Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  rcu: fix rcutorture bug
  rcu: eliminate synchronize_rcu_xxx macro
  rcu: make treercu safe for suspend and resume
  rcu: fix rcutree grace-period-latency bug on small systems
  futex: catch certain assymetric (get|put)_futex_key calls
  futex: make futex_(get|put)_key() calls symmetric
  locking, percpu counters: introduce separate lock classes
  swiotlb: clean up EXPORT_SYMBOL usage
  swiotlb: remove unnecessary declaration
  swiotlb: replace architecture-specific swiotlb.h with linux/swiotlb.h
  swiotlb: add support for systems with highmem
  swiotlb: store phys address in io_tlb_orig_addr array
  swiotlb: add hwdev to swiotlb_phys_to_bus() / swiotlb_sg_to_bus()
This commit is contained in:
Linus Torvalds 2009-01-06 17:10:04 -08:00
commit f94181da71
15 changed files with 191 additions and 297 deletions

View file

@ -2,44 +2,7 @@
#define ASM_IA64__SWIOTLB_H #define ASM_IA64__SWIOTLB_H
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
/* SWIOTLB interface */
extern dma_addr_t swiotlb_map_single(struct device *hwdev, void *ptr,
size_t size, int dir);
extern void *swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags);
extern void swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir);
extern void swiotlb_sync_single_for_cpu(struct device *hwdev,
dma_addr_t dev_addr,
size_t size, int dir);
extern void swiotlb_sync_single_for_device(struct device *hwdev,
dma_addr_t dev_addr,
size_t size, int dir);
extern void swiotlb_sync_single_range_for_cpu(struct device *hwdev,
dma_addr_t dev_addr,
unsigned long offset,
size_t size, int dir);
extern void swiotlb_sync_single_range_for_device(struct device *hwdev,
dma_addr_t dev_addr,
unsigned long offset,
size_t size, int dir);
extern void swiotlb_sync_sg_for_cpu(struct device *hwdev,
struct scatterlist *sg, int nelems,
int dir);
extern void swiotlb_sync_sg_for_device(struct device *hwdev,
struct scatterlist *sg, int nelems,
int dir);
extern int swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction);
extern void swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction);
extern int swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr);
extern void swiotlb_free_coherent(struct device *hwdev, size_t size,
void *vaddr, dma_addr_t dma_handle);
extern int swiotlb_dma_supported(struct device *hwdev, u64 mask);
extern void swiotlb_init(void);
extern int swiotlb_force; extern int swiotlb_force;

View file

@ -1,46 +1,10 @@
#ifndef _ASM_X86_SWIOTLB_H #ifndef _ASM_X86_SWIOTLB_H
#define _ASM_X86_SWIOTLB_H #define _ASM_X86_SWIOTLB_H
#include <asm/dma-mapping.h> #include <linux/swiotlb.h>
/* SWIOTLB interface */ /* SWIOTLB interface */
extern dma_addr_t swiotlb_map_single(struct device *hwdev, void *ptr,
size_t size, int dir);
extern void *swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags);
extern void swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir);
extern void swiotlb_sync_single_for_cpu(struct device *hwdev,
dma_addr_t dev_addr,
size_t size, int dir);
extern void swiotlb_sync_single_for_device(struct device *hwdev,
dma_addr_t dev_addr,
size_t size, int dir);
extern void swiotlb_sync_single_range_for_cpu(struct device *hwdev,
dma_addr_t dev_addr,
unsigned long offset,
size_t size, int dir);
extern void swiotlb_sync_single_range_for_device(struct device *hwdev,
dma_addr_t dev_addr,
unsigned long offset,
size_t size, int dir);
extern void swiotlb_sync_sg_for_cpu(struct device *hwdev,
struct scatterlist *sg, int nelems,
int dir);
extern void swiotlb_sync_sg_for_device(struct device *hwdev,
struct scatterlist *sg, int nelems,
int dir);
extern int swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction);
extern void swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction);
extern int swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr);
extern void swiotlb_free_coherent(struct device *hwdev, size_t size,
void *vaddr, dma_addr_t dma_handle);
extern int swiotlb_dma_supported(struct device *hwdev, u64 mask);
extern void swiotlb_init(void);
extern int swiotlb_force; extern int swiotlb_force;
#ifdef CONFIG_SWIOTLB #ifdef CONFIG_SWIOTLB

View file

@ -23,7 +23,7 @@ void *swiotlb_alloc(unsigned order, unsigned long nslabs)
return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order); return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
} }
dma_addr_t swiotlb_phys_to_bus(phys_addr_t paddr) dma_addr_t swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
{ {
return paddr; return paddr;
} }

View file

@ -26,8 +26,16 @@ struct percpu_counter {
extern int percpu_counter_batch; extern int percpu_counter_batch;
int percpu_counter_init(struct percpu_counter *fbc, s64 amount); int __percpu_counter_init(struct percpu_counter *fbc, s64 amount,
int percpu_counter_init_irq(struct percpu_counter *fbc, s64 amount); struct lock_class_key *key);
#define percpu_counter_init(fbc, value) \
({ \
static struct lock_class_key __key; \
\
__percpu_counter_init(fbc, value, &__key); \
})
void percpu_counter_destroy(struct percpu_counter *fbc); void percpu_counter_destroy(struct percpu_counter *fbc);
void percpu_counter_set(struct percpu_counter *fbc, s64 amount); void percpu_counter_set(struct percpu_counter *fbc, s64 amount);
void __percpu_counter_add(struct percpu_counter *fbc, s64 amount, s32 batch); void __percpu_counter_add(struct percpu_counter *fbc, s64 amount, s32 batch);
@ -81,8 +89,6 @@ static inline int percpu_counter_init(struct percpu_counter *fbc, s64 amount)
return 0; return 0;
} }
#define percpu_counter_init_irq percpu_counter_init
static inline void percpu_counter_destroy(struct percpu_counter *fbc) static inline void percpu_counter_destroy(struct percpu_counter *fbc)
{ {
} }

View file

@ -204,18 +204,6 @@ struct rcu_synchronize {
extern void wakeme_after_rcu(struct rcu_head *head); extern void wakeme_after_rcu(struct rcu_head *head);
#define synchronize_rcu_xxx(name, func) \
void name(void) \
{ \
struct rcu_synchronize rcu; \
\
init_completion(&rcu.completion); \
/* Will wake me after RCU finished. */ \
func(&rcu.head, wakeme_after_rcu); \
/* Wait for it. */ \
wait_for_completion(&rcu.completion); \
}
/** /**
* synchronize_sched - block until all CPUs have exited any non-preemptive * synchronize_sched - block until all CPUs have exited any non-preemptive
* kernel code sequences. * kernel code sequences.

