* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits)
rcu: Make RCU's CPU-stall detector be default
rcu: Add expedited grace-period support for preemptible RCU
rcu: Enable fourth level of TREE_RCU hierarchy
rcu: Rename "quiet" functions
rcu: Re-arrange code to reduce #ifdef pain
rcu: Eliminate unneeded function wrapping
rcu: Fix grace-period-stall bug on large systems with CPU hotplug
rcu: Eliminate __rcu_pending() false positives
rcu: Further cleanups of use of lastcomp
rcu: Simplify association of forced quiescent states with grace periods
rcu: Accelerate callback processing on CPUs not detecting GP end
rcu: Mark init-time-only rcu_bootup_announce() as __init
rcu: Simplify association of quiescent states with grace periods
rcu: Rename dynticks_completed to completed_fqs
rcu: Enable synchronize_sched_expedited() fastpath
rcu: Remove inline from forward-referenced functions
rcu: Fix note_new_gpnum() uses of ->gpnum
rcu: Fix synchronization for rcu_process_gp_end() uses of ->completed counter
rcu: Prepare for synchronization fixes: clean up for non-NO_HZ handling of ->completed counter
rcu: Cleanup: balance rcu_irq_enter()/rcu_irq_exit() calls
...
* 'core-printk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
ratelimit: Make suppressed output messages more useful
printk: Remove ratelimit.h from kernel.h
ratelimit: Fix/allow use in atomic contexts
ratelimit: Use per ratelimit context locking
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
mutex: Fix missing conditions to build mutex_spin_on_owner()
mutex: Better control mutex adaptive spinning config
locking, task_struct: Reduce size on TRACE_IRQFLAGS and 64bit
locking: Use __[SPIN|RW]_LOCK_UNLOCKED in [spin|rw]_lock_init()
locking: Remove unused prototype
locking: Reduce ifdefs in kernel/spinlock.c
locking: Make inlining decision Kconfig based
We don't need to build mutex_spin_on_owner() if we have
CONFIG_DEBUG_MUTEXES or CONFIG_HAVE_DEFAULT_NO_SPIN_MUTEXES as
it won't be used under such configs.
Use CONFIG_MUTEX_SPIN_ON_OWNER as it gathers all the necessary
checks before building it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1259783357-8542-2-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Introduce CONFIG_MUTEX_SPIN_ON_OWNER so that we can centralize
in a single place the conditions that determine its definition
and use.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1259783357-8542-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Enable a fourth level of rcu_node hierarchy for TREE_RCU and
TREE_PREEMPT_RCU. This is for stress-testing and experiemental
purposes only, although in theory this would enable 16,777,216
CPUs on 64-bit systems, though only 1,048,576 CPUs on 32-bit
systems. Normal experimental use of this fourth level will
normally set CONFIG_RCU_FANOUT=2, requiring a 16-CPU system,
though the more adventurous (and more fortunate) experimenters
may wish to chose CONFIG_RCU_FANOUT=3 for 81-CPU systems or even
CONFIG_RCU_FANOUT=4 for 256-CPU systems.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12597846161257-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The number of "quiet" functions has grown recently, and the
names are no longer very descriptive. The point of all of these
functions is to do some portion of the task of reporting a
quiescent state, so rename them accordingly:
o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a
quiescent state to the per-CPU rcu_data structure. If this
turns out to be a new quiescent state for this grace period,
then rcu_report_qs_rnp() will be invoked to propagate the
quiescent state up the rcu_node hierarchy.
o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports
a quiescent state for a given CPU (or possibly a set of CPUs)
up the rcu_node hierarchy.
o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which
reports a full set of quiescent states to the global rcu_state
structure.
o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports
a quiescent state due to a task exiting an RCU read-side critical
section that had previously blocked in that same critical section.
As indicated by the new name, this type of quiescent state is
reported up the rcu_node hierarchy (using rcu_report_qs_rnp()
to do so).
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12597846163698-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On the parisc architecture we face for each and every loaded kernel module
this kernel "badness warning":
sysfs: cannot create duplicate filename '/module/ac97_bus/sections/.text'
Badness at fs/sysfs/dir.c:487
Reason for that is, that on parisc all kernel modules do have multiple
.text sections due to the usage of the -ffunction-sections compiler flag
which is needed to reach all jump targets on this platform.
