The normalized values are also recalculated in case the scaling factor
changes.
This patch updates the internally used scheduler tuning values that are
normalized to one cpu in case a user sets new values via sysfs.
Together with patch 2 of this series this allows to let user configured
values scale (or not) to cpu add/remove events taking place later.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1259579808-11357-4-git-send-email-ehrhardt@linux.vnet.ibm.com>
[ v2: fix warning ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As scaling now takes place on all kind of cpu add/remove events a user
that configures values via proc should be able to configure if his set
values are still rescaled or kept whatever happens.
As the comments state that log2 was just a second guess that worked the
interface is not just designed for on/off, but to choose a scaling type.
Currently this allows none, log and linear, but more important it allwos
us to keep the interface even if someone has an even better idea how to
scale the values.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1259579808-11357-3-git-send-email-ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Based on Peter Zijlstras patch suggestion this enables recalculation of
the scheduler tunables in response of a change in the number of cpus. It
also adds a max of eight cpus that are considered in that scaling.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1259579808-11357-2-git-send-email-ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
83f9ac removed a call to effective_prio() in wake_up_new_task(), which
leads to tasks running at MAX_PRIO.
This is caused by the idle thread being set to MAX_PRIO before forking
off init. O(1) used that to make sure idle was always preempted, CFS
uses check_preempt_curr_idle() for that so we can savely remove this bit
of legacy code.
Reported-by: Mike Galbraith <efault@gmx.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1259754383.4003.610.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When setting the weight for a per-cpu task-group, we have to put in a
phantom weight when there is no work on that cpu, otherwise we'll not
service that cpu when new work gets placed there until we again update
the per-cpu weights.
We used to add these phantom weights to the total, so that the idle
per-cpu shares don't get inflated, this however causes the non-idle
parts to get deflated, causing unexpected weight distibutions.
Reverse this, so that the non-idle shares are correct but the idle
shares are inflated.
Reported-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Tested-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1257934048.23203.76.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As Nick pointed out, and realized by myself when doing:
sched: Fix balance vs hotplug race
the patch:
sched: for_each_domain() vs RCU
is wrong, sched_domains are freed after synchronize_sched(), which
means disabling preemption is enough.
Reported-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
WAKEUP_RUNNING was an experiment, not sure why that ever ended up being
merged...
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Streamline the wakeup preemption code a bit, unifying the preempt path
so that they all do the same.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If a RT task is woken up while a non-RT task is running,
check_preempt_wakeup() is called to check whether the new task can
preempt the old task. The function returns quickly without going deeper
because it is apparent that a RT task can always preempt a non-RT task.
In this situation, check_preempt_wakeup() always calls update_curr() to
update vruntime value of the currently running task. However, the
function call is unnecessary and redundant at that moment because (1) a
non-RT task can always be preempted by a RT task regardless of its
vruntime value, and (2) update_curr() will be called shortly when the
context switch between two occurs.
By moving update_curr() in check_preempt_wakeup(), we can avoid
redundant call to update_curr(), slightly reducing the time taken to
wake up RT tasks.
Signed-off-by: Jupyung Lee <jupyung@gmail.com>
[ Place update_curr() right before the wake_preempt_entity() call, which
is the only thing that relies on the updated vruntime ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1258451500-6714-1-git-send-email-jupyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently we try to do task placement in wake_up_new_task() after we do
the load-balance pass in sched_fork(). This yields complicated semantics
in that we have to deal with tasks on different RQs and the
set_task_cpu() calls in copy_process() and sched_fork()
Rename ->task_new() to ->task_fork() and call it from sched_fork()
before the balancing, this gives the policy a clear point to place the
task.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since set_task_clock() doesn't rely on rq->clock anymore we can simplyfy
the mess in ttwu().
Optimize things a bit by not fiddling with the IRQ state there.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
set_task_cpu() should be rq invariant and only touch task state, it
currently fails to do so, which opens up a few races, since not all
callers hold both rq->locks.
Remove the relyance on rq->clock, as any site calling set_task_cpu()
should also do a remote clock update, which should ensure the observed
time between these two cpus is monotonic, as per
kernel/sched_clock.c:sched_clock_remote().
Therefore we can simply remove the clock_offset bits and be happy.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since we've had a much saner debugfs interface to this, remove the
sysctl one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
[ v2: build fix ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sched_rr_get_param calls
task->sched_class->get_rr_interval(task) without protection
against a concurrent sched_setscheduler() call which modifies
task->sched_class.
Serialize the access with task_rq_lock(task) and hand the rq
pointer into get_rr_interval() as it's needed at least in the
sched_fair implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <alpine.LFD.2.00.0912090930120.3089@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sched_getaffinity() is not protected against a concurrent
modification of the tasks affinity.