View file

@ -27,7 +27,8 @@ swiotlb_init(void);
extern void *swiotlb_alloc_boot(size_t bytes, unsigned long nslabs); extern void *swiotlb_alloc_boot(size_t bytes, unsigned long nslabs);
extern void *swiotlb_alloc(unsigned order, unsigned long nslabs); extern void *swiotlb_alloc(unsigned order, unsigned long nslabs);
extern dma_addr_t swiotlb_phys_to_bus(phys_addr_t address); extern dma_addr_t swiotlb_phys_to_bus(struct device *hwdev,
phys_addr_t address);
extern phys_addr_t swiotlb_bus_to_phys(dma_addr_t address); extern phys_addr_t swiotlb_bus_to_phys(dma_addr_t address);
extern int swiotlb_arch_range_needs_mapping(void *ptr, size_t size); extern int swiotlb_arch_range_needs_mapping(void *ptr, size_t size);

View file

@ -170,8 +170,11 @@ static void get_futex_key_refs(union futex_key *key)
*/ */
static void drop_futex_key_refs(union futex_key *key) static void drop_futex_key_refs(union futex_key *key)
{ {
if (!key->both.ptr) if (!key->both.ptr) {
/* If we're here then we tried to put a key we failed to get */
WARN_ON_ONCE(1);
return; return;
}
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
case FUT_OFF_INODE: case FUT_OFF_INODE:
@ -730,8 +733,8 @@ static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
} }
spin_unlock(&hb->lock); spin_unlock(&hb->lock);
out:
put_futex_key(fshared, &key); put_futex_key(fshared, &key);
out:
return ret; return ret;
} }
@ -755,7 +758,7 @@ retryfull:
goto out; goto out;
ret = get_futex_key(uaddr2, fshared, &key2); ret = get_futex_key(uaddr2, fshared, &key2);
if (unlikely(ret != 0)) if (unlikely(ret != 0))
goto out; goto out_put_key1;
hb1 = hash_futex(&key1); hb1 = hash_futex(&key1);
hb2 = hash_futex(&key2); hb2 = hash_futex(&key2);
@ -777,12 +780,12 @@ retry:
* but we might get them from range checking * but we might get them from range checking
*/ */
ret = op_ret; ret = op_ret;
goto out; goto out_put_keys;
#endif #endif
if (unlikely(op_ret != -EFAULT)) { if (unlikely(op_ret != -EFAULT)) {
ret = op_ret; ret = op_ret;
goto out; goto out_put_keys;
} }
/* /*
@ -796,7 +799,7 @@ retry:
ret = futex_handle_fault((unsigned long)uaddr2, ret = futex_handle_fault((unsigned long)uaddr2,
attempt); attempt);
if (ret) if (ret)
goto out; goto out_put_keys;
goto retry; goto retry;
} }
@ -834,10 +837,11 @@ retry:
spin_unlock(&hb1->lock); spin_unlock(&hb1->lock);
if (hb1 != hb2) if (hb1 != hb2)
spin_unlock(&hb2->lock); spin_unlock(&hb2->lock);
out: out_put_keys:
put_futex_key(fshared, &key2); put_futex_key(fshared, &key2);
out_put_key1:
put_futex_key(fshared, &key1); put_futex_key(fshared, &key1);
out:
return ret; return ret;
} }
@ -854,13 +858,13 @@ static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
struct futex_q *this, *next; struct futex_q *this, *next;
int ret, drop_count = 0; int ret, drop_count = 0;
retry: retry:
ret = get_futex_key(uaddr1, fshared, &key1); ret = get_futex_key(uaddr1, fshared, &key1);
if (unlikely(ret != 0)) if (unlikely(ret != 0))
goto out; goto out;
ret = get_futex_key(uaddr2, fshared, &key2); ret = get_futex_key(uaddr2, fshared, &key2);
if (unlikely(ret != 0)) if (unlikely(ret != 0))
goto out; goto out_put_key1;
hb1 = hash_futex(&key1); hb1 = hash_futex(&key1);
hb2 = hash_futex(&key2); hb2 = hash_futex(&key2);
@ -882,7 +886,7 @@ static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
if (!ret) if (!ret)
goto retry; goto retry;
return ret; goto out_put_keys;
} }
if (curval != *cmpval) { if (curval != *cmpval) {
ret = -EAGAIN; ret = -EAGAIN;
@ -927,9 +931,11 @@ out_unlock:
while (--drop_count >= 0) while (--drop_count >= 0)
drop_futex_key_refs(&key1); drop_futex_key_refs(&key1);
out: out_put_keys:
put_futex_key(fshared, &key2); put_futex_key(fshared, &key2);
out_put_key1:
put_futex_key(fshared, &key1); put_futex_key(fshared, &key1);
out:
return ret; return ret;
} }
@ -990,7 +996,7 @@ static int unqueue_me(struct futex_q *q)
int ret = 0; int ret = 0;
/* In the common case we don't take the spinlock, which is nice. */ /* In the common case we don't take the spinlock, which is nice. */
retry: retry:
lock_ptr = q->lock_ptr; lock_ptr = q->lock_ptr;
barrier(); barrier();
if (lock_ptr != NULL) { if (lock_ptr != NULL) {
@ -1172,11 +1178,11 @@ static int futex_wait(u32 __user *uaddr, int fshared,
q.pi_state = NULL; q.pi_state = NULL;
q.bitset = bitset; q.bitset = bitset;
retry: retry:
q.key = FUTEX_KEY_INIT; q.key = FUTEX_KEY_INIT;
ret = get_futex_key(uaddr, fshared, &q.key); ret = get_futex_key(uaddr, fshared, &q.key);
if (unlikely(ret != 0)) if (unlikely(ret != 0))
goto out_release_sem; goto out;
hb = queue_lock(&q); hb = queue_lock(&q);
@ -1204,6 +1210,7 @@ static int futex_wait(u32 __user *uaddr, int fshared,
if (unlikely(ret)) { if (unlikely(ret)) {
queue_unlock(&q, hb); queue_unlock(&q, hb);
put_futex_key(fshared, &q.key);
ret = get_user(uval, uaddr); ret = get_user(uval, uaddr);
@ -1213,7 +1220,7 @@ static int futex_wait(u32 __user *uaddr, int fshared,