An objdump on such a kernel module gives:
Sections:
Idx Name Size VMA LMA File off Algn
0 .note.gnu.build-id 00000024 00000000 00000000 00000034 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .text 00000000 00000000 00000000 00000058 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE
2 .text.ac97_bus_match 0000001c 00000000 00000000 00000058 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
3 .text 00000000 00000000 00000000 000000d4 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
Since the .text sections are empty (size of 0 bytes) and won't be
loaded by the kernel module loader anyway, I don't see a reason
why such sections need to be listed under
/sys/module/<module_name>/sections/<section_name> either.
The attached patch does solve this issue by not exporting section
names which are empty.
This fixes bugzilla http://bugzilla.kernel.org/show_bug.cgi?id=14703
Signed-off-by: Helge Deller <deller@gmx.de>
CC: rusty@rustcorp.com.au
CC: akpm@linux-foundation.org
CC: James.Bottomley@HansenPartnership.com
CC: roland@redhat.com
CC: dave@hiauly1.hia.nrc.ca
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commits 3d7a641 ("SLOW_WORK: Wait for outstanding work items belonging to a
module to clear") introduced some code to make sure that all of a module's
slow-work items were complete before that module was removed, and commit
3bde31a ("SLOW_WORK: Allow a requeueable work item to sleep till the thread is
needed") further extended that, breaking it in the process if CONFIG_MODULES=n:
CC kernel/slow-work.o
kernel/slow-work.c: In function 'slow_work_execute':
kernel/slow-work.c:313: error: 'slow_work_thread_processing' undeclared (first use in this function)
kernel/slow-work.c:313: error: (Each undeclared identifier is reported only once
kernel/slow-work.c:313: error: for each function it appears in.)
kernel/slow-work.c: In function 'slow_work_wait_for_items':
kernel/slow-work.c:950: error: 'slow_work_unreg_sync_lock' undeclared (first use in this function)
kernel/slow-work.c:951: error: 'slow_work_unreg_wq' undeclared (first use in this function)
kernel/slow-work.c:961: error: 'slow_work_unreg_work_item' undeclared (first use in this function)
kernel/slow-work.c:974: error: 'slow_work_unreg_module' undeclared (first use in this function)
kernel/slow-work.c:977: error: 'slow_work_thread_processing' undeclared (first use in this function)
make[1]: *** [kernel/slow-work.o] Error 1
Fix this by:
(1) Extracting the bits of slow_work_execute() that are contingent on
CONFIG_MODULES, and the bits that should be, into inline functions and
placing them into the #ifdef'd section that defines the relevant variables
and adding stubs for moduleless kernels. This allows the removal of some
#ifdefs.
(2) #ifdef'ing out the contents of slow_work_wait_for_items() in moduleless
kernels.
The four functions related to handling module unloading synchronisation (and
their associated variables) could be offloaded into a separate .c file, but
each function is only used once and three of them are tiny, so doing so would
prevent them from being inlined.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As far as I know, all distros currently ship kernels with default
CONFIG_SECURITY_FILE_CAPABILITIES=y. Since having the option on
leaves a 'no_file_caps' option to boot without file capabilities,
the main reason to keep the option is that turning it off saves
you (on my s390x partition) 5k. In particular, vmlinux sizes
came to:
without patch fscaps=n: 53598392
without patch fscaps=y: 53603406
with this patch applied: 53603342
with the security-next tree.
Against this we must weigh the fact that there is no simple way for
userspace to figure out whether file capabilities are supported,
while things like per-process securebits, capability bounding
sets, and adding bits to pI if CAP_SETPCAP is in pE are not supported
with SECURITY_FILE_CAPABILITIES=n, leaving a bit of a problem for
applications wanting to know whether they can use them and/or why
something failed.
It also adds another subtly different set of semantics which we must
maintain at the risk of severe security regressions.
So this patch removes the SECURITY_FILE_CAPABILITIES compile
option. It drops the kernel size by about 50k over the stock
SECURITY_FILE_CAPABILITIES=y kernel, by removing the
cap_limit_ptraced_target() function.
Changelog:
Nov 20: remove cap_limit_ptraced_target() as it's logic
was ifndef'ed.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan" <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
When libcap, or other libraries attempt to confirm/determine the supported
capability version magic, they generally supply a NULL dataptr to capget().
In this case, while returning the supported/preferred magic (via a
modified header content), the return code of this system call may be 0,
-EINVAL, or -EFAULT.
