Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (34 commits)
  m68k: rename global variable vmalloc_end to m68k_vmalloc_end
  percpu: add missing per_cpu_ptr_to_phys() definition for UP
  percpu: Fix kdump failure if booted with percpu_alloc=page
  percpu: make misc percpu symbols unique
  percpu: make percpu symbols in ia64 unique
  percpu: make percpu symbols in powerpc unique
  percpu: make percpu symbols in x86 unique
  percpu: make percpu symbols in xen unique
  percpu: make percpu symbols in cpufreq unique
  percpu: make percpu symbols in oprofile unique
  percpu: make percpu symbols in tracer unique
  percpu: make percpu symbols under kernel/ and mm/ unique
  percpu: remove some sparse warnings
  percpu: make alloc_percpu() handle array types
  vmalloc: fix use of non-existent percpu variable in put_cpu_var()
  this_cpu: Use this_cpu_xx in trace_functions_graph.c
  this_cpu: Use this_cpu_xx for ftrace
  this_cpu: Use this_cpu_xx in nmi handling
  this_cpu: Use this_cpu operations in RCU
  this_cpu: Use this_cpu ops for VM statistics
  ...

Fix up trivial (famous last words) global per-cpu naming conflicts in
	arch/x86/kvm/svm.c
	mm/slab.c
This commit is contained in:
Linus Torvalds 2009-12-14 09:58:24 -08:00
commit d0316554d3
79 changed files with 1222 additions and 978 deletions

View file

@ -87,9 +87,6 @@ config GENERIC_TIME_VSYSCALL
bool bool
default y default y
config HAVE_LEGACY_PER_CPU_AREA
def_bool y
config HAVE_SETUP_PER_CPU_AREA config HAVE_SETUP_PER_CPU_AREA
def_bool y def_bool y

View file

@ -61,7 +61,7 @@ extern int register_active_ranges(u64 start, u64 len, int nid);
#ifdef CONFIG_VIRTUAL_MEM_MAP #ifdef CONFIG_VIRTUAL_MEM_MAP
# define LARGE_GAP 0x40000000 /* Use virtual mem map if hole is > than this */ # define LARGE_GAP 0x40000000 /* Use virtual mem map if hole is > than this */
extern unsigned long vmalloc_end; extern unsigned long VMALLOC_END;
extern struct page *vmem_map; extern struct page *vmem_map;
extern int find_largest_hole(u64 start, u64 end, void *arg); extern int find_largest_hole(u64 start, u64 end, void *arg);
extern int create_mem_map_page_table(u64 start, u64 end, void *arg); extern int create_mem_map_page_table(u64 start, u64 end, void *arg);

View file

@ -228,8 +228,7 @@ ia64_phys_addr_valid (unsigned long addr)
#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) #define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
#ifdef CONFIG_VIRTUAL_MEM_MAP #ifdef CONFIG_VIRTUAL_MEM_MAP
# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) # define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
# define VMALLOC_END vmalloc_end extern unsigned long VMALLOC_END;
extern unsigned long vmalloc_end;
#else #else
#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP) #if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
/* SPARSEMEM_VMEMMAP uses half of vmalloc... */ /* SPARSEMEM_VMEMMAP uses half of vmalloc... */

View file

@ -229,7 +229,7 @@ struct cpuinfo_ia64 {
#endif #endif
}; };
DECLARE_PER_CPU(struct cpuinfo_ia64, cpu_info); DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
/* /*
* The "local" data variable. It refers to the per-CPU data of the currently executing * The "local" data variable. It refers to the per-CPU data of the currently executing
@ -237,8 +237,8 @@ DECLARE_PER_CPU(struct cpuinfo_ia64, cpu_info);
* Do not use the address of local_cpu_data, since it will be different from * Do not use the address of local_cpu_data, since it will be different from
* cpu_data(smp_processor_id())! * cpu_data(smp_processor_id())!
*/ */
#define local_cpu_data (&__ia64_per_cpu_var(cpu_info)) #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
#define cpu_data(cpu) (&per_cpu(cpu_info, cpu)) #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
extern void print_cpu_info (struct cpuinfo_ia64 *); extern void print_cpu_info (struct cpuinfo_ia64 *);

View file

@ -702,11 +702,23 @@ int __init early_acpi_boot_init(void)
printk(KERN_ERR PREFIX printk(KERN_ERR PREFIX
"Error parsing MADT - no LAPIC entries\n"); "Error parsing MADT - no LAPIC entries\n");
#ifdef CONFIG_SMP
if (available_cpus == 0) {
printk(KERN_INFO "ACPI: Found 0 CPUS; assuming 1\n");
printk(KERN_INFO "CPU 0 (0x%04x)", hard_smp_processor_id());
smp_boot_data.cpu_phys_id[available_cpus] =
hard_smp_processor_id();
available_cpus = 1; /* We've got at least one of these, no? */
}
smp_boot_data.cpu_count = available_cpus;
#endif
/* Make boot-up look pretty */
printk(KERN_INFO "%d CPUs available, %d CPUs total\n", available_cpus,
total_cpus);
return 0; return 0;
} }
int __init acpi_boot_init(void) int __init acpi_boot_init(void)
{ {
@ -769,18 +781,8 @@ int __init acpi_boot_init(void)
if (acpi_table_parse(ACPI_SIG_FADT, acpi_parse_fadt)) if (acpi_table_parse(ACPI_SIG_FADT, acpi_parse_fadt))
printk(KERN_ERR PREFIX "Can't find FADT\n"); printk(KERN_ERR PREFIX "Can't find FADT\n");
#ifdef CONFIG_SMP
if (available_cpus == 0) {
printk(KERN_INFO "ACPI: Found 0 CPUS; assuming 1\n");
printk(KERN_INFO "CPU 0 (0x%04x)", hard_smp_processor_id());
smp_boot_data.cpu_phys_id[available_cpus] =
hard_smp_processor_id();
available_cpus = 1; /* We've got at least one of these, no? */
}
smp_boot_data.cpu_count = available_cpus;
smp_build_cpu_map();
#ifdef CONFIG_ACPI_NUMA #ifdef CONFIG_ACPI_NUMA
#ifdef CONFIG_SMP
if (srat_num_cpus == 0) { if (srat_num_cpus == 0) {
int cpu, i = 1; int cpu, i = 1;
for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++) for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++)
@ -790,13 +792,8 @@ int __init acpi_boot_init(void)
smp_boot_data.cpu_phys_id[cpu]; smp_boot_data.cpu_phys_id[cpu];
} }
#endif #endif
#endif
#ifdef CONFIG_ACPI_NUMA
build_cpu_to_node_map(); build_cpu_to_node_map();
#endif #endif
/* Make boot-up look pretty */
printk(KERN_INFO "%d CPUs available, %d CPUs total\n", available_cpus,
total_cpus);
return 0; return 0;
} }

View file

@ -1051,7 +1051,7 @@ END(ia64_delay_loop)
* intermediate precision so that we can produce a full 64-bit result. * intermediate precision so that we can produce a full 64-bit result.
*/ */
GLOBAL_ENTRY(ia64_native_sched_clock) GLOBAL_ENTRY(ia64_native_sched_clock)
addl r8=THIS_CPU(cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0 addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
mov.m r9=ar.itc // fetch cycle-counter (35 cyc) mov.m r9=ar.itc // fetch cycle-counter (35 cyc)
;; ;;
ldf8 f8=[r8] ldf8 f8=[r8]
@ -1077,7 +1077,7 @@ sched_clock = ia64_native_sched_clock
#ifdef CONFIG_VIRT_CPU_ACCOUNTING #ifdef CONFIG_VIRT_CPU_ACCOUNTING
GLOBAL_ENTRY(cycle_to_cputime) GLOBAL_ENTRY(cycle_to_cputime)
alloc r16=ar.pfs,1,0,0,0 alloc r16=ar.pfs,1,0,0,0
addl r8=THIS_CPU(cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0 addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
;; ;;
ldf8 f8=[r8] ldf8 f8=[r8]
;; ;;

View file

@ -30,7 +30,7 @@ EXPORT_SYMBOL(max_low_pfn); /* defined by bootmem.c, but not exported by generic
#endif #endif
#include <asm/processor.h> #include <asm/processor.h>
EXPORT_SYMBOL(per_cpu__cpu_info); EXPORT_SYMBOL(per_cpu__ia64_cpu_info);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
EXPORT_SYMBOL(per_cpu__local_per_cpu_offset); EXPORT_SYMBOL(per_cpu__local_per_cpu_offset);
#endif #endif

View file

@ -59,7 +59,7 @@
ia64_do_tlb_purge: ia64_do_tlb_purge:
#define O(member) IA64_CPUINFO_##member##_OFFSET #define O(member) IA64_CPUINFO_##member##_OFFSET
GET_THIS_PADDR(r2, cpu_info) // load phys addr of cpu_info into r2 GET_THIS_PADDR(r2, ia64_cpu_info) // load phys addr of cpu_info into r2
;; ;;
addl r17=O(PTCE_STRIDE),r2 addl r17=O(PTCE_STRIDE),r2
addl r2=O(PTCE_BASE),r2 addl r2=O(PTCE_BASE),r2

View file

@ -61,7 +61,7 @@ GLOBAL_ENTRY(relocate_new_kernel)
// purge all TC entries // purge all TC entries
#define O(member) IA64_CPUINFO_##member##_OFFSET #define O(member) IA64_CPUINFO_##member##_OFFSET
GET_THIS_PADDR(r2, cpu_info) // load phys addr of cpu_info into r2 GET_THIS_PADDR(r2, ia64_cpu_info) // load phys addr of cpu_info into r2
;; ;;
addl r17=O(PTCE_STRIDE),r2 addl r17=O(PTCE_STRIDE),r2
addl r2=O(PTCE_BASE),r2 addl r2=O(PTCE_BASE),r2

View file

@ -74,7 +74,7 @@ unsigned long __per_cpu_offset[NR_CPUS];
EXPORT_SYMBOL(__per_cpu_offset); EXPORT_SYMBOL(__per_cpu_offset);
#endif #endif
DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info); DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
DEFINE_PER_CPU(unsigned long, local_per_cpu_offset); DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
unsigned long ia64_cycles_per_usec; unsigned long ia64_cycles_per_usec;
struct ia64_boot_param *ia64_boot_param; struct ia64_boot_param *ia64_boot_param;
@ -573,12 +573,11 @@ setup_arch (char **cmdline_p)
32 : cpus_weight(early_cpu_possible_map)), 32 : cpus_weight(early_cpu_possible_map)),
additional_cpus > 0 ? additional_cpus : 0); additional_cpus > 0 ? additional_cpus : 0);
# endif # endif
#else
# ifdef CONFIG_SMP
smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
# endif
#endif /* CONFIG_APCI_BOOT */ #endif /* CONFIG_APCI_BOOT */
#ifdef CONFIG_SMP
smp_build_cpu_map();
#endif
find_memory(); find_memory();
/* process SAL system table: */ /* process SAL system table: */
@ -855,18 +854,6 @@ identify_cpu (struct cpuinfo_ia64 *c)
c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1)); c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
} }
/*
* In UP configuration, setup_per_cpu_areas() is defined in
* include/linux/percpu.h
*/
#ifdef CONFIG_SMP
void __init
setup_per_cpu_areas (void)
{
/* start_kernel() requires this... */
}
#endif
/* /*
* Do the following calculations: * Do the following calculations:
* *
@ -980,7 +967,7 @@ cpu_init (void)
* depends on the data returned by identify_cpu(). We break the dependency by * depends on the data returned by identify_cpu(). We break the dependency by
* accessing cpu_data() through the canonical per-CPU address. * accessing cpu_data() through the canonical per-CPU address.
*/ */
cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start); cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
identify_cpu(cpu_info); identify_cpu(cpu_info);
#ifdef CONFIG_MCKINLEY #ifdef CONFIG_MCKINLEY

View file

@ -166,6 +166,12 @@ SECTIONS
} }
#endif #endif
#ifdef CONFIG_SMP
. = ALIGN(PERCPU_PAGE_SIZE);
__cpu0_per_cpu = .;
. = . + PERCPU_PAGE_SIZE; /* cpu0 per-cpu space */
#endif
. = ALIGN(PAGE_SIZE); . = ALIGN(PAGE_SIZE);
__init_end = .; __init_end = .;
@ -198,11 +204,6 @@ SECTIONS
data : { } :data data : { } :data
.data : AT(ADDR(.data) - LOAD_OFFSET) .data : AT(ADDR(.data) - LOAD_OFFSET)
{ {
#ifdef CONFIG_SMP
. = ALIGN(PERCPU_PAGE_SIZE);
__cpu0_per_cpu = .;
. = . + PERCPU_PAGE_SIZE; /* cpu0 per-cpu space */
#endif
INIT_TASK_DATA(PAGE_SIZE) INIT_TASK_DATA(PAGE_SIZE)
CACHELINE_ALIGNED_DATA(SMP_CACHE_BYTES) CACHELINE_ALIGNED_DATA(SMP_CACHE_BYTES)
READ_MOSTLY_DATA(SMP_CACHE_BYTES) READ_MOSTLY_DATA(SMP_CACHE_BYTES)

View file

@ -154,38 +154,99 @@ static void *cpu_data;
void * __cpuinit void * __cpuinit
per_cpu_init (void) per_cpu_init (void)
{ {
int cpu; static bool first_time = true;
static int first_time=1; void *cpu0_data = __cpu0_per_cpu;
unsigned int cpu;
if (!first_time)
goto skip;
first_time = false;
/* /*
* get_free_pages() cannot be used before cpu_init() done. BSP * get_free_pages() cannot be used before cpu_init() done.
* allocates "NR_CPUS" pages for all CPUs to avoid that AP calls * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
* get_zeroed_page(). * to avoid that AP calls get_zeroed_page().
*/ */
if (first_time) { for_each_possible_cpu(cpu) {
void *cpu0_data = __cpu0_per_cpu; void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
first_time=0; memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
__per_cpu_offset[0] = (char *) cpu0_data - __per_cpu_start;
per_cpu(local_per_cpu_offset, 0) = __per_cpu_offset[0];
for (cpu = 1; cpu < NR_CPUS; cpu++) {
memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
cpu_data += PERCPU_PAGE_SIZE;
per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
/*
* percpu area for cpu0 is moved from the __init area
* which is setup by head.S and used till this point.
* Update ar.k3. This move is ensures that percpu
* area for cpu0 is on the correct node and its
* virtual address isn't insanely far from other
* percpu areas which is important for congruent
* percpu allocator.
*/
if (cpu == 0)
ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
(unsigned long)__per_cpu_start);
cpu_data += PERCPU_PAGE_SIZE;
} }
} skip:
return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
} }
static inline void static inline void
alloc_per_cpu_data(void) alloc_per_cpu_data(void)
{ {
cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS-1, cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
} }
/**
* setup_per_cpu_areas - setup percpu areas
*
* Arch code has already allocated and initialized percpu areas. All
* this function has to do is to teach the determined layout to the
* dynamic percpu allocator, which happens to be more complex than
* creating whole new ones using helpers.
*/
void __init
setup_per_cpu_areas(void)
{
struct pcpu_alloc_info *ai;
struct pcpu_group_info *gi;
unsigned int cpu;
ssize_t static_size, reserved_size, dyn_size;
int rc;
ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
if (!ai)
panic("failed to allocate pcpu_alloc_info");
gi = &ai->groups[0];
/* units are assigned consecutively to possible cpus */
for_each_possible_cpu(cpu)
gi->cpu_map[gi->nr_units++] = cpu;
/* set parameters */
static_size = __per_cpu_end - __per_cpu_start;
reserved_size = PERCPU_MODULE_RESERVE;
dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
if (dyn_size < 0)
panic("percpu area overflow static=%zd reserved=%zd\n",
static_size, reserved_size);
ai->static_size = static_size;
ai->reserved_size = reserved_size;
ai->dyn_size = dyn_size;
ai->unit_size = PERCPU_PAGE_SIZE;
ai->atom_size = PAGE_SIZE;
ai->alloc_size = PERCPU_PAGE_SIZE;
rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
if (rc)
panic("failed to setup percpu area (err=%d)", rc);
pcpu_free_alloc_info(ai);
}
#else #else
#define alloc_per_cpu_data() do { } while (0) #define alloc_per_cpu_data() do { } while (0)
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
@ -270,8 +331,8 @@ paging_init (void)
map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
sizeof(struct page)); sizeof(struct page));
vmalloc_end -= map_size; VMALLOC_END -= map_size;
vmem_map = (struct page *) vmalloc_end; vmem_map = (struct page *) VMALLOC_END;
efi_memmap_walk(create_mem_map_page_table, NULL); efi_memmap_walk(create_mem_map_page_table, NULL);
/* /*