} }
ret = -EWOULDBLOCK; ret = -EWOULDBLOCK;
if (uval != val) if (uval != val)
goto out_unlock_release_sem; goto out_unlock_put_key;
/* Only actually queue if *uaddr contained val. */ /* Only actually queue if *uaddr contained val. */
queue_me(&q, hb); queue_me(&q, hb);
@ -1305,11 +1312,11 @@ static int futex_wait(u32 __user *uaddr, int fshared,
return -ERESTART_RESTARTBLOCK; return -ERESTART_RESTARTBLOCK;
} }
out_unlock_release_sem: out_unlock_put_key:
queue_unlock(&q, hb); queue_unlock(&q, hb);
out_release_sem:
put_futex_key(fshared, &q.key); put_futex_key(fshared, &q.key);
out:
return ret; return ret;
} }
@ -1358,16 +1365,16 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
} }
q.pi_state = NULL; q.pi_state = NULL;
retry: retry:
q.key = FUTEX_KEY_INIT; q.key = FUTEX_KEY_INIT;
ret = get_futex_key(uaddr, fshared, &q.key); ret = get_futex_key(uaddr, fshared, &q.key);
if (unlikely(ret != 0)) if (unlikely(ret != 0))
goto out_release_sem; goto out;
retry_unlocked: retry_unlocked:
hb = queue_lock(&q); hb = queue_lock(&q);
retry_locked: retry_locked:
ret = lock_taken = 0; ret = lock_taken = 0;
/* /*
@ -1388,14 +1395,14 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
*/ */
if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) { if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
ret = -EDEADLK; ret = -EDEADLK;
goto out_unlock_release_sem; goto out_unlock_put_key;
} }
/* /*
* Surprise - we got the lock. Just return to userspace: * Surprise - we got the lock. Just return to userspace:
*/ */
if (unlikely(!curval)) if (unlikely(!curval))
goto out_unlock_release_sem; goto out_unlock_put_key;
uval = curval; uval = curval;
@ -1431,7 +1438,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
* We took the lock due to owner died take over. * We took the lock due to owner died take over.
*/ */
if (unlikely(lock_taken)) if (unlikely(lock_taken))
goto out_unlock_release_sem; goto out_unlock_put_key;
/* /*
* We dont have the lock. Look up the PI state (or create it if * We dont have the lock. Look up the PI state (or create it if
@ -1470,7 +1477,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
goto retry_locked; goto retry_locked;
} }
default: default:
goto out_unlock_release_sem; goto out_unlock_put_key;
} }
} }
@ -1561,16 +1568,17 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
destroy_hrtimer_on_stack(&to->timer); destroy_hrtimer_on_stack(&to->timer);
return ret != -EINTR ? ret : -ERESTARTNOINTR; return ret != -EINTR ? ret : -ERESTARTNOINTR;
out_unlock_release_sem: out_unlock_put_key:
queue_unlock(&q, hb); queue_unlock(&q, hb);
out_release_sem: out_put_key:
put_futex_key(fshared, &q.key); put_futex_key(fshared, &q.key);
out:
if (to) if (to)
destroy_hrtimer_on_stack(&to->timer); destroy_hrtimer_on_stack(&to->timer);
return ret; return ret;
uaddr_faulted: uaddr_faulted:
/* /*
* We have to r/w *(int __user *)uaddr, and we have to modify it * We have to r/w *(int __user *)uaddr, and we have to modify it
* atomically. Therefore, if we continue to fault after get_user() * atomically. Therefore, if we continue to fault after get_user()
@ -1583,7 +1591,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
if (attempt++) { if (attempt++) {
ret = futex_handle_fault((unsigned long)uaddr, attempt); ret = futex_handle_fault((unsigned long)uaddr, attempt);
if (ret) if (ret)
goto out_release_sem; goto out_put_key;
goto retry_unlocked; goto retry_unlocked;
} }
@ -1675,9 +1683,9 @@ retry_unlocked:
out_unlock: out_unlock:
spin_unlock(&hb->lock); spin_unlock(&hb->lock);
out:
put_futex_key(fshared, &key); put_futex_key(fshared, &key);
out:
return ret; return ret;
pi_faulted: pi_faulted:

View file

@ -77,8 +77,15 @@ void wakeme_after_rcu(struct rcu_head *head)
* sections are delimited by rcu_read_lock() and rcu_read_unlock(), * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested. * and may be nested.
*/ */
void synchronize_rcu(void); /* Makes kernel-doc tools happy */ void synchronize_rcu(void)
synchronize_rcu_xxx(synchronize_rcu, call_rcu) {
struct rcu_synchronize rcu;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_rcu); EXPORT_SYMBOL_GPL(synchronize_rcu);
static void rcu_barrier_callback(struct rcu_head *notused) static void rcu_barrier_callback(struct rcu_head *notused)

View file

@ -1177,7 +1177,16 @@ EXPORT_SYMBOL_GPL(call_rcu_sched);
* in -rt this does -not- necessarily result in all currently executing * in -rt this does -not- necessarily result in all currently executing
* interrupt -handlers- having completed. * interrupt -handlers- having completed.
*/ */
synchronize_rcu_xxx(__synchronize_sched, call_rcu_sched) void __synchronize_sched(void)
{
struct rcu_synchronize rcu;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_sched(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(__synchronize_sched); EXPORT_SYMBOL_GPL(__synchronize_sched);
/* /*