No libcap code depends on the previous -EINVAL etc. return code, and
all of the above three return codes can accompany a valid (successful)
attempt to determine the requested magic value.
This patch cleans up the system call to return 0, if the call is
successfully being used to determine the supported/preferred capability
magic value.
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Steve Grubb <sgrubb@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
When the last CPU of a given leaf rcu_node structure goes
offline, all of the tasks queued on that leaf rcu_node structure
(due to having blocked in their current RCU read-side critical
sections) are requeued onto the root rcu_node structure. This
requeuing is carried out by rcu_preempt_offline_tasks().
However, it is possible that these queued tasks are the only
thing preventing the leaf rcu_node structure from reporting a
quiescent state up the rcu_node hierarchy. Unfortunately, the
old code would fail to do this reporting, resulting in a
grace-period stall given the following sequence of events:
1. Kernel built for more than 32 CPUs on 32-bit systems or for more
than 64 CPUs on 64-bit systems, so that there is more than one
rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set
to a number smaller than CONFIG_NR_CPUS.)
2. The kernel is built with CONFIG_TREE_PREEMPT_RCU.
3. A task running on a CPU associated with a given leaf rcu_node
structure blocks while in an RCU read-side critical section
-and- that CPU has not yet passed through a quiescent state
for the current RCU grace period. This will cause the task
to be queued on the leaf rcu_node's blocked_tasks[] array, in
particular, on the element of this array corresponding to the
current grace period.
4. Each of the remaining CPUs corresponding to this same leaf rcu_node
structure pass through a quiescent state. However, the task is
still in its RCU read-side critical section, so these quiescent
states cannot be reported further up the rcu_node hierarchy.
Nevertheless, all bits in the leaf rcu_node structure's ->qsmask
field are now zero.
5. Each of the remaining CPUs go offline. (The events in step
#4 and #5 can happen in any order as long as each CPU passes
through a quiescent state before going offline.)
6. When the last CPU goes offline, __rcu_offline_cpu() will invoke
rcu_preempt_offline_tasks(), which will move the task to the
root rcu_node structure, but without reporting a quiescent state
up the rcu_node hierarchy (and this failure to report a quiescent
state is the bug).
But because this leaf rcu_node structure's ->qsmask field is
already zero and its ->block_tasks[] entries are all empty,
force_quiescent_state() will skip this rcu_node structure.
Therefore, grace periods are now hung.
This patch abstracts some code out of rcu_read_unlock_special(),
calling the result task_quiet() by analogy with cpu_quiet(), and
invokes task_quiet() from both rcu_read_lock_special() and
__rcu_offline_cpu(). Invoking task_quiet() from
__rcu_offline_cpu() reports the quiescent state up the rcu_node
hierarchy, fixing the bug. This ends up requiring a separate
lock_class_key per level of the rcu_node hierarchy, which this
patch also provides.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12589088301770-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a function to allow a requeueable work item to sleep till the thread
processing it is needed by the slow-work facility to perform other work.
Sometimes a work item can't progress immediately, but must wait for the
completion of another work item that's currently being processed by another
slow-work thread.
In some circumstances, the waiting item could instead - theoretically - put
itself back on the queue and yield its thread back to the slow-work facility,
thus waiting till it gets processing time again before attempting to progress.
This would allow other work items processing time on that thread.
However, this only works if there is something on the queue for it to queue
behind - otherwise it will just get a thread again immediately, and will end
up cycling between the queue and the thread, eating up valuable CPU time.
So, slow_work_sleep_till_thread_needed() is provided such that an item can put
itself on a wait queue that will wake it up when the event it is actually
interested in occurs, then call this function in lieu of calling schedule().
This function will then sleep until either the item's event occurs or another
work item appears on the queue. If another work item is queued, but the
item's event hasn't occurred, then the work item should requeue itself and
yield the thread back to the slow-work facility by returning.
This can be used by CacheFiles for an object that is being created on one
thread to wait for an object being deleted on another thread where there is
nothing on the queue for the creation to go and wait behind. As soon as an
item appears on the queue that could be given thread time instead, CacheFiles
can stick the creating object back on the queue and return to the slow-work
facility - assuming the object deletion didn't also complete.
Signed-off-by: David Howells <dhowells@redhat.com>
This adds support for starting slow work with a delay, similar
to the functionality we have for workqueues.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Add support for cancellation of queued slow work and delayed slow work items.