View file

@ -143,22 +143,120 @@ static void *per_cpu_node_setup(void *cpu_data, int node)
int cpu; int cpu;
for_each_possible_early_cpu(cpu) { for_each_possible_early_cpu(cpu) {
if (cpu == 0) { void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
void *cpu0_data = __cpu0_per_cpu;
__per_cpu_offset[cpu] = (char*)cpu0_data - if (node != node_cpuid[cpu].nid)
__per_cpu_start; continue;
} else if (node == node_cpuid[cpu].nid) {
memcpy(__va(cpu_data), __phys_per_cpu_start, memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
__per_cpu_end - __per_cpu_start);
__per_cpu_offset[cpu] = (char *)__va(cpu_data) - __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
__per_cpu_start; __per_cpu_start;
/*
* percpu area for cpu0 is moved from the __init area
* which is setup by head.S and used till this point.
* Update ar.k3. This move is ensures that percpu
* area for cpu0 is on the correct node and its
* virtual address isn't insanely far from other
* percpu areas which is important for congruent
* percpu allocator.
*/
if (cpu == 0)
ia64_set_kr(IA64_KR_PER_CPU_DATA,
(unsigned long)cpu_data -
(unsigned long)__per_cpu_start);
cpu_data += PERCPU_PAGE_SIZE; cpu_data += PERCPU_PAGE_SIZE;
} }
}
#endif #endif
return cpu_data; return cpu_data;
} }
#ifdef CONFIG_SMP
/**
* setup_per_cpu_areas - setup percpu areas
*
* Arch code has already allocated and initialized percpu areas. All
* this function has to do is to teach the determined layout to the
* dynamic percpu allocator, which happens to be more complex than
* creating whole new ones using helpers.
*/
void __init setup_per_cpu_areas(void)
{
struct pcpu_alloc_info *ai;
struct pcpu_group_info *uninitialized_var(gi);
unsigned int *cpu_map;
void *base;
unsigned long base_offset;
unsigned int cpu;
ssize_t static_size, reserved_size, dyn_size;
int node, prev_node, unit, nr_units, rc;
ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
if (!ai)
panic("failed to allocate pcpu_alloc_info");
cpu_map = ai->groups[0].cpu_map;
/* determine base */
base = (void *)ULONG_MAX;
for_each_possible_cpu(cpu)
base = min(base,
(void *)(__per_cpu_offset[cpu] + __per_cpu_start));
base_offset = (void *)__per_cpu_start - base;
/* build cpu_map, units are grouped by node */
unit = 0;
for_each_node(node)
for_each_possible_cpu(cpu)
if (node == node_cpuid[cpu].nid)
cpu_map[unit++] = cpu;
nr_units = unit;
/* set basic parameters */
static_size = __per_cpu_end - __per_cpu_start;
reserved_size = PERCPU_MODULE_RESERVE;
dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
if (dyn_size < 0)
panic("percpu area overflow static=%zd reserved=%zd\n",
static_size, reserved_size);
ai->static_size = static_size;
ai->reserved_size = reserved_size;
ai->dyn_size = dyn_size;
ai->unit_size = PERCPU_PAGE_SIZE;
ai->atom_size = PAGE_SIZE;
ai->alloc_size = PERCPU_PAGE_SIZE;
/*
* CPUs are put into groups according to node. Walk cpu_map
* and create new groups at node boundaries.
*/
prev_node = -1;
ai->nr_groups = 0;
for (unit = 0; unit < nr_units; unit++) {
cpu = cpu_map[unit];
node = node_cpuid[cpu].nid;
if (node == prev_node) {
gi->nr_units++;
continue;
}
prev_node = node;
gi = &ai->groups[ai->nr_groups++];
gi->nr_units = 1;
gi->base_offset = __per_cpu_offset[cpu] + base_offset;
gi->cpu_map = &cpu_map[unit];
}
rc = pcpu_setup_first_chunk(ai, base);
if (rc)
panic("failed to setup percpu area (err=%d)", rc);
pcpu_free_alloc_info(ai);
}
#endif
/** /**
* fill_pernode - initialize pernode data. * fill_pernode - initialize pernode data.
* @node: the node id. * @node: the node id.
@ -352,7 +450,8 @@ static void __init initialize_pernode_data(void)
/* Set the node_data pointer for each per-cpu struct */ /* Set the node_data pointer for each per-cpu struct */
for_each_possible_early_cpu(cpu) { for_each_possible_early_cpu(cpu) {
node = node_cpuid[cpu].nid; node = node_cpuid[cpu].nid;
per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; per_cpu(ia64_cpu_info, cpu).node_data =
mem_data[node].node_data;
} }
#else #else
{ {
@ -360,7 +459,7 @@ static void __init initialize_pernode_data(void)
cpu = 0; cpu = 0;
node = node_cpuid[cpu].nid; node = node_cpuid[cpu].nid;
cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
((char *)&per_cpu__cpu_info - __per_cpu_start)); ((char *)&per_cpu__ia64_cpu_info - __per_cpu_start));
cpu0_cpu_info->node_data = mem_data[node].node_data; cpu0_cpu_info->node_data = mem_data[node].node_data;
} }
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
@ -666,9 +765,9 @@ void __init paging_init(void)
sparse_init(); sparse_init();
#ifdef CONFIG_VIRTUAL_MEM_MAP #ifdef CONFIG_VIRTUAL_MEM_MAP
vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
sizeof(struct page)); sizeof(struct page));
vmem_map = (struct page *) vmalloc_end; vmem_map = (struct page *) VMALLOC_END;
efi_memmap_walk(create_mem_map_page_table, NULL); efi_memmap_walk(create_mem_map_page_table, NULL);
printk("Virtual mem_map starts at 0x%p\n", vmem_map); printk("Virtual mem_map starts at 0x%p\n", vmem_map);
#endif #endif

View file

@ -44,8 +44,8 @@ extern void ia64_tlb_init (void);
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
#ifdef CONFIG_VIRTUAL_MEM_MAP #ifdef CONFIG_VIRTUAL_MEM_MAP
unsigned long vmalloc_end = VMALLOC_END_INIT; unsigned long VMALLOC_END = VMALLOC_END_INIT;
EXPORT_SYMBOL(vmalloc_end); EXPORT_SYMBOL(VMALLOC_END);
struct page *vmem_map; struct page *vmem_map;
EXPORT_SYMBOL(vmem_map); EXPORT_SYMBOL(vmem_map);
#endif #endif

View file

@ -496,13 +496,13 @@ static int sn2_ptc_seq_show(struct seq_file *file, void *data)
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l, seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed, stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
stat->deadlocks, stat->deadlocks,
1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec, 1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec, 1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec, 1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
stat->shub_ptc_flushes_not_my_mm, stat->shub_ptc_flushes_not_my_mm,
stat->deadlocks2, stat->deadlocks2,
stat->shub_ipi_flushes, stat->shub_ipi_flushes,
1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec); 1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
} }
return 0; return 0;
} }

View file

@ -63,19 +63,19 @@ xen_free_irq_vector(int vector)
} }
static DEFINE_PER_CPU(int, timer_irq) = -1; static DEFINE_PER_CPU(int, xen_timer_irq) = -1;
static DEFINE_PER_CPU(int, ipi_irq) = -1; static DEFINE_PER_CPU(int, xen_ipi_irq) = -1;
static DEFINE_PER_CPU(int, resched_irq) = -1; static DEFINE_PER_CPU(int, xen_resched_irq) = -1;
static DEFINE_PER_CPU(int, cmc_irq) = -1; static DEFINE_PER_CPU(int, xen_cmc_irq) = -1;
static DEFINE_PER_CPU(int, cmcp_irq) = -1; static DEFINE_PER_CPU(int, xen_cmcp_irq) = -1;
static DEFINE_PER_CPU(int, cpep_irq) = -1; static DEFINE_PER_CPU(int, xen_cpep_irq) = -1;
#define NAME_SIZE 15 #define NAME_SIZE 15
static DEFINE_PER_CPU(char[NAME_SIZE], timer_name); static DEFINE_PER_CPU(char[NAME_SIZE], xen_timer_name);
static DEFINE_PER_CPU(char[NAME_SIZE], ipi_name); static DEFINE_PER_CPU(char[NAME_SIZE], xen_ipi_name);
static DEFINE_PER_CPU(char[NAME_SIZE], resched_name); static DEFINE_PER_CPU(char[NAME_SIZE], xen_resched_name);
static DEFINE_PER_CPU(char[NAME_SIZE], cmc_name); static DEFINE_PER_CPU(char[NAME_SIZE], xen_cmc_name);
static DEFINE_PER_CPU(char[NAME_SIZE], cmcp_name); static DEFINE_PER_CPU(char[NAME_SIZE], xen_cmcp_name);
static DEFINE_PER_CPU(char[NAME_SIZE], cpep_name); static DEFINE_PER_CPU(char[NAME_SIZE], xen_cpep_name);
#undef NAME_SIZE #undef NAME_SIZE
struct saved_irq { struct saved_irq {
@ -144,64 +144,64 @@ __xen_register_percpu_irq(unsigned int cpu, unsigned int vec,
if (xen_slab_ready) { if (xen_slab_ready) {
switch (vec) { switch (vec) {
case IA64_TIMER_VECTOR: case IA64_TIMER_VECTOR:
snprintf(per_cpu(timer_name, cpu), snprintf(per_cpu(xen_timer_name, cpu),
sizeof(per_cpu(timer_name, cpu)), sizeof(per_cpu(xen_timer_name, cpu)),
"%s%d", action->name, cpu); "%s%d", action->name, cpu);
irq = bind_virq_to_irqhandler(VIRQ_ITC, cpu, irq = bind_virq_to_irqhandler(VIRQ_ITC, cpu,
action->handler, action->flags, action->handler, action->flags,
per_cpu(timer_name, cpu), action->dev_id); per_cpu(xen_timer_name, cpu), action->dev_id);
per_cpu(timer_irq, cpu) = irq; per_cpu(xen_timer_irq, cpu) = irq;
break; break;
case IA64_IPI_RESCHEDULE: case IA64_IPI_RESCHEDULE:
snprintf(per_cpu(resched_name, cpu), snprintf(per_cpu(xen_resched_name, cpu),
sizeof(per_cpu(resched_name, cpu)), sizeof(per_cpu(xen_resched_name, cpu)),
"%s%d", action->name, cpu); "%s%d", action->name, cpu);
irq = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, cpu, irq = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, cpu,
action->handler, action->flags, action->handler, action->flags,
per_cpu(resched_name, cpu), action->dev_id); per_cpu(xen_resched_name, cpu), action->dev_id);
per_cpu(resched_irq, cpu) = irq; per_cpu(xen_resched_irq, cpu) = irq;
break; break;
case IA64_IPI_VECTOR: case IA64_IPI_VECTOR:
snprintf(per_cpu(ipi_name, cpu), snprintf(per_cpu(xen_ipi_name, cpu),
sizeof(per_cpu(ipi_name, cpu)), sizeof(per_cpu(xen_ipi_name, cpu)),
"%s%d", action->name, cpu); "%s%d", action->name, cpu);
irq = bind_ipi_to_irqhandler(XEN_IPI_VECTOR, cpu, irq = bind_ipi_to_irqhandler(XEN_IPI_VECTOR, cpu,
action->handler, action->flags, action->handler, action->flags,
per_cpu(ipi_name, cpu), action->dev_id); per_cpu(xen_ipi_name, cpu), action->dev_id);
per_cpu(ipi_irq, cpu) = irq; per_cpu(xen_ipi_irq, cpu) = irq;
break; break;
case IA64_CMC_VECTOR: case IA64_CMC_VECTOR:
snprintf(per_cpu(cmc_name, cpu), snprintf(per_cpu(xen_cmc_name, cpu),
sizeof(per_cpu(cmc_name, cpu)), sizeof(per_cpu(xen_cmc_name, cpu)),
"%s%d", action->name, cpu); "%s%d", action->name, cpu);
irq = bind_virq_to_irqhandler(VIRQ_MCA_CMC, cpu, irq = bind_virq_to_irqhandler(VIRQ_MCA_CMC, cpu,
action->handler, action->handler,
action->flags, action->flags,
per_cpu(cmc_name, cpu), per_cpu(xen_cmc_name, cpu),
action->dev_id); action->dev_id);
per_cpu(cmc_irq, cpu) = irq; per_cpu(xen_cmc_irq, cpu) = irq;
break; break;
case IA64_CMCP_VECTOR: case IA64_CMCP_VECTOR:
snprintf(per_cpu(cmcp_name, cpu), snprintf(per_cpu(xen_cmcp_name, cpu),
sizeof(per_cpu(cmcp_name, cpu)), sizeof(per_cpu(xen_cmcp_name, cpu)),
"%s%d", action->name, cpu); "%s%d", action->name, cpu);
irq = bind_ipi_to_irqhandler(XEN_CMCP_VECTOR, cpu, irq = bind_ipi_to_irqhandler(XEN_CMCP_VECTOR, cpu,
action->handler, action->handler,
action->flags, action->flags,
per_cpu(cmcp_name, cpu), per_cpu(xen_cmcp_name, cpu),
action->dev_id); action->dev_id);
per_cpu(cmcp_irq, cpu) = irq; per_cpu(xen_cmcp_irq, cpu) = irq;
break; break;
case IA64_CPEP_VECTOR: case IA64_CPEP_VECTOR:
snprintf(per_cpu(cpep_name, cpu), snprintf(per_cpu(xen_cpep_name, cpu),
sizeof(per_cpu(cpep_name, cpu)), sizeof(per_cpu(xen_cpep_name, cpu)),
"%s%d", action->name, cpu); "%s%d", action->name, cpu);
irq = bind_ipi_to_irqhandler(XEN_CPEP_VECTOR, cpu, irq = bind_ipi_to_irqhandler(XEN_CPEP_VECTOR, cpu,
action->handler, action->handler,
action->flags, action->flags,
per_cpu(cpep_name, cpu), per_cpu(xen_cpep_name, cpu),
action->dev_id); action->dev_id);
per_cpu(cpep_irq, cpu) = irq; per_cpu(xen_cpep_irq, cpu) = irq;
break; break;
case IA64_CPE_VECTOR: case IA64_CPE_VECTOR:
case IA64_MCA_RENDEZ_VECTOR: case IA64_MCA_RENDEZ_VECTOR:
@ -275,30 +275,33 @@ unbind_evtchn_callback(struct notifier_block *nfb,
if (action == CPU_DEAD) { if (action == CPU_DEAD) {
/* Unregister evtchn. */ /* Unregister evtchn. */
if (per_cpu(cpep_irq, cpu) >= 0) { if (per_cpu(xen_cpep_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(cpep_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_cpep_irq, cpu),
per_cpu(cpep_irq, cpu) = -1;
}
if (per_cpu(cmcp_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(cmcp_irq, cpu), NULL);
per_cpu(cmcp_irq, cpu) = -1;
}
if (per_cpu(cmc_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(cmc_irq, cpu), NULL);
per_cpu(cmc_irq, cpu) = -1;
}
if (per_cpu(ipi_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(ipi_irq, cpu), NULL);
per_cpu(ipi_irq, cpu) = -1;
}
if (per_cpu(resched_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(resched_irq, cpu),
NULL); NULL);
per_cpu(resched_irq, cpu) = -1; per_cpu(xen_cpep_irq, cpu) = -1;
} }
if (per_cpu(timer_irq, cpu) >= 0) { if (per_cpu(xen_cmcp_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(timer_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_cmcp_irq, cpu),
per_cpu(timer_irq, cpu) = -1; NULL);
per_cpu(xen_cmcp_irq, cpu) = -1;
}
if (per_cpu(xen_cmc_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(xen_cmc_irq, cpu), NULL);
per_cpu(xen_cmc_irq, cpu) = -1;
}
if (per_cpu(xen_ipi_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(xen_ipi_irq, cpu), NULL);
per_cpu(xen_ipi_irq, cpu) = -1;
}
if (per_cpu(xen_resched_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu),
NULL);
per_cpu(xen_resched_irq, cpu) = -1;
}
if (per_cpu(xen_timer_irq, cpu) >= 0) {
unbind_from_irqhandler(per_cpu(xen_timer_irq, cpu),
NULL);
per_cpu(xen_timer_irq, cpu) = -1;
} }
} }
return NOTIFY_OK; return NOTIFY_OK;

