From dc009d92435f99498cbc579ce76bf28e837e2c14 Mon Sep 17 00:00:00 2001 From: "Eric W. Biederman" Date: Sat, 25 Jun 2005 14:57:52 -0700 Subject: [PATCH] [PATCH] kexec: add kexec syscalls This patch introduces the architecture independent implementation the sys_kexec_load, the compat_sys_kexec_load system calls. Kexec on panic support has been integrated into the core patch and is relatively clean. In addition the hopefully architecture independent option crashkernel=size@location has been docuemented. It's purpose is to reserve space for the panic kernel to live, and where no DMA transfer will ever be setup to access. Signed-off-by: Eric Biederman Signed-off-by: Alexander Nyberg Signed-off-by: Adrian Bunk Signed-off-by: Vivek Goyal Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/kernel-parameters.txt | 4 + MAINTAINERS | 10 + include/linux/kexec.h | 127 ++++ include/linux/reboot.h | 3 + include/linux/syscalls.h | 5 +- kernel/Makefile | 1 + kernel/kexec.c | 1036 +++++++++++++++++++++++++++ kernel/panic.c | 23 +- kernel/sys.c | 20 + kernel/sys_ni.c | 2 + 10 files changed, 1227 insertions(+), 4 deletions(-) create mode 100644 include/linux/kexec.h create mode 100644 kernel/kexec.c diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 86db43fd6b0..560ff5ae3fd 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -358,6 +358,10 @@ running once the system is up. cpia_pp= [HW,PPT] Format: { parport | auto | none } + crashkernel=nn[KMG]@ss[KMG] + [KNL] Reserve a chunk of physical memory to + hold a kernel to switch to with kexec on panic. + cs4232= [HW,OSS] Format: ,,,,, diff --git a/MAINTAINERS b/MAINTAINERS index dbdd8494b2e..81728572799 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -1330,6 +1330,16 @@ M: rml@novell.com L: linux-kernel@vger.kernel.org S: Maintained +KEXEC +P: Eric Biederman +P: Randy Dunlap +M: ebiederm@xmission.com +M: rddunlap@osdl.org +W: http://www.xmission.com/~ebiederm/files/kexec/ +L: linux-kernel@vger.kernel.org +L: fastboot@osdl.org +S: Maintained + LANMEDIA WAN CARD DRIVER P: Andrew Stanley-Jones M: asj@lanmedia.com diff --git a/include/linux/kexec.h b/include/linux/kexec.h new file mode 100644 index 00000000000..e3fc35f4e35 --- /dev/null +++ b/include/linux/kexec.h @@ -0,0 +1,127 @@ +#ifndef LINUX_KEXEC_H +#define LINUX_KEXEC_H + +#ifdef CONFIG_KEXEC +#include +#include +#include +#include +#include + +/* Verify architecture specific macros are defined */ + +#ifndef KEXEC_SOURCE_MEMORY_LIMIT +#error KEXEC_SOURCE_MEMORY_LIMIT not defined +#endif + +#ifndef KEXEC_DESTINATION_MEMORY_LIMIT +#error KEXEC_DESTINATION_MEMORY_LIMIT not defined +#endif + +#ifndef KEXEC_CONTROL_MEMORY_LIMIT +#error KEXEC_CONTROL_MEMORY_LIMIT not defined +#endif + +#ifndef KEXEC_CONTROL_CODE_SIZE +#error KEXEC_CONTROL_CODE_SIZE not defined +#endif + +#ifndef KEXEC_ARCH +#error KEXEC_ARCH not defined +#endif + +/* + * This structure is used to hold the arguments that are used when loading + * kernel binaries. + */ + +typedef unsigned long kimage_entry_t; +#define IND_DESTINATION 0x1 +#define IND_INDIRECTION 0x2 +#define IND_DONE 0x4 +#define IND_SOURCE 0x8 + +#define KEXEC_SEGMENT_MAX 8 +struct kexec_segment { + void __user *buf; + size_t bufsz; + unsigned long mem; /* User space sees this as a (void *) ... */ + size_t memsz; +}; + +#ifdef CONFIG_COMPAT +struct compat_kexec_segment { + compat_uptr_t buf; + compat_size_t bufsz; + compat_ulong_t mem; /* User space sees this as a (void *) ... */ + compat_size_t memsz; +}; +#endif + +struct kimage { + kimage_entry_t head; + kimage_entry_t *entry; + kimage_entry_t *last_entry; + + unsigned long destination; + + unsigned long start; + struct page *control_code_page; + + unsigned long nr_segments; + struct kexec_segment segment[KEXEC_SEGMENT_MAX]; + + struct list_head control_pages; + struct list_head dest_pages; + struct list_head unuseable_pages; + + /* Address of next control page to allocate for crash kernels. */ + unsigned long control_page; + + /* Flags to indicate special processing */ + unsigned int type : 1; +#define KEXEC_TYPE_DEFAULT 0 +#define KEXEC_TYPE_CRASH 1 +}; + + + +/* kexec interface functions */ +extern NORET_TYPE void machine_kexec(struct kimage *image) ATTRIB_NORET; +extern int machine_kexec_prepare(struct kimage *image); +extern void machine_kexec_cleanup(struct kimage *image); +extern asmlinkage long sys_kexec_load(unsigned long entry, + unsigned long nr_segments, struct kexec_segment __user *segments, + unsigned long flags); +#ifdef CONFIG_COMPAT +extern asmlinkage long compat_sys_kexec_load(unsigned long entry, + unsigned long nr_segments, struct compat_kexec_segment __user *segments, + unsigned long flags); +#endif +extern struct page *kimage_alloc_control_pages(struct kimage *image, unsigned int order); +extern void crash_kexec(void); +extern struct kimage *kexec_image; + +#define KEXEC_ON_CRASH 0x00000001 +#define KEXEC_ARCH_MASK 0xffff0000 + +/* These values match the ELF architecture values. + * Unless there is a good reason that should continue to be the case. + */ +#define KEXEC_ARCH_DEFAULT ( 0 << 16) +#define KEXEC_ARCH_386 ( 3 << 16) +#define KEXEC_ARCH_X86_64 (62 << 16) +#define KEXEC_ARCH_PPC (20 << 16) +#define KEXEC_ARCH_PPC64 (21 << 16) +#define KEXEC_ARCH_IA_64 (50 << 16) + +#define KEXEC_FLAGS (KEXEC_ON_CRASH) /* List of defined/legal kexec flags */ + +/* Location of a reserved region to hold the crash kernel. + */ +extern struct resource crashk_res; + +#else /* !CONFIG_KEXEC */ +static inline void crash_kexec(void) { } +#endif /* CONFIG_KEXEC */ +#endif /* LINUX_KEXEC_H */ diff --git a/include/linux/reboot.h b/include/linux/reboot.h index d60fafc8bdc..c5a05e16edb 100644 --- a/include/linux/reboot.h +++ b/include/linux/reboot.h @@ -51,6 +51,9 @@ extern void machine_restart(char *cmd); extern void machine_halt(void); extern void machine_power_off(void); +extern void machine_shutdown(void); +extern void machine_crash_shutdown(void); + #endif #endif /* _LINUX_REBOOT_H */ diff --git a/include/linux/syscalls.h b/include/linux/syscalls.h index c39f6f72cbb..7ba8f8f747a 100644 --- a/include/linux/syscalls.h +++ b/include/linux/syscalls.h @@ -159,8 +159,9 @@ asmlinkage long sys_shutdown(int, int); asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user *arg); asmlinkage long sys_restart_syscall(void); -asmlinkage long sys_kexec_load(void *entry, unsigned long nr_segments, - struct kexec_segment *segments, unsigned long flags); +asmlinkage long sys_kexec_load(unsigned long entry, + unsigned long nr_segments, struct kexec_segment __user *segments, + unsigned long flags); asmlinkage long sys_exit(int error_code); asmlinkage void sys_exit_group(int error_code); diff --git a/kernel/Makefile b/kernel/Makefile index b01d26fe8db..cfc8b0dea95 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -17,6 +17,7 @@ obj-$(CONFIG_MODULES) += module.o obj-$(CONFIG_KALLSYMS) += kallsyms.o obj-$(CONFIG_PM) += power/ obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o +obj-$(CONFIG_KEXEC) += kexec.o obj-$(CONFIG_COMPAT) += compat.o obj-$(CONFIG_CPUSETS) += cpuset.o obj-$(CONFIG_IKCONFIG) += configs.o diff --git a/kernel/kexec.c b/kernel/kexec.c new file mode 100644 index 00000000000..def9c73ec9a --- /dev/null +++ b/kernel/kexec.c @@ -0,0 +1,1036 @@ +/* + * kexec.c - kexec system call + * Copyright (C) 2002-2004 Eric Biederman + * + * This source code is licensed under the GNU General Public License, + * Version 2. See the file COPYING for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* Location of the reserved area for the crash kernel */ +struct resource crashk_res = { + .name = "Crash kernel", + .start = 0, + .end = 0, + .flags = IORESOURCE_BUSY | IORESOURCE_MEM +}; + +/* + * When kexec transitions to the new kernel there is a one-to-one + * mapping between physical and virtual addresses. On processors + * where you can disable the MMU this is trivial, and easy. For + * others it is still a simple predictable page table to setup. + * + * In that environment kexec copies the new kernel to its final + * resting place. This means I can only support memory whose + * physical address can fit in an unsigned long. In particular + * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. + * If the assembly stub has more restrictive requirements + * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be + * defined more restrictively in . + * + * The code for the transition from the current kernel to the + * the new kernel is placed in the control_code_buffer, whose size + * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single + * page of memory is necessary, but some architectures require more. + * Because this memory must be identity mapped in the transition from + * virtual to physical addresses it must live in the range + * 0 - TASK_SIZE, as only the user space mappings are arbitrarily + * modifiable. + * + * The assembly stub in the control code buffer is passed a linked list + * of descriptor pages detailing the source pages of the new kernel, + * and the destination addresses of those source pages. As this data + * structure is not used in the context of the current OS, it must + * be self-contained. + * + * The code has been made to work with highmem pages and will use a + * destination