Serialize the access with task_rq_lock(task).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20091208202026.769251187@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since (e761b77: cpu hotplug, sched: Introduce cpu_active_map and redo
sched domain managment) we have cpu_active_mask which is suppose to rule
scheduler migration and load-balancing, except it never (fully) did.
The particular problem being solved here is a crash in try_to_wake_up()
where select_task_rq() ends up selecting an offline cpu because
select_task_rq_fair() trusts the sched_domain tree to reflect the
current state of affairs, similarly select_task_rq_rt() trusts the
root_domain.
However, the sched_domains are updated from CPU_DEAD, which is after the
cpu is taken offline and after stop_machine is done. Therefore it can
race perfectly well with code assuming the domains are right.
Cure this by building the domains from cpu_active_mask on
CPU_DOWN_PREPARE.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit acc3f5d7ca ("cpumask:
Partition_sched_domains takes array of cpumask_var_t") changed
the function signature of generate_sched_domains() for the
CONFIG_SMP=y case, but forgot to update the corresponding
function for the CONFIG_SMP=n case, causing:
kernel/cpuset.c:2073: warning: passing argument 1 of 'generate_sched_domains' from incompatible pointer type
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <alpine.DEB.2.00.0912062038070.5693@ayla.of.borg>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (40 commits)
tracing: Separate raw syscall from syscall tracer
ring-buffer-benchmark: Add parameters to set produce/consumer priorities
tracing, function tracer: Clean up strstrip() usage
ring-buffer benchmark: Run producer/consumer threads at nice +19
tracing: Remove the stale include/trace/power.h
tracing: Only print objcopy version warning once from recordmcount
tracing: Prevent build warning: 'ftrace_graph_buf' defined but not used
ring-buffer: Move access to commit_page up into function used
tracing: do not disable interrupts for trace_clock_local
ring-buffer: Add multiple iterations between benchmark timestamps
kprobes: Sanitize struct kretprobe_instance allocations
tracing: Fix to use __always_unused attribute
compiler: Introduce __always_unused
tracing: Exit with error if a weak function is used in recordmcount.pl
tracing: Move conditional into update_funcs() in recordmcount.pl
tracing: Add regex for weak functions in recordmcount.pl
tracing: Move mcount section search to front of loop in recordmcount.pl
tracing: Fix objcopy revision check in recordmcount.pl
tracing: Check absolute path of input file in recordmcount.pl
tracing: Correct the check for number of arguments in recordmcount.pl
...
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: Fix trace_marker output
tracing: Fix event format export
tracing: Fix return value of tracing_stats_read()
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits)
rcu: Make RCU's CPU-stall detector be default
rcu: Add expedited grace-period support for preemptible RCU
rcu: Enable fourth level of TREE_RCU hierarchy
rcu: Rename "quiet" functions
rcu: Re-arrange code to reduce #ifdef pain
rcu: Eliminate unneeded function wrapping
rcu: Fix grace-period-stall bug on large systems with CPU hotplug
rcu: Eliminate __rcu_pending() false positives
rcu: Further cleanups of use of lastcomp
rcu: Simplify association of forced quiescent states with grace periods
rcu: Accelerate callback processing on CPUs not detecting GP end
rcu: Mark init-time-only rcu_bootup_announce() as __init
rcu: Simplify association of quiescent states with grace periods
rcu: Rename dynticks_completed to completed_fqs
rcu: Enable synchronize_sched_expedited() fastpath
rcu: Remove inline from forward-referenced functions
rcu: Fix note_new_gpnum() uses of ->gpnum
rcu: Fix synchronization for rcu_process_gp_end() uses of ->completed counter
rcu: Prepare for synchronization fixes: clean up for non-NO_HZ handling of ->completed counter
rcu: Cleanup: balance rcu_irq_enter()/rcu_irq_exit() calls
...
* 'core-printk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
ratelimit: Make suppressed output messages more useful
printk: Remove ratelimit.h from kernel.h
ratelimit: Fix/allow use in atomic contexts
ratelimit: Use per ratelimit context locking
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
mutex: Fix missing conditions to build mutex_spin_on_owner()
mutex: Better control mutex adaptive spinning config
locking, task_struct: Reduce size on TRACE_IRQFLAGS and 64bit
locking: Use __[SPIN|RW]_LOCK_UNLOCKED in [spin|rw]_lock_init()
locking: Remove unused prototype
locking: Reduce ifdefs in kernel/spinlock.c
locking: Make inlining decision Kconfig based
We don't need to build mutex_spin_on_owner() if we have
CONFIG_DEBUG_MUTEXES or CONFIG_HAVE_DEFAULT_NO_SPIN_MUTEXES as
it won't be used under such configs.
