mirror of
https://github.com/adulau/aha.git
synced 2024-12-28 11:46:19 +00:00
[PATCH] local_t: Documentation
Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
d4d23add3a
commit
f1f8810cf4
1 changed files with 163 additions and 0 deletions
163
Documentation/local_ops.txt
Normal file
163
Documentation/local_ops.txt
Normal file
|
@ -0,0 +1,163 @@
|
|||
Semantics and Behavior of Local Atomic Operations
|
||||
|
||||
Mathieu Desnoyers
|
||||
|
||||
|
||||
This document explains the purpose of the local atomic operations, how
|
||||
to implement them for any given architecture and shows how they can be used
|
||||
properly. It also stresses on the precautions that must be taken when reading
|
||||
those local variables across CPUs when the order of memory writes matters.
|
||||
|
||||
|
||||
|
||||
* Purpose of local atomic operations
|
||||
|
||||
Local atomic operations are meant to provide fast and highly reentrant per CPU
|
||||
counters. They minimize the performance cost of standard atomic operations by
|
||||
removing the LOCK prefix and memory barriers normally required to synchronize
|
||||
across CPUs.
|
||||
|
||||
Having fast per CPU atomic counters is interesting in many cases : it does not
|
||||
require disabling interrupts to protect from interrupt handlers and it permits
|
||||
coherent counters in NMI handlers. It is especially useful for tracing purposes
|
||||
and for various performance monitoring counters.
|
||||
|
||||
Local atomic operations only guarantee variable modification atomicity wrt the
|
||||
CPU which owns the data. Therefore, care must taken to make sure that only one
|
||||
CPU writes to the local_t data. This is done by using per cpu data and making
|
||||
sure that we modify it from within a preemption safe context. It is however
|
||||
permitted to read local_t data from any CPU : it will then appear to be written
|
||||
out of order wrt other memory writes on the owner CPU.
|
||||
|
||||
|
||||
* Implementation for a given architecture
|
||||
|
||||
It can be done by slightly modifying the standard atomic operations : only
|
||||
their UP variant must be kept. It typically means removing LOCK prefix (on
|
||||
i386 and x86_64) and any SMP sychronization barrier. If the architecture does
|
||||
not have a different behavior between SMP and UP, including asm-generic/local.h
|
||||
in your archtecture's local.h is sufficient.
|
||||
|
||||
The local_t type is defined as an opaque signed long by embedding an
|
||||
atomic_long_t inside a structure. This is made so a cast from this type to a
|
||||
long fails. The definition looks like :
|
||||
|
||||
typedef struct { atomic_long_t a; } local_t;
|
||||
|
||||
|
||||
* How to use local atomic operations
|
||||
|
||||
#include <linux/percpu.h>
|
||||
#include <asm/local.h>
|
||||
|
||||
static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
|
||||
|
||||
|
||||
* Counting
|
||||
|
||||
Counting is done on all the bits of a signed long.
|
||||
|
||||
In preemptible context, use get_cpu_var() and put_cpu_var() around local atomic
|
||||
operations : it makes sure that preemption is disabled around write access to
|
||||
the per cpu variable. For instance :
|
||||
|
||||
local_inc(&get_cpu_var(counters));
|
||||
put_cpu_var(counters);
|
||||
|
||||
If you are already in a preemption-safe context, you can directly use
|
||||
__get_cpu_var() instead.
|
||||
|
||||
local_inc(&__get_cpu_var(counters));
|
||||
|
||||
|
||||
|
||||
* Reading the counters
|
||||
|
||||
Those local counters can be read from foreign CPUs to sum the count. Note that
|
||||
the data seen by local_read across CPUs must be considered to be out of order
|
||||
relatively to other memory writes happening on the CPU that owns the data.
|
||||
|
||||
long sum = 0;
|
||||
for_each_online_cpu(cpu)
|
||||
sum += local_read(&per_cpu(counters, cpu));
|
||||
|
||||
If you want to use a remote local_read to synchronize access to a resource
|
||||
between CPUs, explicit smp_wmb() and smp_rmb() memory barriers must be used
|
||||
respectively on the writer and the reader CPUs. It would be the case if you use
|
||||
the local_t variable as a counter of bytes written in a buffer : there should
|
||||
be a smp_wmb() between the buffer write and the counter increment and also a
|
||||
smp_rmb() between the counter read and the buffer read.
|
||||
|
||||
|
||||
Here is a sample module which implements a basic per cpu counter using local.h.
|
||||
|
||||
--- BEGIN ---
|
||||
/* test-local.c
|
||||
*
|
||||
* Sample module for local.h usage.
|
||||
*/
|
||||
|
||||
|
||||
#include <asm/local.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/timer.h>
|
||||
|
||||
static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
|
||||
|
||||
static struct timer_list test_timer;
|
||||
|
||||
/* IPI called on each CPU. */
|
||||
static void test_each(void *info)
|
||||
{
|
||||
/* Increment the counter from a non preemptible context */
|
||||
printk("Increment on cpu %d\n", smp_processor_id());
|
||||
local_inc(&__get_cpu_var(counters));
|
||||
|
||||
/* This is what incrementing the variable would look like within a
|
||||
* preemptible context (it disables preemption) :
|
||||
*
|
||||
* local_inc(&get_cpu_var(counters));
|
||||
* put_cpu_var(counters);
|
||||
*/
|
||||
}
|
||||
|
||||
static void do_test_timer(unsigned long data)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
/* Increment the counters */
|
||||
on_each_cpu(test_each, NULL, 0, 1);
|
||||
/* Read all the counters */
|
||||
printk("Counters read from CPU %d\n", smp_processor_id());
|
||||
for_each_online_cpu(cpu) {
|
||||
printk("Read : CPU %d, count %ld\n", cpu,
|
||||
local_read(&per_cpu(counters, cpu)));
|
||||
}
|
||||
del_timer(&test_timer);
|
||||
test_timer.expires = jiffies + 1000;
|
||||
add_timer(&test_timer);
|
||||
}
|
||||
|
||||
static int __init test_init(void)
|
||||
{
|
||||
/* initialize the timer that will increment the counter */
|
||||
init_timer(&test_timer);
|
||||
test_timer.function = do_test_timer;
|
||||
test_timer.expires = jiffies + 1;
|
||||
add_timer(&test_timer);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit test_exit(void)
|
||||
{
|
||||
del_timer_sync(&test_timer);
|
||||
}
|
||||
|
||||
module_init(test_init);
|
||||
module_exit(test_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Mathieu Desnoyers");
|
||||
MODULE_DESCRIPTION("Local Atomic Ops");
|
||||
--- END ---
|
Loading…
Reference in a new issue