page in its final resting place (if it happens + * to allocate it). The end product of this is that most of the + * physical address space, and most of RAM can be used. + * + * Future directions include: + * - allocating a page table with the control code buffer identity + * mapped, to simplify machine_kexec and make kexec_on_panic more + * reliable. + */ + +/* + * KIMAGE_NO_DEST is an impossible destination address..., for + * allocating pages whose destination address we do not care about. + */ +#define KIMAGE_NO_DEST (-1UL) + +static int kimage_is_destination_range( + struct kimage *image, unsigned long start, unsigned long end); +static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long dest); + +static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, + unsigned long nr_segments, struct kexec_segment __user *segments) +{ + size_t segment_bytes; + struct kimage *image; + unsigned long i; + int result; + + /* Allocate a controlling structure */ + result = -ENOMEM; + image = kmalloc(sizeof(*image), GFP_KERNEL); + if (!image) { + goto out; + } + memset(image, 0, sizeof(*image)); + image->head = 0; + image->entry = &image->head; + image->last_entry = &image->head; + image->control_page = ~0; /* By default this does not apply */ + image->start = entry; + image->type = KEXEC_TYPE_DEFAULT; + + /* Initialize the list of control pages */ + INIT_LIST_HEAD(&image->control_pages); + + /* Initialize the list of destination pages */ + INIT_LIST_HEAD(&image->dest_pages); + + /* Initialize the list of unuseable pages */ + INIT_LIST_HEAD(&image->unuseable_pages); + + /* Read in the segments */ + image->nr_segments = nr_segments; + segment_bytes = nr_segments * sizeof(*segments); + result = copy_from_user(image->segment, segments, segment_bytes); + if (result) + goto out; + + /* + * Verify we have good destination addresses. The caller is + * responsible for making certain we don't attempt to load + * the new image into invalid or reserved areas of RAM. This + * just verifies it is an address we can use. + * + * Since the kernel does everything in page size chunks ensure + * the destination addreses are page aligned. Too many + * special cases crop of when we don't do this. The most + * insidious is getting overlapping destination addresses + * simply because addresses are changed to page size + * granularity. + */ + result = -EADDRNOTAVAIL; + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) + goto out; + if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) + goto out; + } + + /* Verify our destination addresses do not overlap. + * If we alloed overlapping destination addresses + * through very weird things can happen with no + * easy explanation as one segment stops on another. + */ + result = -EINVAL; + for(i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + unsigned long j; + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + for(j = 0; j < i; j++) { + unsigned long pstart, pend; + pstart = image->segment[j].mem; + pend = pstart + image->segment[j].memsz; + /* Do the segments overlap ? */ + if ((mend > pstart) && (mstart < pend)) + goto out; + } + } + + /* Ensure our buffer sizes are strictly less than + * our memory sizes. This should always be the case, + * and it is easier to check up front than to be surprised + * later on. + */ + result = -EINVAL; + for(i = 0; i < nr_segments; i++) { + if (image->segment[i].bufsz > image->segment[i].memsz) + goto out; + } + + + result = 0; + out: + if (result == 0) { + *rimage = image; + } else { + kfree(image); + } + return result; + +} + +static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, + unsigned long nr_segments, struct kexec_segment __user *segments) +{ + int result; + struct kimage *image; + + /* Allocate and initialize a controlling structure */ + image = NULL; + result = do_kimage_alloc(&image, entry, nr_segments, segments); + if (result) { + goto out; + } + *rimage = image; + + /* + * Find a location for the control code buffer, and add it + * the vector of segments so that it's pages will also be + * counted as destination pages. + */ + result = -ENOMEM; + image->control_code_page = kimage_alloc_control_pages(image, + get_order(KEXEC_CONTROL_CODE_SIZE)); + if (!image->control_code_page) { + printk(KERN_ERR "Could not allocate control_code_buffer\n"); + goto out; + } + + result = 0; + out: + if (result == 0) { + *rimage = image; + } else { + kfree(image); + } + return result; +} + +static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, + unsigned long nr_segments, struct kexec_segment *segments) +{ + int result; + struct kimage *image; + unsigned long