View file

@ -34,15 +34,15 @@
#include "../kernel/fsyscall_gtod_data.h" #include "../kernel/fsyscall_gtod_data.h"
DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
DEFINE_PER_CPU(unsigned long, processed_stolen_time); static DEFINE_PER_CPU(unsigned long, xen_stolen_time);
DEFINE_PER_CPU(unsigned long, processed_blocked_time); static DEFINE_PER_CPU(unsigned long, xen_blocked_time);
/* taken from i386/kernel/time-xen.c */ /* taken from i386/kernel/time-xen.c */
static void xen_init_missing_ticks_accounting(int cpu) static void xen_init_missing_ticks_accounting(int cpu)
{ {
struct vcpu_register_runstate_memory_area area; struct vcpu_register_runstate_memory_area area;
struct vcpu_runstate_info *runstate = &per_cpu(runstate, cpu); struct vcpu_runstate_info *runstate = &per_cpu(xen_runstate, cpu);
int rc; int rc;
memset(runstate, 0, sizeof(*runstate)); memset(runstate, 0, sizeof(*runstate));
@ -52,8 +52,8 @@ static void xen_init_missing_ticks_accounting(int cpu)
&area); &area);
WARN_ON(rc && rc != -ENOSYS); WARN_ON(rc && rc != -ENOSYS);
per_cpu(processed_blocked_time, cpu) = runstate->time[RUNSTATE_blocked]; per_cpu(xen_blocked_time, cpu) = runstate->time[RUNSTATE_blocked];
per_cpu(processed_stolen_time, cpu) = runstate->time[RUNSTATE_runnable] per_cpu(xen_stolen_time, cpu) = runstate->time[RUNSTATE_runnable]
+ runstate->time[RUNSTATE_offline]; + runstate->time[RUNSTATE_offline];
} }
@ -68,7 +68,7 @@ static void get_runstate_snapshot(struct vcpu_runstate_info *res)
BUG_ON(preemptible()); BUG_ON(preemptible());
state = &__get_cpu_var(runstate); state = &__get_cpu_var(xen_runstate);
/* /*
* The runstate info is always updated by the hypervisor on * The runstate info is always updated by the hypervisor on
@ -103,12 +103,12 @@ consider_steal_time(unsigned long new_itm)
* This function just checks and reject this effect. * This function just checks and reject this effect.
*/ */
if (!time_after_eq(runstate.time[RUNSTATE_blocked], if (!time_after_eq(runstate.time[RUNSTATE_blocked],
per_cpu(processed_blocked_time, cpu))) per_cpu(xen_blocked_time, cpu)))
blocked = 0; blocked = 0;
if (!time_after_eq(runstate.time[RUNSTATE_runnable] + if (!time_after_eq(runstate.time[RUNSTATE_runnable] +
runstate.time[RUNSTATE_offline], runstate.time[RUNSTATE_offline],
per_cpu(processed_stolen_time, cpu))) per_cpu(xen_stolen_time, cpu)))
stolen = 0; stolen = 0;
if (!time_after(delta_itm + new_itm, ia64_get_itc())) if (!time_after(delta_itm + new_itm, ia64_get_itc()))
@ -147,8 +147,8 @@ consider_steal_time(unsigned long new_itm)
} else { } else {
local_cpu_data->itm_next = delta_itm + new_itm; local_cpu_data->itm_next = delta_itm + new_itm;
} }
per_cpu(processed_stolen_time, cpu) += NS_PER_TICK * stolen; per_cpu(xen_stolen_time, cpu) += NS_PER_TICK * stolen;
per_cpu(processed_blocked_time, cpu) += NS_PER_TICK * blocked; per_cpu(xen_blocked_time, cpu) += NS_PER_TICK * blocked;
} }
return delta_itm; return delta_itm;
} }

View file

@ -83,9 +83,9 @@
#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_END KMAP_START #define VMALLOC_END KMAP_START
#else #else
extern unsigned long vmalloc_end; extern unsigned long m68k_vmalloc_end;
#define VMALLOC_START 0x0f800000 #define VMALLOC_START 0x0f800000
#define VMALLOC_END vmalloc_end #define VMALLOC_END m68k_vmalloc_end
#endif /* CONFIG_SUN3 */ #endif /* CONFIG_SUN3 */
/* zero page used for uninitialized stuff */ /* zero page used for uninitialized stuff */

View file

@ -45,8 +45,8 @@
** Globals ** Globals
*/ */
unsigned long vmalloc_end; unsigned long m68k_vmalloc_end;
EXPORT_SYMBOL(vmalloc_end); EXPORT_SYMBOL(m68k_vmalloc_end);
unsigned long pmeg_vaddr[PMEGS_NUM]; unsigned long pmeg_vaddr[PMEGS_NUM];
unsigned char pmeg_alloc[PMEGS_NUM]; unsigned char pmeg_alloc[PMEGS_NUM];
@ -172,8 +172,8 @@ void mmu_emu_init(unsigned long bootmem_end)
#endif #endif
// the lowest mapping here is the end of our // the lowest mapping here is the end of our
// vmalloc region // vmalloc region
if(!vmalloc_end) if (!m68k_vmalloc_end)
vmalloc_end = seg; m68k_vmalloc_end = seg;
// mark the segmap alloc'd, and reserve any // mark the segmap alloc'd, and reserve any
// of the first 0xbff pages the hardware is // of the first 0xbff pages the hardware is

View file

@ -31,13 +31,13 @@ const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
#define KPROBE_HIT_ACTIVE 0x00000001 #define KPROBE_HIT_ACTIVE 0x00000001
#define KPROBE_HIT_SS 0x00000002 #define KPROBE_HIT_SS 0x00000002
static struct kprobe *current_kprobe; static struct kprobe *cur_kprobe;
static unsigned long current_kprobe_orig_pc; static unsigned long cur_kprobe_orig_pc;
static unsigned long current_kprobe_next_pc; static unsigned long cur_kprobe_next_pc;
static int current_kprobe_ss_flags; static int cur_kprobe_ss_flags;
static unsigned long kprobe_status; static unsigned long kprobe_status;
static kprobe_opcode_t current_kprobe_ss_buf[MAX_INSN_SIZE + 2]; static kprobe_opcode_t cur_kprobe_ss_buf[MAX_INSN_SIZE + 2];
static unsigned long current_kprobe_bp_addr; static unsigned long cur_kprobe_bp_addr;
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
@ -399,26 +399,25 @@ void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{ {
unsigned long nextpc; unsigned long nextpc;
current_kprobe_orig_pc = regs->pc; cur_kprobe_orig_pc = regs->pc;
memcpy(current_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE); memcpy(cur_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE);
regs->pc = (unsigned long) current_kprobe_ss_buf; regs->pc = (unsigned long) cur_kprobe_ss_buf;
nextpc = find_nextpc(regs, &current_kprobe_ss_flags); nextpc = find_nextpc(regs, &cur_kprobe_ss_flags);
if (current_kprobe_ss_flags & SINGLESTEP_PCREL) if (cur_kprobe_ss_flags & SINGLESTEP_PCREL)
current_kprobe_next_pc = cur_kprobe_next_pc = cur_kprobe_orig_pc + (nextpc - regs->pc);
current_kprobe_orig_pc + (nextpc - regs->pc);
else else
current_kprobe_next_pc = nextpc; cur_kprobe_next_pc = nextpc;
/* branching instructions need special handling */ /* branching instructions need special handling */
if (current_kprobe_ss_flags & SINGLESTEP_BRANCH) if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH)
nextpc = singlestep_branch_setup(regs); nextpc = singlestep_branch_setup(regs);
current_kprobe_bp_addr = nextpc; cur_kprobe_bp_addr = nextpc;
*(u8 *) nextpc = BREAKPOINT_INSTRUCTION; *(u8 *) nextpc = BREAKPOINT_INSTRUCTION;
mn10300_dcache_flush_range2((unsigned) current_kprobe_ss_buf, mn10300_dcache_flush_range2((unsigned) cur_kprobe_ss_buf,
sizeof(current_kprobe_ss_buf)); sizeof(cur_kprobe_ss_buf));
mn10300_icache_inv(); mn10300_icache_inv();
} }
@ -440,7 +439,7 @@ static inline int __kprobes kprobe_handler(struct pt_regs *regs)
disarm_kprobe(p, regs); disarm_kprobe(p, regs);
ret = 1; ret = 1;
} else { } else {
p = current_kprobe; p = cur_kprobe;
if (p->break_handler && p->break_handler(p, regs)) if (p->break_handler && p->break_handler(p, regs))
goto ss_probe; goto ss_probe;
} }
@ -464,7 +463,7 @@ static inline int __kprobes kprobe_handler(struct pt_regs *regs)
} }
kprobe_status = KPROBE_HIT_ACTIVE; kprobe_status = KPROBE_HIT_ACTIVE;
current_kprobe = p; cur_kprobe = p;
if (p->pre_handler(p, regs)) { if (p->pre_handler(p, regs)) {
/* handler has already set things up, so skip ss setup */ /* handler has already set things up, so skip ss setup */
return 1; return 1;
@ -491,8 +490,8 @@ no_kprobe:
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
{ {
/* we may need to fixup regs/stack after singlestepping a call insn */ /* we may need to fixup regs/stack after singlestepping a call insn */
if (current_kprobe_ss_flags & SINGLESTEP_BRANCH) { if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) {
regs->pc = current_kprobe_orig_pc; regs->pc = cur_kprobe_orig_pc;
switch (p->ainsn.insn[0]) { switch (p->ainsn.insn[0]) {
case 0xcd: /* CALL (d16,PC) */ case 0xcd: /* CALL (d16,PC) */
*(unsigned *) regs->sp = regs->mdr = regs->pc + 5; *(unsigned *) regs->sp = regs->mdr = regs->pc + 5;
@ -523,8 +522,8 @@ static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
} }
} }
regs->pc = current_kprobe_next_pc; regs->pc = cur_kprobe_next_pc;
current_kprobe_bp_addr = 0; cur_kprobe_bp_addr = 0;
} }
static inline int __kprobes post_kprobe_handler(struct pt_regs *regs) static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
@ -532,10 +531,10 @@ static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
if (!kprobe_running()) if (!kprobe_running())
return 0; return 0;
if (current_kprobe->post_handler) if (cur_kprobe->post_handler)
current_kprobe->post_handler(current_kprobe, regs, 0); cur_kprobe->post_handler(cur_kprobe, regs, 0);
resume_execution(current_kprobe, regs); resume_execution(cur_kprobe, regs);
reset_current_kprobe(); reset_current_kprobe();
preempt_enable_no_resched(); preempt_enable_no_resched();
return 1; return 1;
@ -545,12 +544,12 @@ static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
static inline static inline
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{ {
if (current_kprobe->fault_handler && if (cur_kprobe->fault_handler &&
current_kprobe->fault_handler(current_kprobe, regs, trapnr)) cur_kprobe->fault_handler(cur_kprobe, regs, trapnr))
return 1; return 1;
if (kprobe_status & KPROBE_HIT_SS) { if (kprobe_status & KPROBE_HIT_SS) {
resume_execution(current_kprobe, regs); resume_execution(cur_kprobe, regs);
reset_current_kprobe(); reset_current_kprobe();
preempt_enable_no_resched(); preempt_enable_no_resched();
} }
@ -567,7 +566,7 @@ int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
switch (val) { switch (val) {
case DIE_BREAKPOINT: case DIE_BREAKPOINT:
if (current_kprobe_bp_addr != args->regs->pc) { if (cur_kprobe_bp_addr != args->regs->pc) {
if (kprobe_handler(args->regs)) if (kprobe_handler(args->regs))
return NOTIFY_STOP; return NOTIFY_STOP;
} else { } else {

View file

@ -37,7 +37,7 @@ extern void cpu_die(void);
extern void smp_send_debugger_break(int cpu); extern void smp_send_debugger_break(int cpu);
extern void smp_message_recv(int); extern void smp_message_recv(int);
DECLARE_PER_CPU(unsigned int, pvr); DECLARE_PER_CPU(unsigned int, cpu_pvr);
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
extern void fixup_irqs(cpumask_t map); extern void fixup_irqs(cpumask_t map);