View file

@ -136,7 +136,7 @@ static int stutter_pause_test = 0;
#endif #endif
int rcutorture_runnable = RCUTORTURE_RUNNABLE_INIT; int rcutorture_runnable = RCUTORTURE_RUNNABLE_INIT;
#define FULLSTOP_SIGNALED 1 /* Bail due to signal. */ #define FULLSTOP_SHUTDOWN 1 /* Bail due to system shutdown/panic. */
#define FULLSTOP_CLEANUP 2 /* Orderly shutdown. */ #define FULLSTOP_CLEANUP 2 /* Orderly shutdown. */
static int fullstop; /* stop generating callbacks at test end. */ static int fullstop; /* stop generating callbacks at test end. */
DEFINE_MUTEX(fullstop_mutex); /* protect fullstop transitions and */ DEFINE_MUTEX(fullstop_mutex); /* protect fullstop transitions and */
@ -151,12 +151,10 @@ rcutorture_shutdown_notify(struct notifier_block *unused1,
{ {
if (fullstop) if (fullstop)
return NOTIFY_DONE; return NOTIFY_DONE;
if (signal_pending(current)) { mutex_lock(&fullstop_mutex);
mutex_lock(&fullstop_mutex); if (!fullstop)
if (!ACCESS_ONCE(fullstop)) fullstop = FULLSTOP_SHUTDOWN;
fullstop = FULLSTOP_SIGNALED; mutex_unlock(&fullstop_mutex);
mutex_unlock(&fullstop_mutex);
}
return NOTIFY_DONE; return NOTIFY_DONE;
} }
@ -624,7 +622,7 @@ rcu_torture_writer(void *arg)
rcu_stutter_wait(); rcu_stutter_wait();
} while (!kthread_should_stop() && !fullstop); } while (!kthread_should_stop() && !fullstop);
VERBOSE_PRINTK_STRING("rcu_torture_writer task stopping"); VERBOSE_PRINTK_STRING("rcu_torture_writer task stopping");
while (!kthread_should_stop() && fullstop != FULLSTOP_SIGNALED) while (!kthread_should_stop() && fullstop != FULLSTOP_SHUTDOWN)
schedule_timeout_uninterruptible(1); schedule_timeout_uninterruptible(1);
return 0; return 0;
} }
@ -649,7 +647,7 @@ rcu_torture_fakewriter(void *arg)
} while (!kthread_should_stop() && !fullstop); } while (!kthread_should_stop() && !fullstop);
VERBOSE_PRINTK_STRING("rcu_torture_fakewriter task stopping"); VERBOSE_PRINTK_STRING("rcu_torture_fakewriter task stopping");
while (!kthread_should_stop() && fullstop != FULLSTOP_SIGNALED) while (!kthread_should_stop() && fullstop != FULLSTOP_SHUTDOWN)
schedule_timeout_uninterruptible(1); schedule_timeout_uninterruptible(1);
return 0; return 0;
} }
@ -759,7 +757,7 @@ rcu_torture_reader(void *arg)
VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping");
if (irqreader && cur_ops->irqcapable) if (irqreader && cur_ops->irqcapable)
del_timer_sync(&t); del_timer_sync(&t);
while (!kthread_should_stop() && fullstop != FULLSTOP_SIGNALED) while (!kthread_should_stop() && fullstop != FULLSTOP_SHUTDOWN)
schedule_timeout_uninterruptible(1); schedule_timeout_uninterruptible(1);
return 0; return 0;
} }

View file

@ -79,7 +79,10 @@ struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
#ifdef CONFIG_NO_HZ #ifdef CONFIG_NO_HZ
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks); DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
.dynticks_nesting = 1,
.dynticks = 1,
};
#endif /* #ifdef CONFIG_NO_HZ */ #endif /* #ifdef CONFIG_NO_HZ */
static int blimit = 10; /* Maximum callbacks per softirq. */ static int blimit = 10; /* Maximum callbacks per softirq. */
@ -572,6 +575,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
/* Special-case the common single-level case. */ /* Special-case the common single-level case. */
if (NUM_RCU_NODES == 1) { if (NUM_RCU_NODES == 1) {
rnp->qsmask = rnp->qsmaskinit; rnp->qsmask = rnp->qsmaskinit;
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
spin_unlock_irqrestore(&rnp->lock, flags); spin_unlock_irqrestore(&rnp->lock, flags);
return; return;
} }
@ -1379,13 +1383,6 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
static void __cpuinit rcu_online_cpu(int cpu) static void __cpuinit rcu_online_cpu(int cpu)
{ {
#ifdef CONFIG_NO_HZ
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
rdtp->dynticks_nesting = 1;
rdtp->dynticks |= 1; /* need consecutive #s even for hotplug. */
rdtp->dynticks_nmi = (rdtp->dynticks_nmi + 1) & ~0x1;
#endif /* #ifdef CONFIG_NO_HZ */
rcu_init_percpu_data(cpu, &rcu_state); rcu_init_percpu_data(cpu, &rcu_state);
rcu_init_percpu_data(cpu, &rcu_bh_state); rcu_init_percpu_data(cpu, &rcu_bh_state);
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);

View file

@ -66,11 +66,11 @@ s64 __percpu_counter_sum(struct percpu_counter *fbc)
} }
EXPORT_SYMBOL(__percpu_counter_sum); EXPORT_SYMBOL(__percpu_counter_sum);
static struct lock_class_key percpu_counter_irqsafe; int __percpu_counter_init(struct percpu_counter *fbc, s64 amount,
struct lock_class_key *key)
int percpu_counter_init(struct percpu_counter *fbc, s64 amount)
{ {
spin_lock_init(&fbc->lock); spin_lock_init(&fbc->lock);
lockdep_set_class(&fbc->lock, key);
fbc->count = amount; fbc->count = amount;
fbc->counters = alloc_percpu(s32); fbc->counters = alloc_percpu(s32);
if (!fbc->counters) if (!fbc->counters)
@ -82,17 +82,7 @@ int percpu_counter_init(struct percpu_counter *fbc, s64 amount)
#endif #endif
return 0; return 0;
} }
EXPORT_SYMBOL(percpu_counter_init); EXPORT_SYMBOL(__percpu_counter_init);
int percpu_counter_init_irq(struct percpu_counter *fbc, s64 amount)
{
int err;
err = percpu_counter_init(fbc, amount);
if (!err)
lockdep_set_class(&fbc->lock, &percpu_counter_irqsafe);
return err;
}
void percpu_counter_destroy(struct percpu_counter *fbc) void percpu_counter_destroy(struct percpu_counter *fbc)
{ {

