mirror of
https://github.com/adulau/aha.git
synced 2024-12-27 19:26:25 +00:00
i2c: Delete legacy model documentation
The legacy i2c binding model is deprecated and will be removed soon, so we no longer need to document it. Signed-off-by: Jean Delvare <khali@linux-fr.org>
This commit is contained in:
parent
7d1d8999b4
commit
e313353dd4
1 changed files with 14 additions and 241 deletions
|
@ -25,8 +25,6 @@ routines, and should be zero-initialized except for fields with data you
|
|||
provide. A client structure holds device-specific information like the
|
||||
driver model device node, and its I2C address.
|
||||
|
||||
/* iff driver uses driver model ("new style") binding model: */
|
||||
|
||||
static struct i2c_device_id foo_idtable[] = {
|
||||
{ "foo", my_id_for_foo },
|
||||
{ "bar", my_id_for_bar },
|
||||
|
@ -40,7 +38,6 @@ static struct i2c_driver foo_driver = {
|
|||
.name = "foo",
|
||||
},
|
||||
|
||||
/* iff driver uses driver model ("new style") binding model: */
|
||||
.id_table = foo_ids,
|
||||
.probe = foo_probe,
|
||||
.remove = foo_remove,
|
||||
|
@ -49,11 +46,6 @@ static struct i2c_driver foo_driver = {
|
|||
.detect = foo_detect,
|
||||
.address_data = &addr_data,
|
||||
|
||||
/* else, driver uses "legacy" binding model: */
|
||||
.attach_adapter = foo_attach_adapter,
|
||||
.detach_client = foo_detach_client,
|
||||
|
||||
/* these may be used regardless of the driver binding model */
|
||||
.shutdown = foo_shutdown, /* optional */
|
||||
.suspend = foo_suspend, /* optional */
|
||||
.resume = foo_resume, /* optional */
|
||||
|
@ -88,7 +80,7 @@ be very useful.
|
|||
An example structure is below.
|
||||
|
||||
struct foo_data {
|
||||
struct i2c_client client;
|
||||
struct i2c_client *client;
|
||||
enum chips type; /* To keep the chips type for `sensors' drivers. */
|
||||
|
||||
/* Because the i2c bus is slow, it is often useful to cache the read
|
||||
|
@ -144,10 +136,10 @@ Probing and attaching
|
|||
=====================
|
||||
|
||||
The Linux I2C stack was originally written to support access to hardware
|
||||
monitoring chips on PC motherboards, and thus it embeds some assumptions
|
||||
that are more appropriate to SMBus (and PCs) than to I2C. One of these
|
||||
assumptions is that most adapters and devices drivers support the SMBUS_QUICK
|
||||
protocol to probe device presence. Another is that devices and their drivers
|
||||
monitoring chips on PC motherboards, and thus used to embed some assumptions
|
||||
that were more appropriate to SMBus (and PCs) than to I2C. One of these
|
||||
assumptions was that most adapters and devices drivers support the SMBUS_QUICK
|
||||
protocol to probe device presence. Another was that devices and their drivers
|
||||
can be sufficiently configured using only such probe primitives.
|
||||
|
||||
As Linux and its I2C stack became more widely used in embedded systems
|
||||
|
@ -164,6 +156,9 @@ since the "legacy" model requires drivers to create "i2c_client" device
|
|||
objects after SMBus style probing, while the Linux driver model expects
|
||||
drivers to be given such device objects in their probe() routines.
|
||||
|
||||
The legacy model is deprecated now and will soon be removed, so we no
|
||||
longer document it here.
|
||||
|
||||
|
||||
Standard Driver Model Binding ("New Style")
|
||||
-------------------------------------------
|
||||
|
@ -193,8 +188,8 @@ matches the device's name. It is passed the entry that was matched so
|
|||
the driver knows which one in the table matched.
|
||||
|
||||
|
||||
Device Creation (Standard driver model)
|
||||
---------------------------------------
|
||||
Device Creation
|
||||
---------------
|
||||
|
||||
If you know for a fact that an I2C device is connected to a given I2C bus,
|
||||
you can instantiate that device by simply filling an i2c_board_info
|
||||
|
@ -221,8 +216,8 @@ in the I2C bus driver. You may want to save the returned i2c_client
|
|||
reference for later use.
|
||||
|
||||
|
||||
Device Detection (Standard driver model)
|
||||
----------------------------------------
|
||||
Device Detection
|
||||
----------------
|
||||
|
||||
Sometimes you do not know in advance which I2C devices are connected to
|
||||
a given I2C bus. This is for example the case of hardware monitoring
|
||||
|
@ -246,8 +241,8 @@ otherwise misdetections are likely to occur and things can get wrong
|
|||
quickly.