View file

@ -487,11 +487,11 @@ static void perf_callchain_user_32(struct pt_regs *regs,
* Since we can't get PMU interrupts inside a PMU interrupt handler, * Since we can't get PMU interrupts inside a PMU interrupt handler,
* we don't need separate irq and nmi entries here. * we don't need separate irq and nmi entries here.
*/ */
static DEFINE_PER_CPU(struct perf_callchain_entry, callchain); static DEFINE_PER_CPU(struct perf_callchain_entry, cpu_perf_callchain);
struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{ {
struct perf_callchain_entry *entry = &__get_cpu_var(callchain); struct perf_callchain_entry *entry = &__get_cpu_var(cpu_perf_callchain);
entry->nr = 0; entry->nr = 0;

View file

@ -157,7 +157,7 @@ extern u32 cpu_temp_both(unsigned long cpu);
#endif /* CONFIG_TAU */ #endif /* CONFIG_TAU */
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned int, pvr); DEFINE_PER_CPU(unsigned int, cpu_pvr);
#endif #endif
static int show_cpuinfo(struct seq_file *m, void *v) static int show_cpuinfo(struct seq_file *m, void *v)
@ -209,7 +209,7 @@ static int show_cpuinfo(struct seq_file *m, void *v)
} }
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
pvr = per_cpu(pvr, cpu_id); pvr = per_cpu(cpu_pvr, cpu_id);
#else #else
pvr = mfspr(SPRN_PVR); pvr = mfspr(SPRN_PVR);
#endif #endif

View file

@ -235,7 +235,7 @@ struct thread_info *current_set[NR_CPUS];
static void __devinit smp_store_cpu_info(int id) static void __devinit smp_store_cpu_info(int id)
{ {
per_cpu(pvr, id) = mfspr(SPRN_PVR); per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
} }
static void __init smp_create_idle(unsigned int cpu) static void __init smp_create_idle(unsigned int cpu)

View file

@ -54,7 +54,7 @@ struct iic {
struct device_node *node; struct device_node *node;
}; };
static DEFINE_PER_CPU(struct iic, iic); static DEFINE_PER_CPU(struct iic, cpu_iic);
#define IIC_NODE_COUNT 2 #define IIC_NODE_COUNT 2
static struct irq_host *iic_host; static struct irq_host *iic_host;
@ -82,7 +82,7 @@ static void iic_unmask(unsigned int irq)
static void iic_eoi(unsigned int irq) static void iic_eoi(unsigned int irq)
{ {
struct iic *iic = &__get_cpu_var(iic); struct iic *iic = &__get_cpu_var(cpu_iic);
out_be64(&iic->regs->prio, iic->eoi_stack[--iic->eoi_ptr]); out_be64(&iic->regs->prio, iic->eoi_stack[--iic->eoi_ptr]);
BUG_ON(iic->eoi_ptr < 0); BUG_ON(iic->eoi_ptr < 0);
} }
@ -146,7 +146,7 @@ static unsigned int iic_get_irq(void)
struct iic *iic; struct iic *iic;
unsigned int virq; unsigned int virq;
iic = &__get_cpu_var(iic); iic = &__get_cpu_var(cpu_iic);
*(unsigned long *) &pending = *(unsigned long *) &pending =
in_be64((u64 __iomem *) &iic->regs->pending_destr); in_be64((u64 __iomem *) &iic->regs->pending_destr);
if (!(pending.flags & CBE_IIC_IRQ_VALID)) if (!(pending.flags & CBE_IIC_IRQ_VALID))
@ -161,12 +161,12 @@ static unsigned int iic_get_irq(void)
void iic_setup_cpu(void) void iic_setup_cpu(void)
{ {
out_be64(&__get_cpu_var(iic).regs->prio, 0xff); out_be64(&__get_cpu_var(cpu_iic).regs->prio, 0xff);
} }
u8 iic_get_target_id(int cpu) u8 iic_get_target_id(int cpu)
{ {
return per_cpu(iic, cpu).target_id; return per_cpu(cpu_iic, cpu).target_id;
} }
EXPORT_SYMBOL_GPL(iic_get_target_id); EXPORT_SYMBOL_GPL(iic_get_target_id);
@ -181,7 +181,7 @@ static inline int iic_ipi_to_irq(int ipi)
void iic_cause_IPI(int cpu, int mesg) void iic_cause_IPI(int cpu, int mesg)
{ {
out_be64(&per_cpu(iic, cpu).regs->generate, (0xf - mesg) << 4); out_be64(&per_cpu(cpu_iic, cpu).regs->generate, (0xf - mesg) << 4);
} }
struct irq_host *iic_get_irq_host(int node) struct irq_host *iic_get_irq_host(int node)
@ -348,7 +348,7 @@ static void __init init_one_iic(unsigned int hw_cpu, unsigned long addr,
/* XXX FIXME: should locate the linux CPU number from the HW cpu /* XXX FIXME: should locate the linux CPU number from the HW cpu
* number properly. We are lucky for now * number properly. We are lucky for now
*/ */
struct iic *iic = &per_cpu(iic, hw_cpu); struct iic *iic = &per_cpu(cpu_iic, hw_cpu);
iic->regs = ioremap(addr, sizeof(struct cbe_iic_thread_regs)); iic->regs = ioremap(addr, sizeof(struct cbe_iic_thread_regs));
BUG_ON(iic->regs == NULL); BUG_ON(iic->regs == NULL);

View file

@ -54,7 +54,7 @@ struct dtl {
int buf_entries; int buf_entries;
u64 last_idx; u64 last_idx;
}; };
static DEFINE_PER_CPU(struct dtl, dtl); static DEFINE_PER_CPU(struct dtl, cpu_dtl);
/* /*
* Dispatch trace log event mask: * Dispatch trace log event mask:
@ -261,7 +261,7 @@ static int dtl_init(void)
/* set up the per-cpu log structures */ /* set up the per-cpu log structures */
for_each_possible_cpu(i) { for_each_possible_cpu(i) {
struct dtl *dtl = &per_cpu(dtl, i); struct dtl *dtl = &per_cpu(cpu_dtl, i);
dtl->cpu = i; dtl->cpu = i;
rc = dtl_setup_file(dtl); rc = dtl_setup_file(dtl);

View file

@ -47,7 +47,7 @@ static DEFINE_PER_CPU(short, wd_enabled);
static int endflag __initdata; static int endflag __initdata;
static DEFINE_PER_CPU(unsigned int, last_irq_sum); static DEFINE_PER_CPU(unsigned int, last_irq_sum);
static DEFINE_PER_CPU(local_t, alert_counter); static DEFINE_PER_CPU(long, alert_counter);
static DEFINE_PER_CPU(int, nmi_touch); static DEFINE_PER_CPU(int, nmi_touch);
void touch_nmi_watchdog(void) void touch_nmi_watchdog(void)
@ -112,13 +112,13 @@ notrace __kprobes void perfctr_irq(int irq, struct pt_regs *regs)
touched = 1; touched = 1;
} }
if (!touched && __get_cpu_var(last_irq_sum) == sum) { if (!touched && __get_cpu_var(last_irq_sum) == sum) {
local_inc(&__get_cpu_var(alert_counter)); __this_cpu_inc(per_cpu_var(alert_counter));
if (local_read(&__get_cpu_var(alert_counter)) == 30 * nmi_hz) if (__this_cpu_read(per_cpu_var(alert_counter)) == 30 * nmi_hz)
die_nmi("BUG: NMI Watchdog detected LOCKUP", die_nmi("BUG: NMI Watchdog detected LOCKUP",
regs, panic_on_timeout); regs, panic_on_timeout);
} else { } else {
__get_cpu_var(last_irq_sum) = sum; __get_cpu_var(last_irq_sum) = sum;
local_set(&__get_cpu_var(alert_counter), 0); __this_cpu_write(per_cpu_var(alert_counter), 0);
} }
if (__get_cpu_var(wd_enabled)) { if (__get_cpu_var(wd_enabled)) {
write_pic(picl_value(nmi_hz)); write_pic(picl_value(nmi_hz));

View file

@ -74,31 +74,31 @@ extern void __bad_percpu_size(void);
#define percpu_to_op(op, var, val) \ #define percpu_to_op(op, var, val) \
do { \ do { \
typedef typeof(var) T__; \ typedef typeof(var) pto_T__; \
if (0) { \ if (0) { \
T__ tmp__; \ pto_T__ pto_tmp__; \
tmp__ = (val); \ pto_tmp__ = (val); \
} \ } \
switch (sizeof(var)) { \ switch (sizeof(var)) { \
case 1: \ case 1: \
asm(op "b %1,"__percpu_arg(0) \ asm(op "b %1,"__percpu_arg(0) \
: "+m" (var) \ : "+m" (var) \
: "qi" ((T__)(val))); \ : "qi" ((pto_T__)(val))); \
break; \ break; \
case 2: \ case 2: \
asm(op "w %1,"__percpu_arg(0) \ asm(op "w %1,"__percpu_arg(0) \
: "+m" (var) \ : "+m" (var) \
: "ri" ((T__)(val))); \ : "ri" ((pto_T__)(val))); \
break; \ break; \
case 4: \ case 4: \
asm(op "l %1,"__percpu_arg(0) \ asm(op "l %1,"__percpu_arg(0) \
: "+m" (var) \ : "+m" (var) \
: "ri" ((T__)(val))); \ : "ri" ((pto_T__)(val))); \
break; \ break; \
case 8: \ case 8: \
asm(op "q %1,"__percpu_arg(0) \ asm(op "q %1,"__percpu_arg(0) \
: "+m" (var) \ : "+m" (var) \
: "re" ((T__)(val))); \ : "re" ((pto_T__)(val))); \
break; \ break; \
default: __bad_percpu_size(); \ default: __bad_percpu_size(); \
} \ } \
@ -106,31 +106,31 @@ do { \
#define percpu_from_op(op, var, constraint) \ #define percpu_from_op(op, var, constraint) \
({ \ ({ \
typeof(var) ret__; \ typeof(var) pfo_ret__; \
switch (sizeof(var)) { \ switch (sizeof(var)) { \
case 1: \ case 1: \
asm(op "b "__percpu_arg(1)",%0" \ asm(op "b "__percpu_arg(1)",%0" \
: "=q" (ret__) \ : "=q" (pfo_ret__) \
: constraint); \ : constraint); \
break; \ break; \
case 2: \ case 2: \
asm(op "w "__percpu_arg(1)",%0" \ asm(op "w "__percpu_arg(1)",%0" \
: "=r" (ret__) \ : "=r" (pfo_ret__) \
: constraint); \ : constraint); \
break; \ break; \
case 4: \ case 4: \
asm(op "l "__percpu_arg(1)",%0" \ asm(op "l "__percpu_arg(1)",%0" \
: "=r" (ret__) \ : "=r" (pfo_ret__) \
: constraint); \ : constraint); \
break; \ break; \
case 8: \ case 8: \
asm(op "q "__percpu_arg(1)",%0" \ asm(op "q "__percpu_arg(1)",%0" \
: "=r" (ret__) \ : "=r" (pfo_ret__) \
: constraint); \ : constraint); \
break; \ break; \
default: __bad_percpu_size(); \ default: __bad_percpu_size(); \
} \ } \
ret__; \ pfo_ret__; \
}) })
/* /*
@ -153,6 +153,84 @@ do { \
#define percpu_or(var, val) percpu_to_op("or", per_cpu__##var, val) #define percpu_or(var, val) percpu_to_op("or", per_cpu__##var, val)
#define percpu_xor(var, val) percpu_to_op("xor", per_cpu__##var, val) #define percpu_xor(var, val) percpu_to_op("xor", per_cpu__##var, val)
#define __this_cpu_read_1(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define __this_cpu_read_2(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define __this_cpu_read_4(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define __this_cpu_write_1(pcp, val) percpu_to_op("mov", (pcp), val)
#define __this_cpu_write_2(pcp, val) percpu_to_op("mov", (pcp), val)
#define __this_cpu_write_4(pcp, val) percpu_to_op("mov", (pcp), val)
#define __this_cpu_add_1(pcp, val) percpu_to_op("add", (pcp), val)
#define __this_cpu_add_2(pcp, val) percpu_to_op("add", (pcp), val)
#define __this_cpu_add_4(pcp, val) percpu_to_op("add", (pcp), val)
#define __this_cpu_and_1(pcp, val) percpu_to_op("and", (pcp), val)
#define __this_cpu_and_2(pcp, val) percpu_to_op("and", (pcp), val)
#define __this_cpu_and_4(pcp, val) percpu_to_op("and", (pcp), val)
#define __this_cpu_or_1(pcp, val) percpu_to_op("or", (pcp), val)
#define __this_cpu_or_2(pcp, val) percpu_to_op("or", (pcp), val)
#define __this_cpu_or_4(pcp, val) percpu_to_op("or", (pcp), val)
#define __this_cpu_xor_1(pcp, val) percpu_to_op("xor", (pcp), val)
#define __this_cpu_xor_2(pcp, val) percpu_to_op("xor", (pcp), val)
#define __this_cpu_xor_4(pcp, val) percpu_to_op("xor", (pcp), val)
#define this_cpu_read_1(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define this_cpu_read_2(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define this_cpu_read_4(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define this_cpu_write_1(pcp, val) percpu_to_op("mov", (pcp), val)
#define this_cpu_write_2(pcp, val) percpu_to_op("mov", (pcp), val)
#define this_cpu_write_4(pcp, val) percpu_to_op("mov", (pcp), val)
#define this_cpu_add_1(pcp, val) percpu_to_op("add", (pcp), val)
#define this_cpu_add_2(pcp, val) percpu_to_op("add", (pcp), val)
#define this_cpu_add_4(pcp, val) percpu_to_op("add", (pcp), val)
#define this_cpu_and_1(pcp, val) percpu_to_op("and", (pcp), val)
#define this_cpu_and_2(pcp, val) percpu_to_op("and", (pcp), val)
#define this_cpu_and_4(pcp, val) percpu_to_op("and", (pcp), val)
#define this_cpu_or_1(pcp, val) percpu_to_op("or", (pcp), val)
#define this_cpu_or_2(pcp, val) percpu_to_op("or", (pcp), val)
#define this_cpu_or_4(pcp, val) percpu_to_op("or", (pcp), val)
#define this_cpu_xor_1(pcp, val) percpu_to_op("xor", (pcp), val)
#define this_cpu_xor_2(pcp, val) percpu_to_op("xor", (pcp), val)
#define this_cpu_xor_4(pcp, val) percpu_to_op("xor", (pcp), val)
#define irqsafe_cpu_add_1(pcp, val) percpu_to_op("add", (pcp), val)
#define irqsafe_cpu_add_2(pcp, val) percpu_to_op("add", (pcp), val)
#define irqsafe_cpu_add_4(pcp, val) percpu_to_op("add", (pcp), val)
#define irqsafe_cpu_and_1(pcp, val) percpu_to_op("and", (pcp), val)
#define irqsafe_cpu_and_2(pcp, val) percpu_to_op("and", (pcp), val)
#define irqsafe_cpu_and_4(pcp, val) percpu_to_op("and", (pcp), val)
#define irqsafe_cpu_or_1(pcp, val) percpu_to_op("or", (pcp), val)
#define irqsafe_cpu_or_2(pcp, val) percpu_to_op("or", (pcp), val)
#define irqsafe_cpu_or_4(pcp, val) percpu_to_op("or", (pcp), val)
#define irqsafe_cpu_xor_1(pcp, val) percpu_to_op("xor", (pcp), val)
#define irqsafe_cpu_xor_2(pcp, val) percpu_to_op("xor", (pcp), val)
#define irqsafe_cpu_xor_4(pcp, val) percpu_to_op("xor", (pcp), val)
/*
* Per cpu atomic 64 bit operations are only available under 64 bit.
* 32 bit must fall back to generic operations.
*/
#ifdef CONFIG_X86_64
#define __this_cpu_read_8(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define __this_cpu_write_8(pcp, val) percpu_to_op("mov", (pcp), val)
#define __this_cpu_add_8(pcp, val) percpu_to_op("add", (pcp), val)
#define __this_cpu_and_8(pcp, val) percpu_to_op("and", (pcp), val)
#define __this_cpu_or_8(pcp, val) percpu_to_op("or", (pcp), val)
#define __this_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val)
#define this_cpu_read_8(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
#define this_cpu_write_8(pcp, val) percpu_to_op("mov", (pcp), val)
#define this_cpu_add_8(pcp, val) percpu_to_op("add", (pcp), val)
#define this_cpu_and_8(pcp, val) percpu_to_op("and", (pcp), val)
#define this_cpu_or_8(pcp, val) percpu_to_op("or", (pcp), val)
#define this_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val)
#define irqsafe_cpu_add_8(pcp, val) percpu_to_op("add", (pcp), val)
#define irqsafe_cpu_and_8(pcp, val) percpu_to_op("and", (pcp), val)
#define irqsafe_cpu_or_8(pcp, val) percpu_to_op("or", (pcp), val)
#define irqsafe_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val)
#endif
/* This is not atomic against other CPUs -- CPU preemption needs to be off */ /* This is not atomic against other CPUs -- CPU preemption needs to be off */
#define x86_test_and_clear_bit_percpu(bit, var) \ #define x86_test_and_clear_bit_percpu(bit, var) \
({ \ ({ \