View file

@ -83,11 +83,11 @@ int prop_descriptor_init(struct prop_descriptor *pd, int shift)
pd->index = 0; pd->index = 0;
pd->pg[0].shift = shift; pd->pg[0].shift = shift;
mutex_init(&pd->mutex); mutex_init(&pd->mutex);
err = percpu_counter_init_irq(&pd->pg[0].events, 0); err = percpu_counter_init(&pd->pg[0].events, 0);
if (err) if (err)
goto out; goto out;
err = percpu_counter_init_irq(&pd->pg[1].events, 0); err = percpu_counter_init(&pd->pg[1].events, 0);
if (err) if (err)
percpu_counter_destroy(&pd->pg[0].events); percpu_counter_destroy(&pd->pg[0].events);
@ -193,7 +193,7 @@ int prop_local_init_percpu(struct prop_local_percpu *pl)
spin_lock_init(&pl->lock); spin_lock_init(&pl->lock);
pl->shift = 0; pl->shift = 0;
pl->period = 0; pl->period = 0;
return percpu_counter_init_irq(&pl->events, 0); return percpu_counter_init(&pl->events, 0);
} }
void prop_local_destroy_percpu(struct prop_local_percpu *pl) void prop_local_destroy_percpu(struct prop_local_percpu *pl)