i; + + image = NULL; + /* Verify we have a valid entry point */ + if ((entry < crashk_res.start) || (entry > crashk_res.end)) { + result = -EADDRNOTAVAIL; + goto out; + } + + /* Allocate and initialize a controlling structure */ + result = do_kimage_alloc(&image, entry, nr_segments, segments); + if (result) { + goto out; + } + + /* Enable the special crash kernel control page + * allocation policy. + */ + image->control_page = crashk_res.start; + image->type = KEXEC_TYPE_CRASH; + + /* + * Verify we have good destination addresses. Normally + * the caller is responsible for making certain we don't + * attempt to load the new image into invalid or reserved + * areas of RAM. But crash kernels are preloaded into a + * reserved area of ram. We must ensure the addresses + * are in the reserved area otherwise preloading the + * kernel could corrupt things. + */ + result = -EADDRNOTAVAIL; + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + /* Ensure we are within the crash kernel limits */ + if ((mstart < crashk_res.start) || (mend > crashk_res.end)) + goto out; + } + + + /* + * Find a location for the control code buffer, and add + * the vector of segments so that it's pages will also be + * counted as destination pages. + */ + result = -ENOMEM; + image->control_code_page = kimage_alloc_control_pages(image, + get_order(KEXEC_CONTROL_CODE_SIZE)); + if (!image->control_code_page) { + printk(KERN_ERR "Could not allocate control_code_buffer\n"); + goto out; + } + + result = 0; + out: + if (result == 0) { + *rimage = image; + } else { + kfree(image); + } + return result; +} + +static int kimage_is_destination_range( + struct kimage *image, unsigned long start, unsigned long end) +{ + unsigned long i; + + for (i = 0; i < image->nr_segments; i++) { + unsigned long mstart, mend; + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + if ((end > mstart) && (start < mend)) { + return 1; + } + } + return 0; +} + +static struct page *kimage_alloc_pages(unsigned int gfp_mask, unsigned int order) +{ + struct page *pages; + pages = alloc_pages(gfp_mask, order); + if (pages) { + unsigned int count, i; + pages->mapping = NULL; + pages->private = order; + count = 1 << order; + for(i = 0; i < count; i++) { + SetPageReserved(pages + i); + } + } + return pages; +} + +static void kimage_free_pages(struct page *page) +{ + unsigned int order, count, i; + order = page->private; + count = 1 << order; + for(i = 0; i < count; i++) { + ClearPageReserved(page + i); + } + __free_pages(page, order); +} + +static void kimage_free_page_list(struct list_head *list) +{ + struct list_head *pos, *next; + list_for_each_safe(pos, next, list) { + struct page *page; + + page = list_entry(pos, struct page, lru); + list_del(&page->lru); + + kimage_free_pages(page); + } +} + +static struct page *kimage_alloc_normal_control_pages( + struct kimage *image, unsigned int order) +{ + /* Control pages are special, they are the intermediaries + * that are needed while we copy the rest of the pages + * to their final resting place. As such they must + * not conflict with either the destination addresses + * or memory the kernel is already using. + * + * The only case where we really need more than one of + * these are for architectures where we cannot disable + * the MMU and must instead generate an identity mapped + * page table for all of the memory. + * + * At worst this runs in O(N) of the image size. + */ + struct list_head extra_pages; + struct page *pages; + unsigned int count; + + count = 1 << order; + INIT_LIST_HEAD(&extra_pages); + + /* Loop while I can allocate a page and the page allocated + * is a destination page. + */ + do { + unsigned long pfn, epfn, addr, eaddr; + pages = kimage_alloc_pages(GFP_KERNEL, order); + if (!pages) + break; + pfn = page_to_pfn(pages); + epfn = pfn + count; + addr = pfn << PAGE_SHIFT; + eaddr = epfn << PAGE_SHIFT; + if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || + kimage_is_destination_range(image, addr, eaddr)) + { + list_add(&pages->lru, &extra_pages); + pages = NULL; + } + } while(!pages); + if (pages) { + /* Remember the allocated page... */ + list_add(&pages->lru, &image->control_pages); + + /* Because the page is already in it's destination + * location we will never allocate another page at + * that address. Therefore kimage_alloc_pages + * will not return it (again) and we don't need + * to give it an entry in image->segment[]. + */ + } + /* Deal with the destination pages I have inadvertently allocated. + * + * Ideally I would convert multi-page allocations into single + * page allocations, and add everyting to image->dest_pages. + * + * For