View file

@ -361,7 +361,7 @@ void stop_apic_nmi_watchdog(void *unused)
*/ */
static DEFINE_PER_CPU(unsigned, last_irq_sum); static DEFINE_PER_CPU(unsigned, last_irq_sum);
static DEFINE_PER_CPU(local_t, alert_counter); static DEFINE_PER_CPU(long, alert_counter);
static DEFINE_PER_CPU(int, nmi_touch); static DEFINE_PER_CPU(int, nmi_touch);
void touch_nmi_watchdog(void) void touch_nmi_watchdog(void)
@ -438,8 +438,8 @@ nmi_watchdog_tick(struct pt_regs *regs, unsigned reason)
* Ayiee, looks like this CPU is stuck ... * Ayiee, looks like this CPU is stuck ...
* wait a few IRQs (5 seconds) before doing the oops ... * wait a few IRQs (5 seconds) before doing the oops ...
*/ */
local_inc(&__get_cpu_var(alert_counter)); __this_cpu_inc(per_cpu_var(alert_counter));
if (local_read(&__get_cpu_var(alert_counter)) == 5 * nmi_hz) if (__this_cpu_read(per_cpu_var(alert_counter)) == 5 * nmi_hz)
/* /*
* die_nmi will return ONLY if NOTIFY_STOP happens.. * die_nmi will return ONLY if NOTIFY_STOP happens..
*/ */
@ -447,7 +447,7 @@ nmi_watchdog_tick(struct pt_regs *regs, unsigned reason)
regs, panic_on_timeout); regs, panic_on_timeout);
} else { } else {
__get_cpu_var(last_irq_sum) = sum; __get_cpu_var(last_irq_sum) = sum;
local_set(&__get_cpu_var(alert_counter), 0); __this_cpu_write(per_cpu_var(alert_counter), 0);
} }
/* see if the nmi watchdog went off */ /* see if the nmi watchdog went off */

View file

@ -1093,7 +1093,7 @@ static void clear_all_debug_regs(void)
void __cpuinit cpu_init(void) void __cpuinit cpu_init(void)
{ {
struct orig_ist *orig_ist; struct orig_ist *oist;
struct task_struct *me; struct task_struct *me;
struct tss_struct *t; struct tss_struct *t;
unsigned long v; unsigned long v;
@ -1102,7 +1102,7 @@ void __cpuinit cpu_init(void)
cpu = stack_smp_processor_id(); cpu = stack_smp_processor_id();
t = &per_cpu(init_tss, cpu); t = &per_cpu(init_tss, cpu);
orig_ist = &per_cpu(orig_ist, cpu); oist = &per_cpu(orig_ist, cpu);
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
if (cpu != 0 && percpu_read(node_number) == 0 && if (cpu != 0 && percpu_read(node_number) == 0 &&
@ -1143,12 +1143,12 @@ void __cpuinit cpu_init(void)
/* /*
* set up and load the per-CPU TSS * set up and load the per-CPU TSS
*/ */
if (!orig_ist->ist[0]) { if (!oist->ist[0]) {
char *estacks = per_cpu(exception_stacks, cpu); char *estacks = per_cpu(exception_stacks, cpu);
for (v = 0; v < N_EXCEPTION_STACKS; v++) { for (v = 0; v < N_EXCEPTION_STACKS; v++) {
estacks += exception_stack_sizes[v]; estacks += exception_stack_sizes[v];
orig_ist->ist[v] = t->x86_tss.ist[v] = oist->ist[v] = t->x86_tss.ist[v] =
(unsigned long)estacks; (unsigned long)estacks;
} }
} }

View file

@ -30,9 +30,9 @@
#include <asm/apic.h> #include <asm/apic.h>
#include <asm/desc.h> #include <asm/desc.h>
static DEFINE_PER_CPU(struct cpu_cpuX_base [CPU_REG_ALL_BIT], cpu_arr); static DEFINE_PER_CPU(struct cpu_cpuX_base [CPU_REG_ALL_BIT], cpud_arr);
static DEFINE_PER_CPU(struct cpu_private * [MAX_CPU_FILES], priv_arr); static DEFINE_PER_CPU(struct cpu_private * [MAX_CPU_FILES], cpud_priv_arr);
static DEFINE_PER_CPU(int, cpu_priv_count); static DEFINE_PER_CPU(int, cpud_priv_count);
static DEFINE_MUTEX(cpu_debug_lock); static DEFINE_MUTEX(cpu_debug_lock);
@ -531,7 +531,7 @@ static int cpu_create_file(unsigned cpu, unsigned type, unsigned reg,
/* Already intialized */ /* Already intialized */
if (file == CPU_INDEX_BIT) if (file == CPU_INDEX_BIT)
if (per_cpu(cpu_arr[type].init, cpu)) if (per_cpu(cpud_arr[type].init, cpu))
return 0; return 0;
priv = kzalloc(sizeof(*priv), GFP_KERNEL); priv = kzalloc(sizeof(*priv), GFP_KERNEL);
@ -543,8 +543,8 @@ static int cpu_create_file(unsigned cpu, unsigned type, unsigned reg,
priv->reg = reg; priv->reg = reg;
priv->file = file; priv->file = file;
mutex_lock(&cpu_debug_lock); mutex_lock(&cpu_debug_lock);
per_cpu(priv_arr[type], cpu) = priv; per_cpu(cpud_priv_arr[type], cpu) = priv;
per_cpu(cpu_priv_count, cpu)++; per_cpu(cpud_priv_count, cpu)++;
mutex_unlock(&cpu_debug_lock); mutex_unlock(&cpu_debug_lock);
if (file) if (file)
@ -552,10 +552,10 @@ static int cpu_create_file(unsigned cpu, unsigned type, unsigned reg,
dentry, (void *)priv, &cpu_fops); dentry, (void *)priv, &cpu_fops);
else { else {
debugfs_create_file(cpu_base[type].name, S_IRUGO, debugfs_create_file(cpu_base[type].name, S_IRUGO,
per_cpu(cpu_arr[type].dentry, cpu), per_cpu(cpud_arr[type].dentry, cpu),
(void *)priv, &cpu_fops); (void *)priv, &cpu_fops);
mutex_lock(&cpu_debug_lock); mutex_lock(&cpu_debug_lock);
per_cpu(cpu_arr[type].init, cpu) = 1; per_cpu(cpud_arr[type].init, cpu) = 1;
mutex_unlock(&cpu_debug_lock); mutex_unlock(&cpu_debug_lock);
} }
@ -615,7 +615,7 @@ static int cpu_init_allreg(unsigned cpu, struct dentry *dentry)
if (!is_typeflag_valid(cpu, cpu_base[type].flag)) if (!is_typeflag_valid(cpu, cpu_base[type].flag))
continue; continue;
cpu_dentry = debugfs_create_dir(cpu_base[type].name, dentry); cpu_dentry = debugfs_create_dir(cpu_base[type].name, dentry);
per_cpu(cpu_arr[type].dentry, cpu) = cpu_dentry; per_cpu(cpud_arr[type].dentry, cpu) = cpu_dentry;
if (type < CPU_TSS_BIT) if (type < CPU_TSS_BIT)
err = cpu_init_msr(cpu, type, cpu_dentry); err = cpu_init_msr(cpu, type, cpu_dentry);
@ -647,11 +647,11 @@ static int cpu_init_cpu(void)
err = cpu_init_allreg(cpu, cpu_dentry); err = cpu_init_allreg(cpu, cpu_dentry);
pr_info("cpu%d(%d) debug files %d\n", pr_info("cpu%d(%d) debug files %d\n",
cpu, nr_cpu_ids, per_cpu(cpu_priv_count, cpu)); cpu, nr_cpu_ids, per_cpu(cpud_priv_count, cpu));
if (per_cpu(cpu_priv_count, cpu) > MAX_CPU_FILES) { if (per_cpu(cpud_priv_count, cpu) > MAX_CPU_FILES) {
pr_err("Register files count %d exceeds limit %d\n", pr_err("Register files count %d exceeds limit %d\n",
per_cpu(cpu_priv_count, cpu), MAX_CPU_FILES); per_cpu(cpud_priv_count, cpu), MAX_CPU_FILES);
per_cpu(cpu_priv_count, cpu) = MAX_CPU_FILES; per_cpu(cpud_priv_count, cpu) = MAX_CPU_FILES;
err = -ENFILE; err = -ENFILE;
} }
if (err) if (err)
@ -676,8 +676,8 @@ static void __exit cpu_debug_exit(void)
debugfs_remove_recursive(cpu_debugfs_dir); debugfs_remove_recursive(cpu_debugfs_dir);
for (cpu = 0; cpu < nr_cpu_ids; cpu++) for (cpu = 0; cpu < nr_cpu_ids; cpu++)
for (i = 0; i < per_cpu(cpu_priv_count, cpu); i++) for (i = 0; i < per_cpu(cpud_priv_count, cpu); i++)
kfree(per_cpu(priv_arr[i], cpu)); kfree(per_cpu(cpud_priv_arr[i], cpu));
} }
module_init(cpu_debug_init); module_init(cpu_debug_init);

View file

@ -68,9 +68,9 @@ struct acpi_cpufreq_data {
unsigned int cpu_feature; unsigned int cpu_feature;
}; };
static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data); static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
static DEFINE_PER_CPU(struct aperfmperf, old_perf); static DEFINE_PER_CPU(struct aperfmperf, acfreq_old_perf);
/* acpi_perf_data is a pointer to percpu data. */ /* acpi_perf_data is a pointer to percpu data. */
static struct acpi_processor_performance *acpi_perf_data; static struct acpi_processor_performance *acpi_perf_data;
@ -214,14 +214,14 @@ static u32 get_cur_val(const struct cpumask *mask)
if (unlikely(cpumask_empty(mask))) if (unlikely(cpumask_empty(mask)))
return 0; return 0;
switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) { switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
case SYSTEM_INTEL_MSR_CAPABLE: case SYSTEM_INTEL_MSR_CAPABLE:
cmd.type = SYSTEM_INTEL_MSR_CAPABLE; cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
break; break;
case SYSTEM_IO_CAPABLE: case SYSTEM_IO_CAPABLE:
cmd.type = SYSTEM_IO_CAPABLE; cmd.type = SYSTEM_IO_CAPABLE;
perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data; perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
cmd.addr.io.port = perf->control_register.address; cmd.addr.io.port = perf->control_register.address;
cmd.addr.io.bit_width = perf->control_register.bit_width; cmd.addr.io.bit_width = perf->control_register.bit_width;
break; break;
@ -268,8 +268,8 @@ static unsigned int get_measured_perf(struct cpufreq_policy *policy,
if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1)) if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
return 0; return 0;
ratio = calc_aperfmperf_ratio(&per_cpu(old_perf, cpu), &perf); ratio = calc_aperfmperf_ratio(&per_cpu(acfreq_old_perf, cpu), &perf);
per_cpu(old_perf, cpu) = perf; per_cpu(acfreq_old_perf, cpu) = perf;
retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT; retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
@ -278,7 +278,7 @@ static unsigned int get_measured_perf(struct cpufreq_policy *policy,
static unsigned int get_cur_freq_on_cpu(unsigned int cpu) static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
{ {
struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu); struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
unsigned int freq; unsigned int freq;
unsigned int cached_freq; unsigned int cached_freq;
@ -322,7 +322,7 @@ static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
static int acpi_cpufreq_target(struct cpufreq_policy *policy, static int acpi_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq, unsigned int relation) unsigned int target_freq, unsigned int relation)
{ {
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
struct acpi_processor_performance *perf; struct acpi_processor_performance *perf;
struct cpufreq_freqs freqs; struct cpufreq_freqs freqs;
struct drv_cmd cmd; struct drv_cmd cmd;
@ -416,7 +416,7 @@ out:
static int acpi_cpufreq_verify(struct cpufreq_policy *policy) static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
{ {
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
dprintk("acpi_cpufreq_verify\n"); dprintk("acpi_cpufreq_verify\n");
@ -574,7 +574,7 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
return -ENOMEM; return -ENOMEM;
data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu); data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
per_cpu(drv_data, cpu) = data; per_cpu(acfreq_data, cpu) = data;
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
@ -725,20 +725,20 @@ err_unreg:
acpi_processor_unregister_performance(perf, cpu); acpi_processor_unregister_performance(perf, cpu);
err_free: err_free:
kfree(data); kfree(data);
per_cpu(drv_data, cpu) = NULL; per_cpu(acfreq_data, cpu) = NULL;
return result; return result;
} }
static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{ {
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
dprintk("acpi_cpufreq_cpu_exit\n"); dprintk("acpi_cpufreq_cpu_exit\n");
if (data) { if (data) {
cpufreq_frequency_table_put_attr(policy->cpu); cpufreq_frequency_table_put_attr(policy->cpu);
per_cpu(drv_data, policy->cpu) = NULL; per_cpu(acfreq_data, policy->cpu) = NULL;
acpi_processor_unregister_performance(data->acpi_data, acpi_processor_unregister_performance(data->acpi_data,
policy->cpu); policy->cpu);
kfree(data); kfree(data);
@ -749,7 +749,7 @@ static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
static int acpi_cpufreq_resume(struct cpufreq_policy *policy) static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
{ {
struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu); struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
dprintk("acpi_cpufreq_resume\n"); dprintk("acpi_cpufreq_resume\n");