|
||||
|
||||
|
||||
Device Deletion (Standard driver model)
|
||||
---------------------------------------
|
||||
Device Deletion
|
||||
---------------
|
||||
|
||||
Each I2C device which has been created using i2c_new_device() or
|
||||
i2c_new_probed_device() can be unregistered by calling
|
||||
|
@ -256,228 +251,6 @@ called automatically before the underlying I2C bus itself is removed, as a
|
|||
device can't survive its parent in the device driver model.
|
||||
|
||||
|
||||
Legacy Driver Binding Model
|
||||
---------------------------
|
||||
|
||||
Most i2c devices can be present on several i2c addresses; for some this
|
||||
is determined in hardware (by soldering some chip pins to Vcc or Ground),
|
||||
for others this can be changed in software (by writing to specific client
|
||||
registers). Some devices are usually on a specific address, but not always;
|
||||
and some are even more tricky. So you will probably need to scan several
|
||||
i2c addresses for your clients, and do some sort of detection to see
|
||||
whether it is actually a device supported by your driver.
|
||||
|
||||
To give the user a maximum of possibilities, some default module parameters
|
||||
are defined to help determine what addresses are scanned. Several macros
|
||||
are defined in i2c.h to help you support them, as well as a generic
|
||||
detection algorithm.
|
||||
|
||||
You do not have to use this parameter interface; but don't try to use
|
||||
function i2c_probe() if you don't.
|
||||
|
||||
|
||||
Probing classes (Legacy model)
|
||||
------------------------------
|
||||
|
||||
All parameters are given as lists of unsigned 16-bit integers. Lists are
|
||||
terminated by I2C_CLIENT_END.
|
||||
The following lists are used internally:
|
||||
|
||||
normal_i2c: filled in by the module writer.
|
||||
A list of I2C addresses which should normally be examined.
|
||||
probe: insmod parameter.
|
||||
A list of pairs. The first value is a bus number (-1 for any I2C bus),
|
||||
the second is the address. These addresses are also probed, as if they
|
||||
were in the 'normal' list.
|
||||
ignore: insmod parameter.
|
||||
A list of pairs. The first value is a bus number (-1 for any I2C bus),
|
||||
the second is the I2C address. These addresses are never probed.
|
||||
This parameter overrules the 'normal_i2c' list only.
|
||||
force: insmod parameter.
|
||||
A list of pairs. The first value is a bus number (-1 for any I2C bus),
|
||||
the second is the I2C address. A device is blindly assumed to be on
|
||||
the given address, no probing is done.
|
||||
|
||||
Additionally, kind-specific force lists may optionally be defined if
|
||||
the driver supports several chip kinds. They are grouped in a
|
||||
NULL-terminated list of pointers named forces, those first element if the
|
||||
generic force list mentioned above. Each additional list correspond to an
|
||||
insmod parameter of the form force_<kind>.
|
||||
|
||||
Fortunately, as a module writer, you just have to define the `normal_i2c'
|
||||
parameter. The complete declaration could look like this:
|
||||
|
||||
/* Scan 0x4c to 0x4f */
|
||||
static const unsigned short normal_i2c[] = { 0x4c, 0x4d, 0x4e, 0x4f,
|
||||
I2C_CLIENT_END };
|
||||
|
||||
/* Magic definition of all other variables and things */
|
||||
I2C_CLIENT_INSMOD;
|
||||
/* Or, if your driver supports, say, 2 kind of devices: */
|
||||
I2C_CLIENT_INSMOD_2(foo, bar);
|
||||
|
||||
If you use the multi-kind form, an enum will be defined for you:
|
||||
enum chips { any_chip, foo, bar, ... }
|
||||
You can then (and certainly should) use it in the driver code.
|
||||
|
||||
Note that you *have* to call the defined variable `normal_i2c',
|
||||
without any prefix!
|
||||
|
||||
|
||||
Attaching to an adapter (Legacy model)
|
||||
--------------------------------------
|
||||
|
||||
Whenever a new adapter is inserted, or for all adapters if the driver is
|
||||
being registered, the callback attach_adapter() is called. Now is the
|
||||
time to determine what devices are present on the adapter, and to register
|
||||
a client for each of them.
|
||||
|
||||
The attach_adapter callback is really easy: we just call the generic
|
||||
detection function. This function will scan the bus for us, using the
|
||||
information as defined in the lists explained above. If a device is
|
||||
detected at a specific address, another callback is called.
|
||||
|
||||
int foo_attach_adapter(struct i2c_adapter *adapter)
|
||||
{
|
||||
return i2c_probe(adapter,&addr_data,&foo_detect_client);
|
||||
}
|
||||
|
||||
Remember, structure `addr_data' is defined by the macros explained above,
|
||||
so you do not have to define it yourself.
|
||||
|
||||
The i2c_probe function will call the foo_detect_client
|
||||
function only for those i2c addresses that actually have a device on
|
||||
them (unless a `force' parameter was used). In addition, addresses that
|
||||
are already in use (by some other registered client) are skipped.
