mirror of
https://github.com/adulau/aha.git
synced 2024-12-27 03:06:10 +00:00
PCI MSI: Add example request loop to MSI-HOWTO.txt
Encourage driver writers to think about supporting a variable number of MSI-X interrupts, and give an example of how to do such a request. Acked-by: Matthew Wilcox <willy@linux.intel.com> Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This commit is contained in:
parent
5546d6f568
commit
fafad5bf06
1 changed files with 22 additions and 1 deletions
|
@ -176,7 +176,8 @@ request_irq() for each 'vector' that it decides to use.
|
|||
If this function returns a negative number, it indicates an error and
|
||||
the driver should not attempt to allocate any more MSI-X interrupts for
|
||||
this device. If it returns a positive number, it indicates the maximum
|
||||
number of interrupt vectors that could have been allocated.
|
||||
number of interrupt vectors that could have been allocated. See example
|
||||
below.
|
||||
|
||||
This function, in contrast with pci_enable_msi(), does not adjust
|
||||
dev->irq. The device will not generate interrupts for this interrupt
|
||||
|
@ -187,6 +188,26 @@ free them again later.
|
|||
Device drivers should normally call this function once per device
|
||||
during the initialization phase.
|
||||
|
||||
It is ideal if drivers can cope with a variable number of MSI-X interrupts,
|
||||
there are many reasons why the platform may not be able to provide the
|
||||
exact number a driver asks for.
|
||||
|
||||
A request loop to achieve that might look like:
|
||||
|
||||
static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
|
||||
{
|
||||
while (nvec >= FOO_DRIVER_MINIMUM_NVEC) {
|
||||
rc = pci_enable_msix(adapter->pdev,
|
||||
adapter->msix_entries, nvec);
|
||||
if (rc > 0)
|
||||
nvec = rc;
|
||||
else
|
||||
return rc;
|
||||
}
|
||||
|
||||
return -ENOSPC;
|
||||
}
|
||||
|
||||
4.3.2 pci_disable_msix
|
||||
|
||||
void pci_disable_msix(struct pci_dev *dev)
|
||||
|
|
Loading…
Reference in a new issue