The cancellation functions will wait for items that are pending or undergoing
execution to be discarded by the slow work facility.
Attempting to enqueue work that is in the process of being cancelled will
result in ECANCELED.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Make the ability for the slow-work facility to take references on a work item
optional as not everyone requires this.
Even the internal slow-work stubs them out, so those can be got rid of too.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Wait for outstanding slow work items belonging to a module to clear when
unregistering that module as a user of the facility. This prevents the put_ref
code of a work item from being taken away before it returns.
Signed-off-by: David Howells <dhowells@redhat.com>
Andrew points out that acpi-cpufreq uses cpumask_any, when it really
would prefer to use the same CPU if possible (to avoid an IPI). In
general, this seems a good idea to offer.
[ tglx: Documented selection preference and Inlined the UP case to
avoid the copy of smp_call_function_single() and the extra
EXPORT ]
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Zhao Yakui <yakui.zhao@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 65a6446434 ("HWPOISON: Allow
schedule_on_each_cpu() from keventd") which allows schedule_on_each_cpu()
to be called from keventd added a race condition. schedule_on_each_cpu()
may race with cpu hotplug and end up executing the function twice on a
cpu.
Fix it by moving direct execution into the section protected with
get/put_online_cpus(). While at it, update code such that direct
execution is done after works have been scheduled for all other cpus and
drop unnecessary cpu != orig test from flush loop.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that there are both ->gpnum and ->completed fields in the
rcu_node structure, __rcu_pending() should check rdp->gpnum and
rdp->completed against rnp->gpnum and rdp->completed, respectively,
instead of the prior comparison against the rcu_state fields
rsp->gpnum and rsp->completed.
Given the old comparison, __rcu_pending() could return 1, resulting
in a needless raise_softirq(RCU_SOFTIRQ). This useless work would
happen if RCU responded to a scheduling-clock interrupt after the
rcu_state fields had been updated, but before the rcu_node fields
had been updated.
Changing the comparison from the rcu_state fields to the rcu_node
fields prevents this useless work from happening.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12581706991966-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the Kconfig based inline decisions we can remove extra ifdefs in
kernel/spinlock.c by creating the complex lockbreak functions as
inlines which are inserted into the non inlined lock functions.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <20091109151428.548614772@linutronix.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
commit 892a7c67 (locking: Allow arch-inlined spinlocks) implements the
selection of which lock functions are inlined based on defines in
arch/.../spinlock.h: #define __always_inline__LOCK_FUNCTION
Despite of the name __always_inline__* the lock functions can be built
out of line depending on config options. Also if the arch does not set
some inline defines the generic code might set them; again depending on
config options.
This makes it unnecessary hard to figure out when and which lock
functions are inlined. Aside of that it makes it way harder and
messier for -rt to manipulate the lock functions.
Convert the inlining decision to CONFIG switches. Each lock function
is inlined depending on CONFIG_INLINE_*. The configs implement the
existing dependencies. The architecture code can select ARCH_INLINE_*
to signal that it wants the corresponding lock function inlined.
ARCH_INLINE_* is necessary as Kconfig ignores "depends on"
restrictions when a config element is selected.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <20091109151428.504477141@linutronix.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
An earlier fix for a race resulted in a situation where the CPUs
other than the CPU that detected the end of the grace period would
not process their callbacks until the next grace period started.
This means that these other CPUs would unnecessarily demand that an
extra grace period be started.
This patch eliminates this extra grace period and speeds callback
processing by propagating rsp->completed to the rcu_node structures
in the case where the CPU detecting the end of the grace period
sees no reason to start a new grace period.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1258094104417-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
highmem: Fix debug_kmap_atomic() to also handle KM_IRQ_PTE, KM_NMI, and KM_NMI_PTE
highmem: Fix race in debug_kmap_atomic() which could cause warn_count to underflow
rcu: Fix long-grace-period race between forcing and initialization
uids: Prevent tear down race
The rdp->passed_quiesc_completed fields are used to properly
associate the recorded quiescent state with a grace period. It
is OK to wrongly associate a given quiescent state with a
preceding grace period, but it is fatal to associate a given
quiescent state with a grace period that begins after the
quiescent state occurred. Grace periods are numbered, and the
following fields track them:
o ->gpnum is the number of the grace period currently in
progress, or the number of the last grace period to
complete if no grace period is currently in progress.
o ->completed is the number of the last grace period to
have completed.