now it is simpler to just free the pages. + */ + kimage_free_page_list(&extra_pages); + return pages; + +} + +static struct page *kimage_alloc_crash_control_pages( + struct kimage *image, unsigned int order) +{ + /* Control pages are special, they are the intermediaries + * that are needed while we copy the rest of the pages + * to their final resting place. As such they must + * not conflict with either the destination addresses + * or memory the kernel is already using. + * + * Control pages are also the only pags we must allocate + * when loading a crash kernel. All of the other pages + * are specified by the segments and we just memcpy + * into them directly. + * + * The only case where we really need more than one of + * these are for architectures where we cannot disable + * the MMU and must instead generate an identity mapped + * page table for all of the memory. + * + * Given the low demand this implements a very simple + * allocator that finds the first hole of the appropriate + * size in the reserved memory region, and allocates all + * of the memory up to and including the hole. + */ + unsigned long hole_start, hole_end, size; + struct page *pages; + pages = NULL; + size = (1 << order) << PAGE_SHIFT; + hole_start = (image->control_page + (size - 1)) & ~(size - 1); + hole_end = hole_start + size - 1; + while(hole_end <= crashk_res.end) { + unsigned long i; + if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) { + break; + } + if (hole_end > crashk_res.end) { + break; + } + /* See if I overlap any of the segments */ + for(i = 0; i < image->nr_segments; i++) { + unsigned long mstart, mend; + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz - 1; + if ((hole_end >= mstart) && (hole_start <= mend)) { + /* Advance the hole to the end of the segment */ + hole_start = (mend + (size - 1)) & ~(size - 1); + hole_end = hole_start + size - 1; + break; + } + } + /* If I don't overlap any segments I have found my hole! */ + if (i == image->nr_segments) { + pages = pfn_to_page(hole_start >> PAGE_SHIFT); + break; + } + } + if (pages) { + image->control_page = hole_end; + } + return pages; +} + + +struct page *kimage_alloc_control_pages( + struct kimage *image, unsigned int order) +{ + struct page *pages = NULL; + switch(image->type) { + case KEXEC_TYPE_DEFAULT: + pages = kimage_alloc_normal_control_pages(image, order); + break; + case KEXEC_TYPE_CRASH: + pages = kimage_alloc_crash_control_pages(image, order); + break; + } + return pages; +} + +static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) +{ + if (*image->entry != 0) { + image->entry++; + } + if (image->entry == image->last_entry) { + kimage_entry_t *ind_page; + struct page *page; + page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); + if (!page) { + return -ENOMEM; + } + ind_page = page_address(page); + *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; + image->entry = ind_page; + image->last_entry = + ind_page + ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); + } + *image->entry = entry; + image->entry++; + *image->entry = 0; + return 0; +} + +static int kimage_set_destination( + struct kimage *image, unsigned long destination) +{ + int result; + + destination &= PAGE_MASK; + result = kimage_add_entry(image, destination | IND_DESTINATION); + if (result == 0) { + image->destination = destination; + } + return result; +} + + +static int kimage_add_page(struct kimage *image, unsigned long page) +{ + int result; + + page &= PAGE_MASK; + result = kimage_add_entry(image, page | IND_SOURCE); + if (result == 0) { + image->destination += PAGE_SIZE; + } + return result; +} + + +static void kimage_free_extra_pages(struct kimage *image) +{ + /* Walk through and free any extra destination pages I may have */ + kimage_free_page_list(&image->dest_pages); + + /* Walk through and free any unuseable pages I have cached */ + kimage_free_page_list(&image->unuseable_pages); + +} +static int kimage_terminate(struct kimage *image) +{ + if (*image->entry != 0) { + image->entry++; + } + *image->entry = IND_DONE; + return 0; +} + +#define for_each_kimage_entry(image, ptr, entry) \ + for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ + ptr = (entry & IND_INDIRECTION)? \ + phys_to_virt((entry & PAGE_MASK)): ptr +1) + +static void kimage_free_entry(kimage_entry_t entry) +{ + struct page *page; + + page = pfn_to_page(entry >> PAGE_SHIFT); + kimage_free_pages(page); +} + +static void kimage_free(struct kimage *image) +{ + kimage_entry_t *ptr, entry; + kimage_entry_t ind = 0; + + if (!image) + return; + kimage_free_extra_pages(image); + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_INDIRECTION) { + /* Free