View file

@ -14,6 +14,7 @@
* 04/07/.. ak Better overflow handling. Assorted fixes. * 04/07/.. ak Better overflow handling. Assorted fixes.
* 05/09/10 linville Add support for syncing ranges, support syncing for * 05/09/10 linville Add support for syncing ranges, support syncing for
* DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
* 08/12/11 beckyb Add highmem support
*/ */
#include <linux/cache.h> #include <linux/cache.h>
@ -21,8 +22,9 @@
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/swiotlb.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/swiotlb.h>
#include <linux/pfn.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/ctype.h> #include <linux/ctype.h>
#include <linux/highmem.h> #include <linux/highmem.h>
@ -88,10 +90,7 @@ static unsigned int io_tlb_index;
* We need to save away the original address corresponding to a mapped entry * We need to save away the original address corresponding to a mapped entry
* for the sync operations. * for the sync operations.
*/ */
static struct swiotlb_phys_addr { static phys_addr_t *io_tlb_orig_addr;
struct page *page;
unsigned int offset;
} *io_tlb_orig_addr;
/* /*
* Protect the above data structures in the map and unmap calls * Protect the above data structures in the map and unmap calls
@ -125,7 +124,7 @@ void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs)
return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order); return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
} }
dma_addr_t __weak swiotlb_phys_to_bus(phys_addr_t paddr) dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
{ {
return paddr; return paddr;
} }
@ -135,9 +134,10 @@ phys_addr_t __weak swiotlb_bus_to_phys(dma_addr_t baddr)
return baddr; return baddr;
} }
static dma_addr_t swiotlb_virt_to_bus(volatile void *address) static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
volatile void *address)
{ {
return swiotlb_phys_to_bus(virt_to_phys(address)); return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
} }
static void *swiotlb_bus_to_virt(dma_addr_t address) static void *swiotlb_bus_to_virt(dma_addr_t address)
@ -150,35 +150,18 @@ int __weak swiotlb_arch_range_needs_mapping(void *ptr, size_t size)
return 0; return 0;
} }
static dma_addr_t swiotlb_sg_to_bus(struct scatterlist *sg)
{
return swiotlb_phys_to_bus(page_to_phys(sg_page(sg)) + sg->offset);
}
static void swiotlb_print_info(unsigned long bytes) static void swiotlb_print_info(unsigned long bytes)
{ {
phys_addr_t pstart, pend; phys_addr_t pstart, pend;
dma_addr_t bstart, bend;
pstart = virt_to_phys(io_tlb_start); pstart = virt_to_phys(io_tlb_start);
pend = virt_to_phys(io_tlb_end); pend = virt_to_phys(io_tlb_end);
bstart = swiotlb_phys_to_bus(pstart);
bend = swiotlb_phys_to_bus(pend);
printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n", printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
bytes >> 20, io_tlb_start, io_tlb_end); bytes >> 20, io_tlb_start, io_tlb_end);
if (pstart != bstart || pend != bend) printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
printk(KERN_INFO "software IO TLB at phys %#llx - %#llx" (unsigned long long)pstart,
" bus %#llx - %#llx\n", (unsigned long long)pend);
(unsigned long long)pstart,
(unsigned long long)pend,
(unsigned long long)bstart,
(unsigned long long)bend);
else
printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
(unsigned long long)pstart,
(unsigned long long)pend);
} }
/* /*
@ -214,7 +197,7 @@ swiotlb_init_with_default_size(size_t default_size)
for (i = 0; i < io_tlb_nslabs; i++) for (i = 0; i < io_tlb_nslabs; i++)
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_index = 0; io_tlb_index = 0;
io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(struct swiotlb_phys_addr)); io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
/* /*
* Get the overflow emergency buffer * Get the overflow emergency buffer
@ -288,12 +271,14 @@ swiotlb_late_init_with_default_size(size_t default_size)
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_index = 0; io_tlb_index = 0;
io_tlb_orig_addr = (struct swiotlb_phys_addr *)__get_free_pages(GFP_KERNEL, io_tlb_orig_addr = (phys_addr_t *)
get_order(io_tlb_nslabs * sizeof(struct swiotlb_phys_addr))); __get_free_pages(GFP_KERNEL,
get_order(io_tlb_nslabs *
sizeof(phys_addr_t)));
if (!io_tlb_orig_addr) if (!io_tlb_orig_addr)
goto cleanup3; goto cleanup3;
memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(struct swiotlb_phys_addr)); memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
/* /*
* Get the overflow emergency buffer * Get the overflow emergency buffer
@ -308,8 +293,8 @@ swiotlb_late_init_with_default_size(size_t default_size)
return 0; return 0;
cleanup4: cleanup4:
free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs * free_pages((unsigned long)io_tlb_orig_addr,
sizeof(char *))); get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
io_tlb_orig_addr = NULL; io_tlb_orig_addr = NULL;
cleanup3: cleanup3:
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
@ -340,51 +325,44 @@ static int is_swiotlb_buffer(char *addr)
return addr >= io_tlb_start && addr < io_tlb_end; return addr >= io_tlb_start && addr < io_tlb_end;
} }
static struct swiotlb_phys_addr swiotlb_bus_to_phys_addr(char *dma_addr) /*
* Bounce: copy the swiotlb buffer back to the original dma location
*/
static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
enum dma_data_direction dir)
{ {
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; unsigned long pfn = PFN_DOWN(phys);
struct swiotlb_phys_addr buffer = io_tlb_orig_addr[index];
buffer.offset += (long)dma_addr & ((1 << IO_TLB_SHIFT) - 1);
buffer.page += buffer.offset >> PAGE_SHIFT;
buffer.offset &= PAGE_SIZE - 1;
return buffer;
}
static void if (PageHighMem(pfn_to_page(pfn))) {
__sync_single(struct swiotlb_phys_addr buffer, char *dma_addr, size_t size, int dir) /* The buffer does not have a mapping. Map it in and copy */
{ unsigned int offset = phys & ~PAGE_MASK;
if (PageHighMem(buffer.page)) { char *buffer;
size_t len, bytes; unsigned int sz = 0;
char *dev, *host, *kmp; unsigned long flags;
len = size; while (size) {
while (len != 0) { sz = min(PAGE_SIZE - offset, size);
unsigned long flags;
bytes = len; local_irq_save(flags);
if ((bytes + buffer.offset) > PAGE_SIZE) buffer = kmap_atomic(pfn_to_page(pfn),
bytes = PAGE_SIZE - buffer.offset; KM_BOUNCE_READ);
local_irq_save(flags); /* protects KM_BOUNCE_READ */ if (dir == DMA_TO_DEVICE)
kmp = kmap_atomic(buffer.page, KM_BOUNCE_READ); memcpy(dma_addr, buffer + offset, sz);
dev = dma_addr + size - len;
host = kmp + buffer.offset;
if (dir == DMA_FROM_DEVICE)
memcpy(host, dev, bytes);
else else
memcpy(dev, host, bytes); memcpy(buffer + offset, dma_addr, sz);
kunmap_atomic(kmp, KM_BOUNCE_READ); kunmap_atomic(buffer, KM_BOUNCE_READ);
local_irq_restore(flags); local_irq_restore(flags);
len -= bytes;
buffer.page++; size -= sz;
buffer.offset = 0; pfn++;
dma_addr += sz;
offset = 0;
} }
} else { } else {
void *v = page_address(buffer.page) + buffer.offset;
if (dir == DMA_TO_DEVICE) if (dir == DMA_TO_DEVICE)
memcpy(dma_addr, v, size); memcpy(dma_addr, phys_to_virt(phys), size);
else else
memcpy(v, dma_addr, size); memcpy(phys_to_virt(phys), dma_addr, size);
} }
} }
@ -392,7 +370,7 @@ __sync_single(struct swiotlb_phys_addr buffer, char *dma_addr, size_t size, int