View file

@ -499,8 +499,8 @@ unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
#ifdef CONFIG_SYSFS #ifdef CONFIG_SYSFS
/* pointer to _cpuid4_info array (for each cache leaf) */ /* pointer to _cpuid4_info array (for each cache leaf) */
static DEFINE_PER_CPU(struct _cpuid4_info *, cpuid4_info); static DEFINE_PER_CPU(struct _cpuid4_info *, ici_cpuid4_info);
#define CPUID4_INFO_IDX(x, y) (&((per_cpu(cpuid4_info, x))[y])) #define CPUID4_INFO_IDX(x, y) (&((per_cpu(ici_cpuid4_info, x))[y]))
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
@ -513,7 +513,7 @@ static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) { if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) {
struct cpuinfo_x86 *d; struct cpuinfo_x86 *d;
for_each_online_cpu(i) { for_each_online_cpu(i) {
if (!per_cpu(cpuid4_info, i)) if (!per_cpu(ici_cpuid4_info, i))
continue; continue;
d = &cpu_data(i); d = &cpu_data(i);
this_leaf = CPUID4_INFO_IDX(i, index); this_leaf = CPUID4_INFO_IDX(i, index);
@ -535,7 +535,7 @@ static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
c->apicid >> index_msb) { c->apicid >> index_msb) {
cpumask_set_cpu(i, cpumask_set_cpu(i,
to_cpumask(this_leaf->shared_cpu_map)); to_cpumask(this_leaf->shared_cpu_map));
if (i != cpu && per_cpu(cpuid4_info, i)) { if (i != cpu && per_cpu(ici_cpuid4_info, i)) {
sibling_leaf = sibling_leaf =
CPUID4_INFO_IDX(i, index); CPUID4_INFO_IDX(i, index);
cpumask_set_cpu(cpu, to_cpumask( cpumask_set_cpu(cpu, to_cpumask(
@ -574,8 +574,8 @@ static void __cpuinit free_cache_attributes(unsigned int cpu)
for (i = 0; i < num_cache_leaves; i++) for (i = 0; i < num_cache_leaves; i++)
cache_remove_shared_cpu_map(cpu, i); cache_remove_shared_cpu_map(cpu, i);
kfree(per_cpu(cpuid4_info, cpu)); kfree(per_cpu(ici_cpuid4_info, cpu));
per_cpu(cpuid4_info, cpu) = NULL; per_cpu(ici_cpuid4_info, cpu) = NULL;
} }
static int static int
@ -614,15 +614,15 @@ static int __cpuinit detect_cache_attributes(unsigned int cpu)
if (num_cache_leaves == 0) if (num_cache_leaves == 0)
return -ENOENT; return -ENOENT;
per_cpu(cpuid4_info, cpu) = kzalloc( per_cpu(ici_cpuid4_info, cpu) = kzalloc(
sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL); sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
if (per_cpu(cpuid4_info, cpu) == NULL) if (per_cpu(ici_cpuid4_info, cpu) == NULL)
return -ENOMEM; return -ENOMEM;
smp_call_function_single(cpu, get_cpu_leaves, &retval, true); smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
if (retval) { if (retval) {
kfree(per_cpu(cpuid4_info, cpu)); kfree(per_cpu(ici_cpuid4_info, cpu));
per_cpu(cpuid4_info, cpu) = NULL; per_cpu(ici_cpuid4_info, cpu) = NULL;
} }
return retval; return retval;
@ -634,7 +634,7 @@ static int __cpuinit detect_cache_attributes(unsigned int cpu)
extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */ extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
/* pointer to kobject for cpuX/cache */ /* pointer to kobject for cpuX/cache */
static DEFINE_PER_CPU(struct kobject *, cache_kobject); static DEFINE_PER_CPU(struct kobject *, ici_cache_kobject);
struct _index_kobject { struct _index_kobject {
struct kobject kobj; struct kobject kobj;
@ -643,8 +643,8 @@ struct _index_kobject {
}; };
/* pointer to array of kobjects for cpuX/cache/indexY */ /* pointer to array of kobjects for cpuX/cache/indexY */
static DEFINE_PER_CPU(struct _index_kobject *, index_kobject); static DEFINE_PER_CPU(struct _index_kobject *, ici_index_kobject);
#define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(index_kobject, x))[y])) #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(ici_index_kobject, x))[y]))
#define show_one_plus(file_name, object, val) \ #define show_one_plus(file_name, object, val) \
static ssize_t show_##file_name \ static ssize_t show_##file_name \
@ -863,10 +863,10 @@ static struct kobj_type ktype_percpu_entry = {
static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu) static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
{ {
kfree(per_cpu(cache_kobject, cpu)); kfree(per_cpu(ici_cache_kobject, cpu));
kfree(per_cpu(index_kobject, cpu)); kfree(per_cpu(ici_index_kobject, cpu));
per_cpu(cache_kobject, cpu) = NULL; per_cpu(ici_cache_kobject, cpu) = NULL;
per_cpu(index_kobject, cpu) = NULL; per_cpu(ici_index_kobject, cpu) = NULL;
free_cache_attributes(cpu); free_cache_attributes(cpu);
} }
@ -882,14 +882,14 @@ static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
return err; return err;
/* Allocate all required memory */ /* Allocate all required memory */
per_cpu(cache_kobject, cpu) = per_cpu(ici_cache_kobject, cpu) =
kzalloc(sizeof(struct kobject), GFP_KERNEL); kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (unlikely(per_cpu(cache_kobject, cpu) == NULL)) if (unlikely(per_cpu(ici_cache_kobject, cpu) == NULL))
goto err_out; goto err_out;
per_cpu(index_kobject, cpu) = kzalloc( per_cpu(ici_index_kobject, cpu) = kzalloc(
sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL); sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL);
if (unlikely(per_cpu(index_kobject, cpu) == NULL)) if (unlikely(per_cpu(ici_index_kobject, cpu) == NULL))
goto err_out; goto err_out;
return 0; return 0;
@ -913,7 +913,7 @@ static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
if (unlikely(retval < 0)) if (unlikely(retval < 0))
return retval; return retval;
retval = kobject_init_and_add(per_cpu(cache_kobject, cpu), retval = kobject_init_and_add(per_cpu(ici_cache_kobject, cpu),
&ktype_percpu_entry, &ktype_percpu_entry,
&sys_dev->kobj, "%s", "cache"); &sys_dev->kobj, "%s", "cache");
if (retval < 0) { if (retval < 0) {
@ -927,12 +927,12 @@ static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
this_object->index = i; this_object->index = i;
retval = kobject_init_and_add(&(this_object->kobj), retval = kobject_init_and_add(&(this_object->kobj),
&ktype_cache, &ktype_cache,
per_cpu(cache_kobject, cpu), per_cpu(ici_cache_kobject, cpu),
"index%1lu", i); "index%1lu", i);
if (unlikely(retval)) { if (unlikely(retval)) {
for (j = 0; j < i; j++) for (j = 0; j < i; j++)
kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj)); kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj));
kobject_put(per_cpu(cache_kobject, cpu)); kobject_put(per_cpu(ici_cache_kobject, cpu));
cpuid4_cache_sysfs_exit(cpu); cpuid4_cache_sysfs_exit(cpu);
return retval; return retval;
} }
@ -940,7 +940,7 @@ static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
} }
cpumask_set_cpu(cpu, to_cpumask(cache_dev_map)); cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
kobject_uevent(per_cpu(cache_kobject, cpu), KOBJ_ADD); kobject_uevent(per_cpu(ici_cache_kobject, cpu), KOBJ_ADD);
return 0; return 0;
} }
@ -949,7 +949,7 @@ static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
unsigned int cpu = sys_dev->id; unsigned int cpu = sys_dev->id;
unsigned long i; unsigned long i;
if (per_cpu(cpuid4_info, cpu) == NULL) if (per_cpu(ici_cpuid4_info, cpu) == NULL)
return; return;
if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map))) if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map)))
return; return;
@ -957,7 +957,7 @@ static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
for (i = 0; i < num_cache_leaves; i++) for (i = 0; i < num_cache_leaves; i++)
kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj)); kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj));
kobject_put(per_cpu(cache_kobject, cpu)); kobject_put(per_cpu(ici_cache_kobject, cpu));
cpuid4_cache_sysfs_exit(cpu); cpuid4_cache_sysfs_exit(cpu);
} }

View file

@ -265,13 +265,13 @@ struct ds_context {
int cpu; int cpu;
}; };
static DEFINE_PER_CPU(struct ds_context *, cpu_context); static DEFINE_PER_CPU(struct ds_context *, cpu_ds_context);
static struct ds_context *ds_get_context(struct task_struct *task, int cpu) static struct ds_context *ds_get_context(struct task_struct *task, int cpu)
{ {
struct ds_context **p_context = struct ds_context **p_context =
(task ? &task->thread.ds_ctx : &per_cpu(cpu_context, cpu)); (task ? &task->thread.ds_ctx : &per_cpu(cpu_ds_context, cpu));
struct ds_context *context = NULL; struct ds_context *context = NULL;
struct ds_context *new_context = NULL; struct ds_context *new_context = NULL;

View file

@ -316,7 +316,7 @@ static void svm_hardware_disable(void *garbage)
static int svm_hardware_enable(void *garbage) static int svm_hardware_enable(void *garbage)
{ {
struct svm_cpu_data *svm_data; struct svm_cpu_data *sd;
uint64_t efer; uint64_t efer;
struct descriptor_table gdt_descr; struct descriptor_table gdt_descr;
struct desc_struct *gdt; struct desc_struct *gdt;
@ -331,63 +331,61 @@ static int svm_hardware_enable(void *garbage)
me); me);
return -EINVAL; return -EINVAL;
} }
svm_data = per_cpu(svm_data, me); sd = per_cpu(svm_data, me);
if (!svm_data) { if (!sd) {
printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n", printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
me); me);
return -EINVAL; return -EINVAL;
} }
svm_data->asid_generation = 1; sd->asid_generation = 1;
svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
svm_data->next_asid = svm_data->max_asid + 1; sd->next_asid = sd->max_asid + 1;
kvm_get_gdt(&gdt_descr); kvm_get_gdt(&gdt_descr);
gdt = (struct desc_struct *)gdt_descr.base; gdt = (struct desc_struct *)gdt_descr.base;
svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
wrmsrl(MSR_EFER, efer | EFER_SVME); wrmsrl(MSR_EFER, efer | EFER_SVME);
wrmsrl(MSR_VM_HSAVE_PA, wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
return 0; return 0;
} }
static void svm_cpu_uninit(int cpu) static void svm_cpu_uninit(int cpu)
{ {
struct svm_cpu_data *svm_data struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
= per_cpu(svm_data, raw_smp_processor_id());
if (!svm_data) if (!sd)
return; return;
per_cpu(svm_data, raw_smp_processor_id()) = NULL; per_cpu(svm_data, raw_smp_processor_id()) = NULL;
__free_page(svm_data->save_area); __free_page(sd->save_area);
kfree(svm_data); kfree(sd);
} }
static int svm_cpu_init(int cpu) static int svm_cpu_init(int cpu)
{ {
struct svm_cpu_data *svm_data; struct svm_cpu_data *sd;
int r; int r;
svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
if (!svm_data) if (!sd)
return -ENOMEM; return -ENOMEM;
svm_data->cpu = cpu; sd->cpu = cpu;
svm_data->save_area = alloc_page(GFP_KERNEL); sd->save_area = alloc_page(GFP_KERNEL);
r = -ENOMEM; r = -ENOMEM;
if (!svm_data->save_area) if (!sd->save_area)
goto err_1; goto err_1;
per_cpu(svm_data, cpu) = svm_data; per_cpu(svm_data, cpu) = sd;
return 0; return 0;
err_1: err_1:
kfree(svm_data); kfree(sd);
return r; return r;
} }
@ -1092,16 +1090,16 @@ static void save_host_msrs(struct kvm_vcpu *vcpu)
#endif #endif
} }
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data) static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
{ {
if (svm_data->next_asid > svm_data->max_asid) { if (sd->next_asid > sd->max_asid) {
++svm_data->asid_generation; ++sd->asid_generation;
svm_data->next_asid = 1; sd->next_asid = 1;
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
} }
svm->asid_generation = svm_data->asid_generation; svm->asid_generation = sd->asid_generation;
svm->vmcb->control.asid = svm_data->next_asid++; svm->vmcb->control.asid = sd->next_asid++;
} }
static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr) static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
@ -2429,8 +2427,8 @@ static void reload_tss(struct kvm_vcpu *vcpu)
{ {
int cpu = raw_smp_processor_id(); int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */ sd->tss_desc->type = 9; /* available 32/64-bit TSS */
load_TR_desc(); load_TR_desc();
} }
@ -2438,12 +2436,12 @@ static void pre_svm_run(struct vcpu_svm *svm)
{ {
int cpu = raw_smp_processor_id(); int cpu = raw_smp_processor_id();
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
/* FIXME: handle wraparound of asid_generation */ /* FIXME: handle wraparound of asid_generation */
if (svm->asid_generation != svm_data->asid_generation) if (svm->asid_generation != sd->asid_generation)
new_asid(svm, svm_data); new_asid(svm, sd);
} }
static void svm_inject_nmi(struct kvm_vcpu *vcpu) static void svm_inject_nmi(struct kvm_vcpu *vcpu)