Use CONFIG_MUTEX_SPIN_ON_OWNER as it gathers all the necessary
checks before building it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1259783357-8542-2-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Introduce CONFIG_MUTEX_SPIN_ON_OWNER so that we can centralize
in a single place the conditions that determine its definition
and use.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1259783357-8542-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Enable a fourth level of rcu_node hierarchy for TREE_RCU and
TREE_PREEMPT_RCU. This is for stress-testing and experiemental
purposes only, although in theory this would enable 16,777,216
CPUs on 64-bit systems, though only 1,048,576 CPUs on 32-bit
systems. Normal experimental use of this fourth level will
normally set CONFIG_RCU_FANOUT=2, requiring a 16-CPU system,
though the more adventurous (and more fortunate) experimenters
may wish to chose CONFIG_RCU_FANOUT=3 for 81-CPU systems or even
CONFIG_RCU_FANOUT=4 for 256-CPU systems.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12597846161257-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The number of "quiet" functions has grown recently, and the
names are no longer very descriptive. The point of all of these
functions is to do some portion of the task of reporting a
quiescent state, so rename them accordingly:
o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a
quiescent state to the per-CPU rcu_data structure. If this
turns out to be a new quiescent state for this grace period,
then rcu_report_qs_rnp() will be invoked to propagate the
quiescent state up the rcu_node hierarchy.
o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports
a quiescent state for a given CPU (or possibly a set of CPUs)
up the rcu_node hierarchy.
o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which
reports a full set of quiescent states to the global rcu_state
structure.
o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports
a quiescent state due to a task exiting an RCU read-side critical
section that had previously blocked in that same critical section.
As indicated by the new name, this type of quiescent state is
reported up the rcu_node hierarchy (using rcu_report_qs_rnp()
to do so).
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12597846163698-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On the parisc architecture we face for each and every loaded kernel module
this kernel "badness warning":
sysfs: cannot create duplicate filename '/module/ac97_bus/sections/.text'
Badness at fs/sysfs/dir.c:487
Reason for that is, that on parisc all kernel modules do have multiple
.text sections due to the usage of the -ffunction-sections compiler flag
which is needed to reach all jump targets on this platform.
An objdump on such a kernel module gives:
Sections:
Idx Name Size VMA LMA File off Algn
0 .note.gnu.build-id 00000024 00000000 00000000 00000034 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .text 00000000 00000000 00000000 00000058 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE
2 .text.ac97_bus_match 0000001c 00000000 00000000 00000058 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
3 .text 00000000 00000000 00000000 000000d4 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
Since the .text sections are empty (size of 0 bytes) and won't be
loaded by the kernel module loader anyway, I don't see a reason
why such sections need to be listed under
/sys/module/<module_name>/sections/<section_name> either.
The attached patch does solve this issue by not exporting section
names which are empty.
This fixes bugzilla http://bugzilla.kernel.org/show_bug.cgi?id=14703
Signed-off-by: Helge Deller <deller@gmx.de>
CC: rusty@rustcorp.com.au
CC: akpm@linux-foundation.org
CC: James.Bottomley@HansenPartnership.com
CC: roland@redhat.com
CC: dave@hiauly1.hia.nrc.ca
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a real fix for problem of utime/stime values decreasing
described in the thread:
http://lkml.org/lkml/2009/11/3/522
Now cputime is accounted in the following way:
- {u,s}time in task_struct are increased every time when the thread
is interrupted by a tick (timer interrupt).
- When a thread exits, its {u,s}time are added to signal->{u,s}time,
after adjusted by task_times().
- When all threads in a thread_group exits, accumulated {u,s}time
(and also c{u,s}time) in signal struct are added to c{u,s}time
in signal struct of the group's parent.
So {u,s}time in task struct are "raw" tick count, while
{u,s}time and c{u,s}time in signal struct are "adjusted" values.
And accounted values are used by:
- task_times(), to get cputime of a thread:
This function returns adjusted values that originates from raw
{u,s}time and scaled by sum_exec_runtime that accounted by CFS.
- thread_group_cputime(), to get cputime of a thread group:
This function returns sum of all {u,s}time of living threads in
the group, plus {u,s}time in the signal struct that is sum of
adjusted cputimes of all exited threads belonged to the group.
The problem is the return value of thread_group_cputime(),
because it is mixed sum of "raw" value and "adjusted" value:
group's {u,s}time = foreach(thread){{u,s}time} + exited({u,s}time)
This misbehavior can break {u,s}time monotonicity.
Assume that if there is a thread that have raw values greater
than adjusted values (e.g. interrupted by 1000Hz ticks 50 times
but only runs 45ms) and if it exits, cputime will decrease (e.g.