* Allocates bounce buffer and returns its kernel virtual address. * Allocates bounce buffer and returns its kernel virtual address.
*/ */
static void * static void *
map_single(struct device *hwdev, struct swiotlb_phys_addr buffer, size_t size, int dir) map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
{ {
unsigned long flags; unsigned long flags;
char *dma_addr; char *dma_addr;
@ -402,10 +380,9 @@ map_single(struct device *hwdev, struct swiotlb_phys_addr buffer, size_t size, i
unsigned long mask; unsigned long mask;
unsigned long offset_slots; unsigned long offset_slots;
unsigned long max_slots; unsigned long max_slots;
struct swiotlb_phys_addr slot_buf;
mask = dma_get_seg_boundary(hwdev); mask = dma_get_seg_boundary(hwdev);
start_dma_addr = swiotlb_virt_to_bus(io_tlb_start) & mask; start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
@ -487,15 +464,10 @@ found:
* This is needed when we sync the memory. Then we sync the buffer if * This is needed when we sync the memory. Then we sync the buffer if
* needed. * needed.
*/ */
slot_buf = buffer; for (i = 0; i < nslots; i++)
for (i = 0; i < nslots; i++) { io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
slot_buf.page += slot_buf.offset >> PAGE_SHIFT;
slot_buf.offset &= PAGE_SIZE - 1;
io_tlb_orig_addr[index+i] = slot_buf;
slot_buf.offset += 1 << IO_TLB_SHIFT;
}
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
__sync_single(buffer, dma_addr, size, DMA_TO_DEVICE); swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
return dma_addr; return dma_addr;
} }
@ -509,17 +481,13 @@ unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
unsigned long flags; unsigned long flags;
int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
struct swiotlb_phys_addr buffer = swiotlb_bus_to_phys_addr(dma_addr); phys_addr_t phys = io_tlb_orig_addr[index];
/* /*
* First, sync the memory before unmapping the entry * First, sync the memory before unmapping the entry
*/ */
if ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)) if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
/* swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
* bounce... copy the data back into the original buffer * and
* delete the bounce buffer.
*/
__sync_single(buffer, dma_addr, size, DMA_FROM_DEVICE);
/* /*
* Return the buffer to the free list by setting the corresponding * Return the buffer to the free list by setting the corresponding
@ -551,18 +519,21 @@ static void
sync_single(struct device *hwdev, char *dma_addr, size_t size, sync_single(struct device *hwdev, char *dma_addr, size_t size,
int dir, int target) int dir, int target)
{ {
struct swiotlb_phys_addr buffer = swiotlb_bus_to_phys_addr(dma_addr); int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
phys_addr_t phys = io_tlb_orig_addr[index];
phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
switch (target) { switch (target) {
case SYNC_FOR_CPU: case SYNC_FOR_CPU:
if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
__sync_single(buffer, dma_addr, size, DMA_FROM_DEVICE); swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
else else
BUG_ON(dir != DMA_TO_DEVICE); BUG_ON(dir != DMA_TO_DEVICE);
break; break;
case SYNC_FOR_DEVICE: case SYNC_FOR_DEVICE:
if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
__sync_single(buffer, dma_addr, size, DMA_TO_DEVICE); swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
else else
BUG_ON(dir != DMA_FROM_DEVICE); BUG_ON(dir != DMA_FROM_DEVICE);
break; break;
@ -584,7 +555,9 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_mask = hwdev->coherent_dma_mask; dma_mask = hwdev->coherent_dma_mask;
ret = (void *)__get_free_pages(flags, order); ret = (void *)__get_free_pages(flags, order);
if (ret && !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(ret), size)) { if (ret &&
!is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
size)) {
/* /*
* The allocated memory isn't reachable by the device. * The allocated memory isn't reachable by the device.
* Fall back on swiotlb_map_single(). * Fall back on swiotlb_map_single().
@ -599,16 +572,13 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
* swiotlb_map_single(), which will grab memory from * swiotlb_map_single(), which will grab memory from
* the lowest available address range. * the lowest available address range.
*/ */
struct swiotlb_phys_addr buffer; ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
buffer.page = virt_to_page(NULL);
buffer.offset = 0;
ret = map_single(hwdev, buffer, size, DMA_FROM_DEVICE);
if (!ret) if (!ret)
return NULL; return NULL;
} }
memset(ret, 0, size); memset(ret, 0, size);
dev_addr = swiotlb_virt_to_bus(ret); dev_addr = swiotlb_virt_to_bus(hwdev, ret);
/* Confirm address can be DMA'd by device */ /* Confirm address can be DMA'd by device */
if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) { if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
@ -623,6 +593,7 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
*dma_handle = dev_addr; *dma_handle = dev_addr;
return ret; return ret;
} }
EXPORT_SYMBOL(swiotlb_alloc_coherent);
void void
swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
@ -635,6 +606,7 @@ swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
/* DMA_TO_DEVICE to avoid memcpy in unmap_single */ /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE); unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
} }
EXPORT_SYMBOL(swiotlb_free_coherent);
static void static void
swiotlb_full(struct device *dev, size_t size, int dir, int do_panic) swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
@ -668,9 +640,8 @@ dma_addr_t
swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size, swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size,
int dir, struct dma_attrs *attrs) int dir, struct dma_attrs *attrs)
{ {
dma_addr_t dev_addr = swiotlb_virt_to_bus(ptr); dma_addr_t dev_addr = swiotlb_virt_to_bus(hwdev, ptr);
void *map; void *map;
struct swiotlb_phys_addr buffer;
BUG_ON(dir == DMA_NONE); BUG_ON(dir == DMA_NONE);
/* /*
@ -685,15 +656,13 @@ swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size,
/* /*
* Oh well, have to allocate and map a bounce buffer. * Oh well, have to allocate and map a bounce buffer.
*/ */
buffer.page = virt_to_page(ptr); map = map_single(hwdev, virt_to_phys(ptr), size, dir);
buffer.offset = (unsigned long)ptr & ~PAGE_MASK;
map = map_single(hwdev, buffer, size, dir);
if (!map) { if (!map) {
swiotlb_full(hwdev, size, dir, 1); swiotlb_full(hwdev, size, dir, 1);
map = io_tlb_overflow_buffer; map = io_tlb_overflow_buffer;
} }
dev_addr = swiotlb_virt_to_bus(map); dev_addr = swiotlb_virt_to_bus(hwdev, map);
/* /*
* Ensure that the address returned is DMA'ble * Ensure that the address returned is DMA'ble
@ -710,6 +679,7 @@ swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
{ {
return swiotlb_map_single_attrs(hwdev, ptr, size, dir, NULL); return swiotlb_map_single_attrs(hwdev, ptr, size, dir, NULL);
} }
EXPORT_SYMBOL(swiotlb_map_single);
/* /*
* Unmap a single streaming mode DMA translation. The dma_addr and size must * Unmap a single streaming mode DMA translation. The dma_addr and size must
@ -739,6 +709,8 @@ swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
{ {