View file

@ -35,10 +35,10 @@
cpumask_var_t xen_cpu_initialized_map; cpumask_var_t xen_cpu_initialized_map;
static DEFINE_PER_CPU(int, resched_irq); static DEFINE_PER_CPU(int, xen_resched_irq);
static DEFINE_PER_CPU(int, callfunc_irq); static DEFINE_PER_CPU(int, xen_callfunc_irq);
static DEFINE_PER_CPU(int, callfuncsingle_irq); static DEFINE_PER_CPU(int, xen_callfuncsingle_irq);
static DEFINE_PER_CPU(int, debug_irq) = -1; static DEFINE_PER_CPU(int, xen_debug_irq) = -1;
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
@ -103,7 +103,7 @@ static int xen_smp_intr_init(unsigned int cpu)
NULL); NULL);
if (rc < 0) if (rc < 0)
goto fail; goto fail;
per_cpu(resched_irq, cpu) = rc; per_cpu(xen_resched_irq, cpu) = rc;
callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
@ -114,7 +114,7 @@ static int xen_smp_intr_init(unsigned int cpu)
NULL); NULL);
if (rc < 0) if (rc < 0)
goto fail; goto fail;
per_cpu(callfunc_irq, cpu) = rc; per_cpu(xen_callfunc_irq, cpu) = rc;
debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
@ -122,7 +122,7 @@ static int xen_smp_intr_init(unsigned int cpu)
debug_name, NULL); debug_name, NULL);
if (rc < 0) if (rc < 0)
goto fail; goto fail;
per_cpu(debug_irq, cpu) = rc; per_cpu(xen_debug_irq, cpu) = rc;
callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
@ -133,19 +133,20 @@ static int xen_smp_intr_init(unsigned int cpu)
NULL); NULL);
if (rc < 0) if (rc < 0)
goto fail; goto fail;
per_cpu(callfuncsingle_irq, cpu) = rc; per_cpu(xen_callfuncsingle_irq, cpu) = rc;
return 0; return 0;
fail: fail:
if (per_cpu(resched_irq, cpu) >= 0) if (per_cpu(xen_resched_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
if (per_cpu(callfunc_irq, cpu) >= 0) if (per_cpu(xen_callfunc_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
if (per_cpu(debug_irq, cpu) >= 0) if (per_cpu(xen_debug_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
if (per_cpu(callfuncsingle_irq, cpu) >= 0) if (per_cpu(xen_callfuncsingle_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(callfuncsingle_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu),
NULL);
return rc; return rc;
} }
@ -349,10 +350,10 @@ static void xen_cpu_die(unsigned int cpu)
current->state = TASK_UNINTERRUPTIBLE; current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(HZ/10); schedule_timeout(HZ/10);
} }
unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
unbind_from_irqhandler(per_cpu(callfuncsingle_irq, cpu), NULL); unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu), NULL);
xen_uninit_lock_cpu(cpu); xen_uninit_lock_cpu(cpu);
xen_teardown_timer(cpu); xen_teardown_timer(cpu);

View file

@ -31,14 +31,14 @@
#define NS_PER_TICK (1000000000LL / HZ) #define NS_PER_TICK (1000000000LL / HZ)
/* runstate info updated by Xen */ /* runstate info updated by Xen */
static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
/* snapshots of runstate info */ /* snapshots of runstate info */
static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot); static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
/* unused ns of stolen and blocked time */ /* unused ns of stolen and blocked time */
static DEFINE_PER_CPU(u64, residual_stolen); static DEFINE_PER_CPU(u64, xen_residual_stolen);
static DEFINE_PER_CPU(u64, residual_blocked); static DEFINE_PER_CPU(u64, xen_residual_blocked);
/* return an consistent snapshot of 64-bit time/counter value */ /* return an consistent snapshot of 64-bit time/counter value */
static u64 get64(const u64 *p) static u64 get64(const u64 *p)
@ -79,7 +79,7 @@ static void get_runstate_snapshot(struct vcpu_runstate_info *res)
BUG_ON(preemptible()); BUG_ON(preemptible());
state = &__get_cpu_var(runstate); state = &__get_cpu_var(xen_runstate);
/* /*
* The runstate info is always updated by the hypervisor on * The runstate info is always updated by the hypervisor on
@ -97,14 +97,14 @@ static void get_runstate_snapshot(struct vcpu_runstate_info *res)
/* return true when a vcpu could run but has no real cpu to run on */ /* return true when a vcpu could run but has no real cpu to run on */
bool xen_vcpu_stolen(int vcpu) bool xen_vcpu_stolen(int vcpu)
{ {
return per_cpu(runstate, vcpu).state == RUNSTATE_runnable; return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
} }
void xen_setup_runstate_info(int cpu) void xen_setup_runstate_info(int cpu)
{ {
struct vcpu_register_runstate_memory_area area; struct vcpu_register_runstate_memory_area area;
area.addr.v = &per_cpu(runstate, cpu); area.addr.v = &per_cpu(xen_runstate, cpu);
if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
cpu, &area)) cpu, &area))
@ -122,7 +122,7 @@ static void do_stolen_accounting(void)
WARN_ON(state.state != RUNSTATE_running); WARN_ON(state.state != RUNSTATE_running);
snap = &__get_cpu_var(runstate_snapshot); snap = &__get_cpu_var(xen_runstate_snapshot);
/* work out how much time the VCPU has not been runn*ing* */ /* work out how much time the VCPU has not been runn*ing* */
blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
@ -133,24 +133,24 @@ static void do_stolen_accounting(void)
/* Add the appropriate number of ticks of stolen time, /* Add the appropriate number of ticks of stolen time,
including any left-overs from last time. */ including any left-overs from last time. */
stolen = runnable + offline + __get_cpu_var(residual_stolen); stolen = runnable + offline + __get_cpu_var(xen_residual_stolen);
if (stolen < 0) if (stolen < 0)
stolen = 0; stolen = 0;
ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
__get_cpu_var(residual_stolen) = stolen; __get_cpu_var(xen_residual_stolen) = stolen;
account_steal_ticks(ticks); account_steal_ticks(ticks);
/* Add the appropriate number of ticks of blocked time, /* Add the appropriate number of ticks of blocked time,
including any left-overs from last time. */ including any left-overs from last time. */
blocked += __get_cpu_var(residual_blocked); blocked += __get_cpu_var(xen_residual_blocked);
if (blocked < 0) if (blocked < 0)
blocked = 0; blocked = 0;
ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
__get_cpu_var(residual_blocked) = blocked; __get_cpu_var(xen_residual_blocked) = blocked;
account_idle_ticks(ticks); account_idle_ticks(ticks);
} }

View file

@ -99,7 +99,7 @@ static int cryptd_enqueue_request(struct cryptd_queue *queue,
struct cryptd_cpu_queue *cpu_queue; struct cryptd_cpu_queue *cpu_queue;
cpu = get_cpu(); cpu = get_cpu();
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); cpu_queue = this_cpu_ptr(queue->cpu_queue);
err = crypto_enqueue_request(&cpu_queue->queue, request); err = crypto_enqueue_request(&cpu_queue->queue, request);
queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
put_cpu(); put_cpu();

View file

@ -131,7 +131,7 @@ static ssize_t show_crash_notes(struct sys_device *dev, struct sysdev_attribute
* boot up and this data does not change there after. Hence this * boot up and this data does not change there after. Hence this
* operation should be safe. No locking required. * operation should be safe. No locking required.
*/ */
addr = __pa(per_cpu_ptr(crash_notes, cpunum)); addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpunum));
rc = sprintf(buf, "%Lx\n", addr); rc = sprintf(buf, "%Lx\n", addr);
return rc; return rc;
} }

View file

@ -64,14 +64,14 @@ static DEFINE_SPINLOCK(cpufreq_driver_lock);
* - Lock should not be held across * - Lock should not be held across
* __cpufreq_governor(data, CPUFREQ_GOV_STOP); * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
*/ */
static DEFINE_PER_CPU(int, policy_cpu); static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
#define lock_policy_rwsem(mode, cpu) \ #define lock_policy_rwsem(mode, cpu) \
int lock_policy_rwsem_##mode \ int lock_policy_rwsem_##mode \
(int cpu) \ (int cpu) \
{ \ { \
int policy_cpu = per_cpu(policy_cpu, cpu); \ int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
BUG_ON(policy_cpu == -1); \ BUG_ON(policy_cpu == -1); \
down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
if (unlikely(!cpu_online(cpu))) { \ if (unlikely(!cpu_online(cpu))) { \
@ -90,7 +90,7 @@ EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
void unlock_policy_rwsem_read(int cpu) void unlock_policy_rwsem_read(int cpu)
{ {
int policy_cpu = per_cpu(policy_cpu, cpu); int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
BUG_ON(policy_cpu == -1); BUG_ON(policy_cpu == -1);
up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
} }
@ -98,7 +98,7 @@ EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
void unlock_policy_rwsem_write(int cpu) void unlock_policy_rwsem_write(int cpu)
{ {
int policy_cpu = per_cpu(policy_cpu, cpu); int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
BUG_ON(policy_cpu == -1); BUG_ON(policy_cpu == -1);
up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
} }
@ -818,7 +818,7 @@ static int cpufreq_add_dev_policy(unsigned int cpu,
/* Set proper policy_cpu */ /* Set proper policy_cpu */
unlock_policy_rwsem_write(cpu); unlock_policy_rwsem_write(cpu);
per_cpu(policy_cpu, cpu) = managed_policy->cpu; per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
if (lock_policy_rwsem_write(cpu) < 0) { if (lock_policy_rwsem_write(cpu) < 0) {
/* Should not go through policy unlock path */ /* Should not go through policy unlock path */
@ -932,7 +932,7 @@ static int cpufreq_add_dev_interface(unsigned int cpu,
if (!cpu_online(j)) if (!cpu_online(j))
continue; continue;
per_cpu(cpufreq_cpu_data, j) = policy; per_cpu(cpufreq_cpu_data, j) = policy;
per_cpu(policy_cpu, j) = policy->cpu; per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
} }
spin_unlock_irqrestore(&cpufreq_driver_lock, flags); spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
@ -1020,7 +1020,7 @@ static int cpufreq_add_dev(struct sys_device *sys_dev)
cpumask_copy(policy->cpus, cpumask_of(cpu)); cpumask_copy(policy->cpus, cpumask_of(cpu));
/* Initially set CPU itself as the policy_cpu */ /* Initially set CPU itself as the policy_cpu */
per_cpu(policy_cpu, cpu) = cpu; per_cpu(cpufreq_policy_cpu, cpu) = cpu;
ret = (lock_policy_rwsem_write(cpu) < 0); ret = (lock_policy_rwsem_write(cpu) < 0);
WARN_ON(ret); WARN_ON(ret);
@ -2002,7 +2002,7 @@ static int __init cpufreq_core_init(void)
int cpu; int cpu;
for_each_possible_cpu(cpu) { for_each_possible_cpu(cpu) {
per_cpu(policy_cpu, cpu) = -1; per_cpu(cpufreq_policy_cpu, cpu) = -1;
init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
} }

View file

@ -174,7 +174,7 @@ int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
} }
EXPORT_SYMBOL_GPL(cpufreq_frequency_table_target); EXPORT_SYMBOL_GPL(cpufreq_frequency_table_target);
static DEFINE_PER_CPU(struct cpufreq_frequency_table *, show_table); static DEFINE_PER_CPU(struct cpufreq_frequency_table *, cpufreq_show_table);
/** /**
* show_available_freqs - show available frequencies for the specified CPU * show_available_freqs - show available frequencies for the specified CPU
*/ */
@ -185,10 +185,10 @@ static ssize_t show_available_freqs(struct cpufreq_policy *policy, char *buf)
ssize_t count = 0; ssize_t count = 0;
struct cpufreq_frequency_table *table; struct cpufreq_frequency_table *table;
if (!per_cpu(show_table, cpu)) if (!per_cpu(cpufreq_show_table, cpu))
return -ENODEV; return -ENODEV;
table = per_cpu(show_table, cpu); table = per_cpu(cpufreq_show_table, cpu);
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) { for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
if (table[i].frequency == CPUFREQ_ENTRY_INVALID) if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
@ -217,20 +217,20 @@ void cpufreq_frequency_table_get_attr(struct cpufreq_frequency_table *table,
unsigned int cpu) unsigned int cpu)
{ {
dprintk("setting show_table for cpu %u to %p\n", cpu, table); dprintk("setting show_table for cpu %u to %p\n", cpu, table);
per_cpu(show_table, cpu) = table; per_cpu(cpufreq_show_table, cpu) = table;
} }
EXPORT_SYMBOL_GPL(cpufreq_frequency_table_get_attr); EXPORT_SYMBOL_GPL(cpufreq_frequency_table_get_attr);
void cpufreq_frequency_table_put_attr(unsigned int cpu) void cpufreq_frequency_table_put_attr(unsigned int cpu)
{ {
dprintk("clearing show_table for cpu %u\n", cpu); dprintk("clearing show_table for cpu %u\n", cpu);
per_cpu(show_table, cpu) = NULL; per_cpu(cpufreq_show_table, cpu) = NULL;
} }
EXPORT_SYMBOL_GPL(cpufreq_frequency_table_put_attr); EXPORT_SYMBOL_GPL(cpufreq_frequency_table_put_attr);
struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
{ {
return per_cpu(show_table, cpu); return per_cpu(cpufreq_show_table, cpu);
} }
EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);

View file

@ -64,7 +64,7 @@ struct aes_ctx {
u32 *D; u32 *D;
}; };
static DEFINE_PER_CPU(struct cword *, last_cword); static DEFINE_PER_CPU(struct cword *, paes_last_cword);
/* Tells whether the ACE is capable to generate /* Tells whether the ACE is capable to generate
the extended key for a given key_len. */ the extended key for a given key_len. */
@ -152,9 +152,9 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
ok: ok:
for_each_online_cpu(cpu) for_each_online_cpu(cpu)
if (&ctx->cword.encrypt == per_cpu(last_cword, cpu) || if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
&ctx->cword.decrypt == per_cpu(last_cword, cpu)) &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
per_cpu(last_cword, cpu) = NULL; per_cpu(paes_last_cword, cpu) = NULL;
return 0; return 0;
} }
@ -166,7 +166,7 @@ static inline void padlock_reset_key(struct cword *cword)
{ {
int cpu = raw_smp_processor_id(); int cpu = raw_smp_processor_id();
if (cword != per_cpu(last_cword, cpu)) if (cword != per_cpu(paes_last_cword, cpu))
#ifndef CONFIG_X86_64 #ifndef CONFIG_X86_64
asm volatile ("pushfl; popfl"); asm volatile ("pushfl; popfl");
#else #else
@ -176,7 +176,7 @@ static inline void padlock_reset_key(struct cword *cword)
static inline void padlock_store_cword(struct cword *cword) static inline void padlock_store_cword(struct cword *cword)
{ {
per_cpu(last_cword, raw_smp_processor_id()) = cword; per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
} }
/* /*

