mirror of
https://github.com/adulau/aha.git
synced 2024-12-28 11:46:19 +00:00
pagemap: add documentation for pagemap
Just a quick explanation of the pagemap interface from a userspace point of view, and an example of how to use it (in English, not code). Signed-off-by: Thomas Tuttle <ttuttle@google.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
4710d1ac4c
commit
ef421be741
1 changed files with 77 additions and 0 deletions
77
Documentation/vm/pagemap.txt
Normal file
77
Documentation/vm/pagemap.txt
Normal file
|
@ -0,0 +1,77 @@
|
|||
pagemap, from the userspace perspective
|
||||
---------------------------------------
|
||||
|
||||
pagemap is a new (as of 2.6.25) set of interfaces in the kernel that allow
|
||||
userspace programs to examine the page tables and related information by
|
||||
reading files in /proc.
|
||||
|
||||
There are three components to pagemap:
|
||||
|
||||
* /proc/pid/pagemap. This file lets a userspace process find out which
|
||||
physical frame each virtual page is mapped to. It contains one 64-bit
|
||||
value for each virtual page, containing the following data (from
|
||||
fs/proc/task_mmu.c, above pagemap_read):
|
||||
|
||||
* Bits 0-55 page frame number (PFN) if present
|
||||
* Bits 0-4 swap type if swapped
|
||||
* Bits 5-55 swap offset if swapped
|
||||
* Bits 55-60 page shift (page size = 1<<page shift)
|
||||
* Bit 61 reserved for future use
|
||||
* Bit 62 page swapped
|
||||
* Bit 63 page present
|
||||
|
||||
If the page is not present but in swap, then the PFN contains an
|
||||
encoding of the swap file number and the page's offset into the
|
||||
swap. Unmapped pages return a null PFN. This allows determining
|
||||
precisely which pages are mapped (or in swap) and comparing mapped
|
||||
pages between processes.
|
||||
|
||||
Efficient users of this interface will use /proc/pid/maps to
|
||||
determine which areas of memory are actually mapped and llseek to
|
||||
skip over unmapped regions.
|
||||
|
||||
* /proc/kpagecount. This file contains a 64-bit count of the number of
|
||||
times each page is mapped, indexed by PFN.
|
||||
|
||||
* /proc/kpageflags. This file contains a 64-bit set of flags for each
|
||||
page, indexed by PFN.
|
||||
|
||||
The flags are (from fs/proc/proc_misc, above kpageflags_read):
|
||||
|
||||
0. LOCKED
|
||||
1. ERROR
|
||||
2. REFERENCED
|
||||
3. UPTODATE
|
||||
4. DIRTY
|
||||
5. LRU
|
||||
6. ACTIVE
|
||||
7. SLAB
|
||||
8. WRITEBACK
|
||||
9. RECLAIM
|
||||
10. BUDDY
|
||||
|
||||
Using pagemap to do something useful:
|
||||
|
||||
The general procedure for using pagemap to find out about a process' memory
|
||||
usage goes like this:
|
||||
|
||||
1. Read /proc/pid/maps to determine which parts of the memory space are
|
||||
mapped to what.
|
||||
2. Select the maps you are interested in -- all of them, or a particular
|
||||
library, or the stack or the heap, etc.
|
||||
3. Open /proc/pid/pagemap and seek to the pages you would like to examine.
|
||||
4. Read a u64 for each page from pagemap.
|
||||
5. Open /proc/kpagecount and/or /proc/kpageflags. For each PFN you just
|
||||
read, seek to that entry in the file, and read the data you want.
|
||||
|
||||
For example, to find the "unique set size" (USS), which is the amount of
|
||||
memory that a process is using that is not shared with any other process,
|
||||
you can go through every map in the process, find the PFNs, look those up
|
||||
in kpagecount, and tally up the number of pages that are only referenced
|
||||
once.
|
||||
|
||||
Other notes:
|
||||
|
||||
Reading from any of the files will return -EINVAL if you are not starting
|
||||
the read on an 8-byte boundary (e.g., if you seeked an odd number of bytes
|
||||
into the file), or if the size of the read is not a multiple of 8 bytes.
|
Loading…
Reference in a new issue