return swiotlb_unmap_single_attrs(hwdev, dev_addr, size, dir, NULL); return swiotlb_unmap_single_attrs(hwdev, dev_addr, size, dir, NULL);
} }
EXPORT_SYMBOL(swiotlb_unmap_single);
/* /*
* Make physical memory consistent for a single streaming mode DMA translation * Make physical memory consistent for a single streaming mode DMA translation
* after a transfer. * after a transfer.
@ -768,6 +740,7 @@ swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
{ {
swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
} }
EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
void void
swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
@ -775,6 +748,7 @@ swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
{ {
swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
} }
EXPORT_SYMBOL(swiotlb_sync_single_for_device);
/* /*
* Same as above, but for a sub-range of the mapping. * Same as above, but for a sub-range of the mapping.
@ -800,6 +774,7 @@ swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
SYNC_FOR_CPU); SYNC_FOR_CPU);
} }
EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
void void
swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr, swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
@ -808,9 +783,8 @@ swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
SYNC_FOR_DEVICE); SYNC_FOR_DEVICE);
} }
EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
void swiotlb_unmap_sg_attrs(struct device *, struct scatterlist *, int, int,
struct dma_attrs *);
/* /*
* Map a set of buffers described by scatterlist in streaming mode for DMA. * Map a set of buffers described by scatterlist in streaming mode for DMA.
* This is the scatter-gather version of the above swiotlb_map_single * This is the scatter-gather version of the above swiotlb_map_single
@ -832,20 +806,18 @@ swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
int dir, struct dma_attrs *attrs) int dir, struct dma_attrs *attrs)
{ {
struct scatterlist *sg; struct scatterlist *sg;
struct swiotlb_phys_addr buffer;
dma_addr_t dev_addr;
int i; int i;
BUG_ON(dir == DMA_NONE); BUG_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i) { for_each_sg(sgl, sg, nelems, i) {
dev_addr = swiotlb_sg_to_bus(sg); void *addr = sg_virt(sg);
if (range_needs_mapping(sg_virt(sg), sg->length) || dma_addr_t dev_addr = swiotlb_virt_to_bus(hwdev, addr);
if (range_needs_mapping(addr, sg->length) ||
address_needs_mapping(hwdev, dev_addr, sg->length)) { address_needs_mapping(hwdev, dev_addr, sg->length)) {
void *map; void *map = map_single(hwdev, sg_phys(sg),
buffer.page = sg_page(sg); sg->length, dir);
buffer.offset = sg->offset;
map = map_single(hwdev, buffer, sg->length, dir);
if (!map) { if (!map) {
/* Don't panic here, we expect map_sg users /* Don't panic here, we expect map_sg users
to do proper error handling. */ to do proper error handling. */
@ -855,7 +827,7 @@ swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
sgl[0].dma_length = 0; sgl[0].dma_length = 0;
return 0; return 0;
} }
sg->dma_address = swiotlb_virt_to_bus(map); sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
} else } else
sg->dma_address = dev_addr; sg->dma_address = dev_addr;
sg->dma_length = sg->length; sg->dma_length = sg->length;
@ -870,6 +842,7 @@ swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
{ {
return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
} }
EXPORT_SYMBOL(swiotlb_map_sg);
/* /*
* Unmap a set of streaming mode DMA translations. Again, cpu read rules * Unmap a set of streaming mode DMA translations. Again, cpu read rules
@ -885,11 +858,11 @@ swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
BUG_ON(dir == DMA_NONE); BUG_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i) { for_each_sg(sgl, sg, nelems, i) {
if (sg->dma_address != swiotlb_sg_to_bus(sg)) if (sg->dma_address != swiotlb_virt_to_bus(hwdev, sg_virt(sg)))
unmap_single(hwdev, swiotlb_bus_to_virt(sg->dma_address), unmap_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
sg->dma_length, dir); sg->dma_length, dir);
else if (dir == DMA_FROM_DEVICE) else if (dir == DMA_FROM_DEVICE)
dma_mark_clean(swiotlb_bus_to_virt(sg->dma_address), sg->dma_length); dma_mark_clean(sg_virt(sg), sg->dma_length);
} }
} }
EXPORT_SYMBOL(swiotlb_unmap_sg_attrs); EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
@ -900,6 +873,7 @@ swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
{ {
return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
} }
EXPORT_SYMBOL(swiotlb_unmap_sg);
/* /*
* Make physical memory consistent for a set of streaming mode DMA translations * Make physical memory consistent for a set of streaming mode DMA translations
@ -918,11 +892,11 @@ swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
BUG_ON(dir == DMA_NONE); BUG_ON(dir == DMA_NONE);
for_each_sg(sgl, sg, nelems, i) { for_each_sg(sgl, sg, nelems, i) {
if (sg->dma_address != swiotlb_sg_to_bus(sg)) if (sg->dma_address != swiotlb_virt_to_bus(hwdev, sg_virt(sg)))
sync_single(hwdev, swiotlb_bus_to_virt(sg->dma_address), sync_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
sg->dma_length, dir, target); sg->dma_length, dir, target);
else if (dir == DMA_FROM_DEVICE) else if (dir == DMA_FROM_DEVICE)
dma_mark_clean(swiotlb_bus_to_virt(sg->dma_address), sg->dma_length); dma_mark_clean(sg_virt(sg), sg->dma_length);
} }
} }
@ -932,6 +906,7 @@ swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
{ {
swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
} }
EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
void void
swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
@ -939,12 +914,14 @@ swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
{ {
swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
} }
EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
int int
swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{ {
return (dma_addr == swiotlb_virt_to_bus(io_tlb_overflow_buffer)); return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
} }
EXPORT_SYMBOL(swiotlb_dma_mapping_error);
/* /*
* Return whether the given device DMA address mask can be supported * Return whether the given device DMA address mask can be supported
@ -955,20 +932,6 @@ swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
int int
swiotlb_dma_supported(struct device *hwdev, u64 mask) swiotlb_dma_supported(struct device *hwdev, u64 mask)
{ {
return swiotlb_virt_to_bus(io_tlb_end - 1) <= mask; return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
} }
EXPORT_SYMBOL(swiotlb_map_single);
EXPORT_SYMBOL(swiotlb_unmap_single);
EXPORT_SYMBOL(swiotlb_map_sg);
EXPORT_SYMBOL(swiotlb_unmap_sg);
EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
EXPORT_SYMBOL(swiotlb_sync_single_for_device);
EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
EXPORT_SYMBOL(swiotlb_dma_mapping_error);
EXPORT_SYMBOL(swiotlb_alloc_coherent);
EXPORT_SYMBOL(swiotlb_free_coherent);
EXPORT_SYMBOL(swiotlb_dma_supported); EXPORT_SYMBOL(swiotlb_dma_supported);

View file

@ -223,7 +223,7 @@ int bdi_init(struct backing_dev_info *bdi)
bdi->max_prop_frac = PROP_FRAC_BASE; bdi->max_prop_frac = PROP_FRAC_BASE;
for (i = 0; i < NR_BDI_STAT_ITEMS; i++) { for (i = 0; i < NR_BDI_STAT_ITEMS; i++) {
err = percpu_counter_init_irq(&bdi->bdi_stat[i], 0); err = percpu_counter_init(&bdi->bdi_stat[i], 0);
if (err) if (err)
goto err; goto err;
} }