|
||||
|
||||
|
||||
The detect client function (Legacy model)
|
||||
-----------------------------------------
|
||||
|
||||
The detect client function is called by i2c_probe. The `kind' parameter
|
||||
contains -1 for a probed detection, 0 for a forced detection, or a positive
|
||||
number for a forced detection with a chip type forced.
|
||||
|
||||
Returning an error different from -ENODEV in a detect function will cause
|
||||
the detection to stop: other addresses and adapters won't be scanned.
|
||||
This should only be done on fatal or internal errors, such as a memory
|
||||
shortage or i2c_attach_client failing.
|
||||
|
||||
For now, you can ignore the `flags' parameter. It is there for future use.
|
||||
|
||||
int foo_detect_client(struct i2c_adapter *adapter, int address,
|
||||
int kind)
|
||||
{
|
||||
int err = 0;
|
||||
int i;
|
||||
struct i2c_client *client;
|
||||
struct foo_data *data;
|
||||
const char *name = "";
|
||||
|
||||
/* Let's see whether this adapter can support what we need.
|
||||
Please substitute the things you need here! */
|
||||
if (!i2c_check_functionality(adapter,I2C_FUNC_SMBUS_WORD_DATA |
|
||||
I2C_FUNC_SMBUS_WRITE_BYTE))
|
||||
goto ERROR0;
|
||||
|
||||
/* OK. For now, we presume we have a valid client. We now create the
|
||||
client structure, even though we cannot fill it completely yet.
|
||||
But it allows us to access several i2c functions safely */
|
||||
|
||||
if (!(data = kzalloc(sizeof(struct foo_data), GFP_KERNEL))) {
|
||||
err = -ENOMEM;
|
||||
goto ERROR0;
|
||||
}
|
||||
|
||||
client = &data->client;
|
||||
i2c_set_clientdata(client, data);
|
||||
|
||||
client->addr = address;
|
||||
client->adapter = adapter;
|
||||
client->driver = &foo_driver;
|
||||
|
||||
/* Now, we do the remaining detection. If no `force' parameter is used. */
|
||||
|
||||
/* First, the generic detection (if any), that is skipped if any force
|
||||
parameter was used. */
|
||||
if (kind < 0) {
|
||||
/* The below is of course bogus */
|
||||
if (foo_read(client, FOO_REG_GENERIC) != FOO_GENERIC_VALUE)
|
||||
goto ERROR1;
|
||||
}
|
||||
|
||||
/* Next, specific detection. This is especially important for `sensors'
|
||||
devices. */
|
||||
|
||||
/* Determine the chip type. Not needed if a `force_CHIPTYPE' parameter
|
||||
was used. */
|
||||
if (kind <= 0) {
|
||||
i = foo_read(client, FOO_REG_CHIPTYPE);
|
||||
if (i == FOO_TYPE_1)
|
||||
kind = chip1; /* As defined in the enum */
|
||||
else if (i == FOO_TYPE_2)
|
||||
kind = chip2;
|
||||
else {
|
||||
printk("foo: Ignoring 'force' parameter for unknown chip at "
|
||||
"adapter %d, address 0x%02x\n",i2c_adapter_id(adapter),address);
|
||||
goto ERROR1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now set the type and chip names */
|
||||
if (kind == chip1) {
|
||||
name = "chip1";
|
||||
} else if (kind == chip2) {
|
||||
name = "chip2";
|
||||
}
|
||||
|
||||
/* Fill in the remaining client fields. */
|
||||
strlcpy(client->name, name, I2C_NAME_SIZE);
|
||||
data->type = kind;
|
||||
mutex_init(&data->update_lock); /* Only if you use this field */
|
||||
|
||||
/* Any other initializations in data must be done here too. */
|
||||
|
||||
/* This function can write default values to the client registers, if
|
||||
needed. */
|
||||
foo_init_client(client);
|
||||
|
||||
/* Tell the i2c layer a new client has arrived */
|
||||
if ((err = i2c_attach_client(client)))
|
||||
goto ERROR1;
|
||||
|
||||
return 0;
|
||||
|
||||
/* OK, this is not exactly good programming practice, usually. But it is
|
||||
very code-efficient in this case. */
|
||||
|
||||
ERROR1:
|
||||
kfree(data);
|
||||
ERROR0:
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
Removing the client (Legacy model)
|
||||
==================================
|
||||
|
||||
The detach_client call back function is called when a client should be
|
||||
removed. It may actually fail, but only when panicking. This code is
|
||||
much simpler than the attachment code, fortunately!
|
||||
|
||||
int foo_detach_client(struct i2c_client *client)
|
||||
{
|
||||
int err;
|
||||
|
||||
/* Try to detach the client from i2c space */
|
||||
if ((err = i2c_detach_client(client)))
|
||||
return err;
|
||||
|
||||
kfree(i2c_get_clientdata(client));
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
Initializing the module or kernel
|
||||
=================================
|
||||
|
||||
|
|
Loading…
Reference in a new issue