.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Given a physical cpos and length, decrement the refcount
in the tree. If the refcount for any portion of the extent goes
to zero, that portion is queued for freeing.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Given a physical cpos and length, increment the refcount
in the tree. If the extent has not been seen before, a refcount
record is created for it. Refcount records may be merged or
split by this operation.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Now fs/ocfs2/alloc.c has more than 7000 lines. It contains our
basic b-tree operation. Although we have already make our b-tree
operation generic, the basic structrue ocfs2_path which is used
to iterate one b-tree branch is still static and limited to only
used in alloc.c. As refcount tree need them and I don't want to
add any more b-tree unrelated code to alloc.c, export them out.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Add refcount b-tree as a new extent tree so that it can
use the b-tree to store and maniuplate ocfs2_refcount_rec.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
ocfs2_mark_extent_written actually does the following things:
1. check the parameters.
2. initialize the left_path and split_rec.
3. call __ocfs2_mark_extent_written. it will do:
1) check the flags of unwritten
2) do the real split work.
The whole process is packed tightly somehow. So this patch
will abstract 2 different functions so that future b-tree
operation can work with it.
1. __ocfs2_split_extent will accept path and split_rec and do
the real split work.
2. ocfs2_change_extent_flag will accept a new flag and initialize
path and split_rec.
So now ocfs2_mark_extent_written will do:
1. check the parameters.
2. call ocfs2_change_extent_flag.
1) initalize the left_path and split_rec.
2) check whether the new flags conflict with the old one.
3) call __ocfs2_split_extent to do the split.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Add a new operation eo_ocfs2_extent_contig int the extent tree's
operations vector. So that with the new refcount tree, We want
this so that refcount trees can always return CONTIG_NONE and
prevent extent merging.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Implement locking around struct ocfs2_refcount_tree. This protects
all read/write operations on refcount trees. ocfs2_refcount_tree
has its own lock and its own caching_info, protecting buffers among
multiple nodes.
User must call ocfs2_lock_refcount_tree before his operation on
the tree and unlock it after that.
ocfs2_refcount_trees are referenced by the block number of the
refcount tree root block, So we create an rb-tree on the ocfs2_super
to look them up.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
refcount tree should use its own caching info so that when
we downconvert the refcount tree lock, we can drop all the
cached buffer head.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
In meta downconvert, we need to checkpoint the metadata in an inode.
For refcount tree, we also need it. So abstract the process out.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
We now do extra checks before a balance to make sure
there is room for the balance to take place. One of
the checks was testing to see if we were trying to
balance away the last block group of a given type.
If there is no space available for new chunks, we
should not try and balance away the last block group
of a give type. But, the code wasn't checking for
available chunk space, and so it was exiting too soon.
The fix here is to combine some of the checks and make
sure we try to allocate new chunks when we're balancing
the last block group.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
After a balance it is briefly possible for the space info
field in the inode to be NULL. This adds some checks
to make sure things properly deal with the NULL value.
Signed-off-by: Chris Mason <chris.mason@oracle.com>