These two fields are equal if there is no grace period in
progress, otherwise ->gpnum is one greater than ->completed.
But the rdp->passed_quiesc_completed field compared against
->completed, and if equal, the quiescent state is presumed to
count against the current grace period.
The earlier code copied rdp->completed to
rdp->passed_quiesc_completed, which has been made to work, but
is error-prone. In contrast, copying one less than rdp->gpnum
is guaranteed safe, because rdp->gpnum is not incremented until
after the start of the corresponding grace period. At the end of
the grace period, when ->completed has incremented, then any
quiescent periods recorded previously will be discarded.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12578890421011-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impose a clear locking design on the note_new_gpnum()
function's use of the ->gpnum counter. This is done by updating
rdp->gpnum only from the corresponding leaf rcu_node structure's
rnp->gpnum field, and even then only under the protection of
that same rcu_node structure's ->lock field. Performance and
scalability are maintained using a form of double-checked
locking, and excessive spinning is avoided by use of the
spin_trylock() function. The use of spin_trylock() is safe due
to the fact that CPUs who fail to acquire this lock will try
again later. The hierarchical nature of the rcu_node data
structure limits contention (which could be limited further if
need be using the RCU_FANOUT kernel parameter).
Without this patch, obscure but quite possible races could
result in a quiescent state that occurred during one grace
period to be accounted to the following grace period, causing
this following grace period to end prematurely. Not good!
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: <stable@kernel.org> # .32.x
LKML-Reference: <12571987492350-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impose a clear locking design on the rcu_process_gp_end()
function's use of the ->completed counter. This is done by
creating a ->completed field in the rcu_node structure, which
can safely be accessed under the protection of that structure's
lock. Performance and scalability are maintained by using a
form of double-checked locking, so that rcu_process_gp_end()
only acquires the leaf rcu_node structure's ->lock if a grace
period has recently ended.
This fix reduces rcutorture failure rate by at least two orders
of magnitude under heavy stress with force_quiescent_state()
being invoked artificially often. Without this fix,
unsynchronized access to the ->completed field can cause
rcu_process_gp_end() to advance callbacks whose grace period has
not yet expired. (Bad idea!)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: <stable@kernel.org> # .32.x
LKML-Reference: <12571987494069-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For SELinux to do better filtering in userspace we send the name of the
module along with the AVC denial when a program is denied module_request.
Example output:
type=SYSCALL msg=audit(11/03/2009 10:59:43.510:9) : arch=x86_64 syscall=write success=yes exit=2 a0=3 a1=7fc28c0d56c0 a2=2 a3=7fffca0d7440 items=0 ppid=1727 pid=1729 auid=unset uid=root gid=root euid=root suid=root fsuid=root egid=root sgid=root fsgid=root tty=(none) ses=unset comm=rpc.nfsd exe=/usr/sbin/rpc.nfsd subj=system_u:system_r:nfsd_t:s0 key=(null)
type=AVC msg=audit(11/03/2009 10:59:43.510:9) : avc: denied { module_request } for pid=1729 comm=rpc.nfsd kmod="net-pf-10" scontext=system_u:system_r:nfsd_t:s0 tcontext=system_u:system_r:kernel_t:s0 tclass=system
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
root_task_group_empty is used only with FAIR_GROUP_SCHED
so if we use other scheduler options we get:
kernel/sched.c:314: warning: 'root_task_group_empty' defined but not used
So move CONFIG_FAIR_GROUP_SCHED up that it covers
root_task_group_empty().
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20091026192414.GB5321@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix variable name in sched.c kernel-doc notation.
Fixes this DocBook warning:
Warning(kernel/sched.c:2008): No description found for parameter
'p' Warning(kernel/sched.c:2008): Excess function parameter 'k'
description in 'kthread_bind'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
LKML-Reference: <4AF4B1BC.8020604@oracle.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Fix kthread_bind() by moving the body of kthread_bind() to sched.c
sched: Disable SD_PREFER_LOCAL at node level
sched: Fix boot crash by zalloc()ing most of the cpu masks
sched: Strengthen buddies and mitigate buddy induced latencies
When a command is passed to the set_ftrace_filter, then
the ftrace_regex_lock is still held going back to user space.
# echo 'do_open : foo' > set_ftrace_filter
(still holding ftrace_regex_lock when returning to user space!)
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4AEF7F8A.3080300@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>