-5ms).
To fix this, we could do:
group's {u,s}time = foreach(t){task_times(t)} + exited({u,s}time)
But task_times() contains hard divisions, so applying it for
every thread should be avoided.
This patch fixes the above problem in the following way:
- Modify thread's exit (= __exit_signal()) not to use task_times().
It means {u,s}time in signal struct accumulates raw values instead
of adjusted values. As the result it makes thread_group_cputime()
to return pure sum of "raw" values.
- Introduce a new function thread_group_times(*task, *utime, *stime)
that converts "raw" values of thread_group_cputime() to "adjusted"
values, in same calculation procedure as task_times().
- Modify group's exit (= wait_task_zombie()) to use this introduced
thread_group_times(). It make c{u,s}time in signal struct to
have adjusted values like before this patch.
- Replace some thread_group_cputime() by thread_group_times().
This replacements are only applied where conveys the "adjusted"
cputime to users, and where already uses task_times() near by it.
(i.e. sys_times(), getrusage(), and /proc/<PID>/stat.)
This patch have a positive side effect:
- Before this patch, if a group contains many short-life threads
(e.g. runs 0.9ms and not interrupted by ticks), the group's
cputime could be invisible since thread's cputime was accumulated
after adjusted: imagine adjustment function as adj(ticks, runtime),
{adj(0, 0.9) + adj(0, 0.9) + ....} = {0 + 0 + ....} = 0.
After this patch it will not happen because the adjustment is
applied after accumulated.
v2:
- remove if()s, put new variables into signal_struct.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Spencer Candland <spencer@bluehost.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
LKML-Reference: <4B162517.8040909@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
- Remove if({u,s}t)s because no one call it with NULL now.
- Use cputime_{add,sub}().
- Add ifndef-endif for prev_{u,s}time since they are used
only when !VIRT_CPU_ACCOUNTING.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Spencer Candland <spencer@bluehost.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
LKML-Reference: <4B1624C7.7040302@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Anton Blanchard wrote:
> We allocate and zero cpu_isolated_map after the isolcpus
> __setup option has run. This means cpu_isolated_map always
> ends up empty and if CPUMASK_OFFSTACK is enabled we write to a
> cpumask that hasn't been allocated.
I introduced this regression in 49557e6203 (sched: Fix
boot crash by zalloc()ing most of the cpu masks).
Use the bootmem allocator if they set isolcpus=, otherwise
allocate and zero like normal.
Reported-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: peterz@infradead.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
LKML-Reference: <200912021409.17013.rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Anton Blanchard <anton@samba.org>
498657a478 incorrectly assumed
that preempt wasn't disabled around context_switch() and thus
was fixing imaginary problem. It also broke KVM because it
depended on ->sched_in() to be called with irq enabled so that
it can do smp calls from there.
Revert the incorrect commit and add comment describing different
contexts under with the two callbacks are invoked.
Avi: spotted transposed in/out in the added comment.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Avi Kivity <avi@redhat.com>
Cc: peterz@infradead.org
Cc: efault@gmx.de
Cc: rusty@rustcorp.com.au
LKML-Reference: <1259726212-30259-2-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In the CONFIG_PERF_USE_VMALLOC case, perf_mmap_data_free() only
schedules the cleanup of the perf_mmap_data struct. In that
case we have to wait until the work has been done before we free
data.
Signed-off-by: Kristian Høgsberg <krh@bitplanet.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: <stable@kernel.org>
LKML-Reference: <1259697901-1747-1-git-send-email-krh@bitplanet.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
After duplications are removed, syscall_name_to_nr() is unused.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Jason Baron <jbaron@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4B14D2A6.6060803@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
use only one prof_sysenter_enable() instead of
prof_sysenter_enable_##sname()
use only one prof_sysenter_disable() instead of
prof_sysenter_disable_##sname()
use only one prof_sysexit_enable() instead of
prof_sysexit_enable_##sname()
use only one prof_sysexit_disable() instead of
prof_sysexit_disable_##sname()
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Jason Baron <jbaron@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4B14D2A1.8060304@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
use only one init_syscall_trace instead of
many init_enter_##sname()/init_exit_##sname()
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Jason Baron <jbaron@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4B14D29B.6090708@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add syscall_nr field to struct syscall_metadata,
it helps us to get syscall number easier.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Jason Baron <jbaron@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4B14D293.6090800@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
use ->enter_event->id instead of ->enter_id
use ->exit_event->id instead of ->exit_id
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Jason Baron <jbaron@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4B14D288.7030001@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Set event_enter_##sname->data to its metadata,
it makes codes simpler.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Jason Baron <jbaron@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4B14D282.7050709@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>