the previous indirection page */ + if (ind & IND_INDIRECTION) { + kimage_free_entry(ind); + } + /* Save this indirection page until we are + * done with it. + */ + ind = entry; + } + else if (entry & IND_SOURCE) { + kimage_free_entry(entry); + } + } + /* Free the final indirection page */ + if (ind & IND_INDIRECTION) { + kimage_free_entry(ind); + } + + /* Handle any machine specific cleanup */ + machine_kexec_cleanup(image); + + /* Free the kexec control pages... */ + kimage_free_page_list(&image->control_pages); + kfree(image); +} + +static kimage_entry_t *kimage_dst_used(struct kimage *image, unsigned long page) +{ + kimage_entry_t *ptr, entry; + unsigned long destination = 0; + + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_DESTINATION) { + destination = entry & PAGE_MASK; + } + else if (entry & IND_SOURCE) { + if (page == destination) { + return ptr; + } + destination += PAGE_SIZE; + } + } + return 0; +} + +static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long destination) +{ + /* + * Here we implement safeguards to ensure that a source page + * is not copied to its destination page before the data on + * the destination page is no longer useful. + * + * To do this we maintain the invariant that a source page is + * either its own destination page, or it is not a + * destination page at all. + * + * That is slightly stronger than required, but the proof + * that no problems will not occur is trivial, and the + * implementation is simply to verify. + * + * When allocating all pages normally this algorithm will run + * in O(N) time, but in the worst case it will run in O(N^2) + * time. If the runtime is a problem the data structures can + * be fixed. + */ + struct page *page; + unsigned long addr; + + /* + * Walk through the list of destination pages, and see if I + * have a match. + */ + list_for_each_entry(page, &image->dest_pages, lru) { + addr = page_to_pfn(page) << PAGE_SHIFT; + if (addr == destination) { + list_del(&page->lru); + return page; + } + } + page = NULL; + while (1) { + kimage_entry_t *old; + + /* Allocate a page, if we run out of memory give up */ + page = kimage_alloc_pages(gfp_mask, 0); + if (!page) { + return 0; + } + /* If the page cannot be used file it away */ + if (page_to_pfn(page) > (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { + list_add(&page->lru, &image->unuseable_pages); + continue; + } + addr = page_to_pfn(page) << PAGE_SHIFT; + + /* If it is the destination page we want use it */ + if (addr == destination) + break; + + /* If the page is not a destination page use it */ + if (!kimage_is_destination_range(image, addr, addr + PAGE_SIZE)) + break; + + /* + * I know that the page is someones destination page. + * See if there is already a source page for this + * destination page. And if so swap the source pages. + */ + old = kimage_dst_used(image, addr); + if (old) { + /* If so move it */ + unsigned long old_addr; + struct page *old_page; + + old_addr = *old & PAGE_MASK; + old_page = pfn_to_page(old_addr >> PAGE_SHIFT); + copy_highpage(page, old_page); + *old = addr | (*old & ~PAGE_MASK); + + /* The old page I have found cannot be a + * destination page, so return it. + */ + addr = old_addr; + page = old_page; + break; + } + else { + /* Place the page on the destination list I + * will use it later. + */ + list_add(&page->lru, &image->dest_pages); + } + } + return page; +} + +static int kimage_load_normal_segment(struct kimage *image, + struct kexec_segment *segment) +{ + unsigned long maddr; + unsigned long ubytes, mbytes; + int result; + unsigned char *buf; + + result = 0; + buf = segment->buf; + ubytes = segment->bufsz; + mbytes = segment->memsz; + maddr = segment->mem; + + result = kimage_set_destination(image, maddr); + if (result < 0) { + goto out; + } + while(mbytes) { + struct page *page; + char *ptr; + size_t uchunk, mchunk; + page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); + if (page == 0) { + result = -ENOMEM; + goto out; + } + result = kimage_add_page(image, page_to_pfn(page) << PAGE_SHIFT); + if (result < 0) { + goto out; + } + ptr = kmap(page); + /* Start with a clear page */ + memset(ptr, 0, PAGE_SIZE); + ptr += maddr & ~PAGE_MASK; + mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); + if (mchunk > mbytes) { + mchunk = mbytes; + } + uchunk = mchunk; + if (uchunk > ubytes) { + uchunk = ubytes; + } + result = copy_from_user(ptr, buf, uchunk); + kunmap(page); + if (result) { + result = (result < 0) ? result : -EIO; + goto out; + } + ubytes -= uchunk; + maddr += mchunk; + buf += mchunk; + mbytes -= mchunk; + } + out: + return result; +} + +static int kimage_load_crash_segment(struct kimage *image, + struct kexec_segment *segment) +{ + /* For crash dumps kernels we simply copy the data from + * user space to it's destination. + * We do things a page at a time for the sake of kmap. + */ + unsigned long maddr; + unsigned long ubytes, mbytes; + int result; + unsigned char *buf; + + result = 0; + buf = segment->buf; + ubytes = segment->bufsz; + mbytes = segment->memsz; + maddr = segment->mem; + while(mbytes) { + struct page *page; + char *ptr; + size_t uchunk, mchunk; + page = pfn_to_page(maddr >> PAGE_SHIFT); + if (page == 0) { + result = -ENOMEM; + goto out; + } + ptr = kmap(page); + ptr += maddr & ~PAGE_MASK; + mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); + if (mchunk > mbytes) { + mchunk = mbytes; + } + uchunk = mchunk; + if (uchunk > ubytes) { + uchunk = ubytes; + /* Zero the trailing part of the page */ + memset(ptr + uchunk, 0, mchunk - uchunk); + } + result = copy_from_user(ptr, buf, uchunk); + kunmap(page); + if (result) { + result = (result < 0) ? result : -EIO; + goto out; + } + ubytes -= uchunk; + maddr += mchunk; + buf += mchunk; + mbytes -= mchunk; + } + out: + return result; +} + +static int kimage_load_segment(struct kimage *image, + struct kexec_segment *segment) +{ + int result = -ENOMEM; + switch(image->type) { + case KEXEC_TYPE_DEFAULT: + result = kimage_load_normal_segment(image, segment); + break; + case KEXEC_TYPE_CRASH: + result = kimage_load_crash_segment(image, segment); + break; + } + return result; +} + +/* + * Exec Kernel system call: for obvious reasons only root may call it. + * + * This call breaks up into three pieces. + * - A generic part which loads the new kernel from the current + * address space, and very carefully places the data in the + * allocated pages. + * + * - A generic part that interacts with the kernel and tells all of + * the devices to shut down. Preventing on-going dmas, and placing + * the devices in a consistent state so a later kernel can + * reinitialize them. + * + * - A machine specific part that includes the syscall number + * and the copies the image to it's final destination. And + * jumps into the image at entry. + * + * kexec does not sync, or unmount filesystems so if you need + * that to happen you need to do that yourself. + */ +struct kimage *kexec_image = NULL; +static struct kimage *kexec_crash_image = NULL; +/* + * A home grown binary mutex. + * Nothing can wait so this mutex is safe to use + * in interrupt context :) + */ +static int kexec_lock = 0; + +asmlinkage long sys_kexec_load(unsigned long entry, + unsigned long nr_segments, struct kexec_segment __user *segments, + unsigned long flags) +{ + struct kimage **dest_image, *image; + int locked; + int result; + + /* We only trust the superuser with rebooting the system. */ + if (!capable(CAP_SYS_BOOT)) + return -EPERM; + + /* + * Verify we have a legal set of flags + * This leaves us room for future extensions. + */ + if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) + return -EINVAL; + + /* Verify we are on the appropriate architecture */ + if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && + ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) + { + return -EINVAL; + } + + /* Put an artificial cap on the number + * of segments passed to kexec_load. + */ + if (nr_segments > KEXEC_SEGMENT_MAX) + return -EINVAL; + + image = NULL; + result = 0; + + /* Because we write directly to the reserved memory + * region when loading crash kernels we need a mutex here to + * prevent multiple crash kernels from attempting to load + * simultaneously, and to prevent a crash kernel from loading + * over the top of a in use crash kernel. + * + * KISS: always take the mutex. + */ + locked = xchg(&kexec_lock, 1); + if (locked) { + return -EBUSY; + } + dest_image = &kexec_image; + if (flags & KEXEC_ON_CRASH) { + dest_image = &kexec_crash_image; + } + if (nr_segments > 0) { + unsigned long i; + /* Loading another kernel to reboot into */ + if ((flags & KEXEC_ON_CRASH) == 0) { + result = kimage_normal_alloc(&image, entry, nr_segments, segments); + } + /* Loading another kernel to switch to if this one crashes */ + else if (flags & KEXEC_ON_CRASH) { + /* Free any current crash dump kernel before + * we corrupt it. + */ + kimage_free(xchg(&kexec_crash_image, NULL)); + result = kimage_crash_alloc(&image, entry, nr_segments, segments); + } + if (result) { + goto out; + } + result = machine_kexec_prepare(image); + if (result) { + goto out; + } + for(i = 0; i < nr_segments; i++) { + result = kimage_load_segment(image, &image->segment[i]); + if (result) { + goto out; + } + } + result = kimage_terminate(image); + if (result) { + goto out; + } + } + /* Install the new kernel, and Uninstall the old */ + image = xchg(dest_image, image); + + out: + xchg(&kexec_lock, 0); /* Release the mutex */ + kimage_free(image); + return result; +} + +#ifdef CONFIG_COMPAT +asmlinkage long compat_sys_kexec_load(unsigned long entry, + unsigned long nr_segments, struct compat_kexec_segment __user *segments, + unsigned long flags) +{ + struct compat_kexec_segment in; + struct kexec_segment out, __user *ksegments; + unsigned long i, result; + + /* Don't allow clients that don't understand the native + * architecture to do anything. + */ + if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) { + return -EINVAL; + } + + if (nr_segments > KEXEC_SEGMENT_MAX) { + return -EINVAL; + } + + ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); + for (i=0; i < nr_segments; i++) { + result = copy_from_user(&in, &segments[i], sizeof(in)); + if (result) { + return -EFAULT; + } + + out.buf = compat_ptr(in.buf); + out.bufsz = in.bufsz; + out.mem = in.mem; + out.memsz = in.memsz; + + result = copy_to_user(&ksegments[i], &out, sizeof(out)); + if (result) { + return -EFAULT; + } + } + + return sys_kexec_load(entry, nr_segments, ksegments, flags); +} +#endif + +void crash_kexec(void) +{ + struct kimage *image; + int locked; + + + /* Take the kexec_lock here to prevent sys_kexec_load + * running on one cpu from replacing the crash kernel + * we are using after a panic on a different cpu. + * + * If the crash kernel was not located in a fixed area + * of memory the xchg(&kexec_crash_image) would be + * sufficient. But since I reuse the memory... + */ + locked = xchg(&kexec_lock, 1); + if (!locked) { + image = xchg(&kexec_crash_image, NULL); + if (image) { + machine_crash_shutdown(); + machine_kexec(image); + } + xchg(&kexec_lock, 0); + } +} diff --git a/kernel/panic.c b/kernel/panic.c index 081f7465fc8..66f43d33cd8 100644 --- a/kernel/panic.c +++ b/kernel/panic.c @@ -18,6 +18,7 @@ #include #include #include +#include int panic_timeout; int panic_on_oops; @@ -63,6 +64,13 @@ NORET_TYPE void panic(const char * fmt, ...) unsigned long caller = (unsigned long) __builtin_return_address(0); #endif + /* + * It's possible to come here directly from a panic-assertion and not + * have preempt disabled. Some functions called from here want + * preempt to be disabled. No point enabling it later though... + */ + preempt_disable(); + bust_spinlocks(1); va_start(args, fmt); vsnprintf(buf, sizeof(buf), fmt, args); @@ -70,7 +78,19 @@ NORET_TYPE void panic(const char * fmt, ...) printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf); bust_spinlocks(0); + /* + * If we have crashed and we have a crash kernel loaded let it handle + * everything else. + * Do we want to call this before we try to display a message? + */ + crash_kexec(); + #ifdef CONFIG_SMP + /* + * Note smp_send_stop is the usual smp shutdown function, which + * unfortunately means it may not be hardened to work in a panic + * situation. + */ smp_send_stop(); #endif @@ -79,8 +99,7 @@ NORET_TYPE void panic(const char * fmt, ...) if (!panic_blink) panic_blink = no_blink; - if (panic_timeout > 0) - { + if (panic_timeout > 0) { /* * Delay timeout seconds before rebooting the machine. * We can't use the "normal" timers since we just panicked.. diff --git a/kernel/sys.c b/kernel/sys.c index dac10161ca2..9a24374c23b 100644 --- a/kernel/sys.c +++ b/kernel/sys.c @@ -16,6 +16,8 @@ #include #include #include +#include +#include #include #include #include @@ -439,6 +441,24 @@ asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user machine_restart(buffer); break; +#ifdef CONFIG_KEXEC + case LINUX_REBOOT_CMD_KEXEC: + { + struct kimage *image; + image = xchg(&kexec_image, 0); + if (!image) { + unlock_kernel(); + return -EINVAL; + } + notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL); + system_state = SYSTEM_RESTART; + device_shutdown(); + printk(KERN_EMERG "Starting new kernel\n"); + machine_shutdown(); + machine_kexec(image); + break; + } +#endif #ifdef CONFIG_SOFTWARE_SUSPEND case LINUX_REBOOT_CMD_SW_SUSPEND: { diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 6f15bea7d1a..29196ce9b40 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c @@ -18,6 +18,8 @@ cond_syscall(sys_acct); cond_syscall(sys_lookup_dcookie); cond_syscall(sys_swapon); cond_syscall(sys_swapoff); +cond_syscall(sys_kexec_load); +cond_syscall(compat_sys_kexec_load); cond_syscall(sys_init_module); cond_syscall(sys_delete_module); cond_syscall(sys_socketpair);