View file

@ -326,14 +326,7 @@ arch_initcall(dma_channel_table_init);
*/ */
struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
{ {
struct dma_chan *chan; return this_cpu_read(channel_table[tx_type]->chan);
int cpu;
cpu = get_cpu();
chan = per_cpu_ptr(channel_table[tx_type], cpu)->chan;
put_cpu();
return chan;
} }
EXPORT_SYMBOL(dma_find_channel); EXPORT_SYMBOL(dma_find_channel);
@ -857,7 +850,6 @@ dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
struct dma_async_tx_descriptor *tx; struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src; dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie; dma_cookie_t cookie;
int cpu;
unsigned long flags; unsigned long flags;
dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
@ -876,10 +868,10 @@ dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
tx->callback = NULL; tx->callback = NULL;
cookie = tx->tx_submit(tx); cookie = tx->tx_submit(tx);
cpu = get_cpu(); preempt_disable();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; __this_cpu_add(chan->local->bytes_transferred, len);
per_cpu_ptr(chan->local, cpu)->memcpy_count++; __this_cpu_inc(chan->local->memcpy_count);
put_cpu(); preempt_enable();
return cookie; return cookie;
} }
@ -906,7 +898,6 @@ dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
struct dma_async_tx_descriptor *tx; struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src; dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie; dma_cookie_t cookie;
int cpu;
unsigned long flags; unsigned long flags;
dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
@ -923,10 +914,10 @@ dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
tx->callback = NULL; tx->callback = NULL;
cookie = tx->tx_submit(tx); cookie = tx->tx_submit(tx);
cpu = get_cpu(); preempt_disable();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; __this_cpu_add(chan->local->bytes_transferred, len);
per_cpu_ptr(chan->local, cpu)->memcpy_count++; __this_cpu_inc(chan->local->memcpy_count);
put_cpu(); preempt_enable();
return cookie; return cookie;
} }
@ -955,7 +946,6 @@ dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
struct dma_async_tx_descriptor *tx; struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src; dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie; dma_cookie_t cookie;
int cpu;
unsigned long flags; unsigned long flags;
dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
@ -973,10 +963,10 @@ dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
tx->callback = NULL; tx->callback = NULL;
cookie = tx->tx_submit(tx); cookie = tx->tx_submit(tx);
cpu = get_cpu(); preempt_disable();
per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; __this_cpu_add(chan->local->bytes_transferred, len);
per_cpu_ptr(chan->local, cpu)->memcpy_count++; __this_cpu_inc(chan->local->memcpy_count);
put_cpu(); preempt_enable();
return cookie; return cookie;
} }

View file

@ -826,8 +826,7 @@ static void __cpuinit take_over_work(struct ehca_comp_pool *pool, int cpu)
cq = list_entry(cct->cq_list.next, struct ehca_cq, entry); cq = list_entry(cct->cq_list.next, struct ehca_cq, entry);
list_del(&cq->entry); list_del(&cq->entry);
__queue_comp_task(cq, per_cpu_ptr(pool->cpu_comp_tasks, __queue_comp_task(cq, this_cpu_ptr(pool->cpu_comp_tasks));
smp_processor_id()));
} }
spin_unlock_irqrestore(&cct->task_lock, flags_cct); spin_unlock_irqrestore(&cct->task_lock, flags_cct);

View file

@ -69,7 +69,7 @@ static struct lguest_pages *lguest_pages(unsigned int cpu)
(SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]); (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
} }
static DEFINE_PER_CPU(struct lg_cpu *, last_cpu); static DEFINE_PER_CPU(struct lg_cpu *, lg_last_cpu);
/*S:010 /*S:010
* We approach the Switcher. * We approach the Switcher.
@ -90,8 +90,8 @@ static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
* meanwhile). If that's not the case, we pretend everything in the * meanwhile). If that's not the case, we pretend everything in the
* Guest has changed. * Guest has changed.
*/ */
if (__get_cpu_var(last_cpu) != cpu || cpu->last_pages != pages) { if (__get_cpu_var(lg_last_cpu) != cpu || cpu->last_pages != pages) {
__get_cpu_var(last_cpu) = cpu; __get_cpu_var(lg_last_cpu) = cpu;
cpu->last_pages = pages; cpu->last_pages = pages;
cpu->changed = CHANGED_ALL; cpu->changed = CHANGED_ALL;
} }

View file

@ -1378,7 +1378,7 @@ static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
} }
__skb_pull(skb, sizeof(*p)); __skb_pull(skb, sizeof(*p));
st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id()); st = this_cpu_ptr(sge->port_stats[p->iff]);
skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev); skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff && if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
@ -1780,8 +1780,7 @@ netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
{ {
struct adapter *adapter = dev->ml_priv; struct adapter *adapter = dev->ml_priv;
struct sge *sge = adapter->sge; struct sge *sge = adapter->sge;
struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
smp_processor_id());
struct cpl_tx_pkt *cpl; struct cpl_tx_pkt *cpl;
struct sk_buff *orig_skb = skb; struct sk_buff *orig_skb = skb;
int ret; int ret;

View file

@ -81,7 +81,7 @@ static netdev_tx_t loopback_xmit(struct sk_buff *skb,
/* it's OK to use per_cpu_ptr() because BHs are off */ /* it's OK to use per_cpu_ptr() because BHs are off */
pcpu_lstats = dev->ml_priv; pcpu_lstats = dev->ml_priv;
lb_stats = per_cpu_ptr(pcpu_lstats, smp_processor_id()); lb_stats = this_cpu_ptr(pcpu_lstats);
len = skb->len; len = skb->len;
if (likely(netif_rx(skb) == NET_RX_SUCCESS)) { if (likely(netif_rx(skb) == NET_RX_SUCCESS)) {

View file

@ -153,15 +153,14 @@ static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
struct net_device *rcv = NULL; struct net_device *rcv = NULL;
struct veth_priv *priv, *rcv_priv; struct veth_priv *priv, *rcv_priv;
struct veth_net_stats *stats, *rcv_stats; struct veth_net_stats *stats, *rcv_stats;
int length, cpu; int length;
priv = netdev_priv(dev); priv = netdev_priv(dev);
rcv = priv->peer; rcv = priv->peer;
rcv_priv = netdev_priv(rcv); rcv_priv = netdev_priv(rcv);
cpu = smp_processor_id(); stats = this_cpu_ptr(priv->stats);
stats = per_cpu_ptr(priv->stats, cpu); rcv_stats = this_cpu_ptr(rcv_priv->stats);
rcv_stats = per_cpu_ptr(rcv_priv->stats, cpu);
if (!(rcv->flags & IFF_UP)) if (!(rcv->flags & IFF_UP))
goto tx_drop; goto tx_drop;

View file

@ -47,7 +47,7 @@
*/ */
static struct ring_buffer *op_ring_buffer_read; static struct ring_buffer *op_ring_buffer_read;
static struct ring_buffer *op_ring_buffer_write; static struct ring_buffer *op_ring_buffer_write;
DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer); DEFINE_PER_CPU(struct oprofile_cpu_buffer, op_cpu_buffer);
static void wq_sync_buffer(struct work_struct *work); static void wq_sync_buffer(struct work_struct *work);
@ -61,8 +61,7 @@ unsigned long oprofile_get_cpu_buffer_size(void)
void oprofile_cpu_buffer_inc_smpl_lost(void) void oprofile_cpu_buffer_inc_smpl_lost(void)
{ {
struct oprofile_cpu_buffer *cpu_buf struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
= &__get_cpu_var(cpu_buffer);
cpu_buf->sample_lost_overflow++; cpu_buf->sample_lost_overflow++;
} }
@ -95,7 +94,7 @@ int alloc_cpu_buffers(void)
goto fail; goto fail;
for_each_possible_cpu(i) { for_each_possible_cpu(i) {
struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
b->last_task = NULL; b->last_task = NULL;
b->last_is_kernel = -1; b->last_is_kernel = -1;
@ -122,7 +121,7 @@ void start_cpu_work(void)
work_enabled = 1; work_enabled = 1;
for_each_online_cpu(i) { for_each_online_cpu(i) {
struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
/* /*
* Spread the work by 1 jiffy per cpu so they dont all * Spread the work by 1 jiffy per cpu so they dont all
@ -139,7 +138,7 @@ void end_cpu_work(void)
work_enabled = 0; work_enabled = 0;
for_each_online_cpu(i) { for_each_online_cpu(i) {
struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
cancel_delayed_work(&b->work); cancel_delayed_work(&b->work);
} }
@ -330,7 +329,7 @@ static inline void
__oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs, __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
unsigned long event, int is_kernel) unsigned long event, int is_kernel)
{ {
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
unsigned long backtrace = oprofile_backtrace_depth; unsigned long backtrace = oprofile_backtrace_depth;
/* /*
@ -375,7 +374,7 @@ oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
{ {
struct op_sample *sample; struct op_sample *sample;
int is_kernel = !user_mode(regs); int is_kernel = !user_mode(regs);
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
cpu_buf->sample_received++; cpu_buf->sample_received++;
@ -430,13 +429,13 @@ int oprofile_write_commit(struct op_entry *entry)
void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event) void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
{ {
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
log_sample(cpu_buf, pc, 0, is_kernel, event); log_sample(cpu_buf, pc, 0, is_kernel, event);
} }
void oprofile_add_trace(unsigned long pc) void oprofile_add_trace(unsigned long pc)
{ {
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
if (!cpu_buf->tracing) if (!cpu_buf->tracing)
return; return;

View file

@ -50,7 +50,7 @@ struct oprofile_cpu_buffer {
struct delayed_work work; struct delayed_work work;
}; };
DECLARE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer); DECLARE_PER_CPU(struct oprofile_cpu_buffer, op_cpu_buffer);
/* /*
* Resets the cpu buffer to a sane state. * Resets the cpu buffer to a sane state.
@ -60,7 +60,7 @@ DECLARE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
*/ */
static inline void op_cpu_buffer_reset(int cpu) static inline void op_cpu_buffer_reset(int cpu)
{ {
struct oprofile_cpu_buffer *cpu_buf = &per_cpu(cpu_buffer, cpu); struct oprofile_cpu_buffer *cpu_buf = &per_cpu(op_cpu_buffer, cpu);
cpu_buf->last_is_kernel = -1; cpu_buf->last_is_kernel = -1;
cpu_buf->last_task = NULL; cpu_buf->last_task = NULL;

View file

@ -23,7 +23,7 @@ void oprofile_reset_stats(void)
int i; int i;
for_each_possible_cpu(i) { for_each_possible_cpu(i) {
cpu_buf = &per_cpu(cpu_buffer, i); cpu_buf = &per_cpu(op_cpu_buffer, i);
cpu_buf->sample_received = 0; cpu_buf->sample_received = 0;
cpu_buf->sample_lost_overflow = 0; cpu_buf->sample_lost_overflow = 0;
cpu_buf->backtrace_aborted = 0; cpu_buf->backtrace_aborted = 0;
@ -51,7 +51,7 @@ void oprofile_create_stats_files(struct super_block *sb, struct dentry *root)
return; return;
for_each_possible_cpu(i) { for_each_possible_cpu(i) {
cpu_buf = &per_cpu(cpu_buffer, i); cpu_buf = &per_cpu(op_cpu_buffer, i);
snprintf(buf, 10, "cpu%d", i); snprintf(buf, 10, "cpu%d", i);
cpudir = oprofilefs_mkdir(sb, dir, buf); cpudir = oprofilefs_mkdir(sb, dir, buf);

View file

@ -113,11 +113,9 @@ static inline int iucv_dbf_passes(debug_info_t *dbf_grp, int level)
#define IUCV_DBF_TEXT_(name, level, text...) \ #define IUCV_DBF_TEXT_(name, level, text...) \
do { \ do { \
if (iucv_dbf_passes(iucv_dbf_##name, level)) { \ if (iucv_dbf_passes(iucv_dbf_##name, level)) { \
char* iucv_dbf_txt_buf = \ char* __buf = get_cpu_var(iucv_dbf_txt_buf); \
get_cpu_var(iucv_dbf_txt_buf); \ sprintf(__buf, text); \
sprintf(iucv_dbf_txt_buf, text); \ debug_text_event(iucv_dbf_##name, level, __buf); \
debug_text_event(iucv_dbf_##name, level, \
iucv_dbf_txt_buf); \
put_cpu_var(iucv_dbf_txt_buf); \ put_cpu_var(iucv_dbf_txt_buf); \
} \ } \
} while (0) } while (0)

View file

@ -3955,7 +3955,7 @@ static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
* per cpu locality group is to reduce the contention between block * per cpu locality group is to reduce the contention between block
* request from multiple CPUs. * request from multiple CPUs.
*/ */
ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id()); ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
/* we're going to use group allocation */ /* we're going to use group allocation */
ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

View file

@ -25,13 +25,7 @@ struct nfs_iostats {
static inline void nfs_inc_server_stats(const struct nfs_server *server, static inline void nfs_inc_server_stats(const struct nfs_server *server,
enum nfs_stat_eventcounters stat) enum nfs_stat_eventcounters stat)
{ {
struct nfs_iostats *iostats; this_cpu_inc(server->io_stats->events[stat]);
int cpu;
cpu = get_cpu();
iostats = per_cpu_ptr(server->io_stats, cpu);
iostats->events[stat]++;
put_cpu();
} }
static inline void nfs_inc_stats(const struct inode *inode, static inline void nfs_inc_stats(const struct inode *inode,
@ -44,13 +38,7 @@ static inline void nfs_add_server_stats(const struct nfs_server *server,
enum nfs_stat_bytecounters stat, enum nfs_stat_bytecounters stat,
unsigned long addend) unsigned long addend)
{ {
struct nfs_iostats *iostats; this_cpu_add(server->io_stats->bytes[stat], addend);
int cpu;
cpu = get_cpu();
iostats = per_cpu_ptr(server->io_stats, cpu);
iostats->bytes[stat] += addend;
put_cpu();
} }
static inline void nfs_add_stats(const struct inode *inode, static inline void nfs_add_stats(const struct inode *inode,
@ -65,13 +53,7 @@ static inline void nfs_add_fscache_stats(struct inode *inode,
enum nfs_stat_fscachecounters stat, enum nfs_stat_fscachecounters stat,
unsigned long addend) unsigned long addend)
{ {
struct nfs_iostats *iostats; this_cpu_add(NFS_SERVER(inode)->io_stats->fscache[stat], addend);
int cpu;
cpu = get_cpu();
iostats = per_cpu_ptr(NFS_SERVER(inode)->io_stats, cpu);
iostats->fscache[stat] += addend;
put_cpu();
} }
#endif #endif

View file

@ -2389,12 +2389,12 @@ xfs_icsb_modify_counters(
{ {
xfs_icsb_cnts_t *icsbp; xfs_icsb_cnts_t *icsbp;
long long lcounter; /* long counter for 64 bit fields */ long long lcounter; /* long counter for 64 bit fields */
int cpu, ret = 0; int ret = 0;
might_sleep(); might_sleep();
again: again:
cpu = get_cpu(); preempt_disable();
icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); icsbp = this_cpu_ptr(mp->m_sb_cnts);
/* /*
* if the counter is disabled, go to slow path * if the counter is disabled, go to slow path
@ -2438,11 +2438,11 @@ again:
break; break;
} }
xfs_icsb_unlock_cntr(icsbp); xfs_icsb_unlock_cntr(icsbp);
put_cpu(); preempt_enable();
return 0; return 0;
slow_path: slow_path:
put_cpu(); preempt_enable();
/* /*
* serialise with a mutex so we don't burn lots of cpu on * serialise with a mutex so we don't burn lots of cpu on
@ -2490,7 +2490,7 @@ slow_path:
balance_counter: balance_counter:
xfs_icsb_unlock_cntr(icsbp); xfs_icsb_unlock_cntr(icsbp);
put_cpu(); preempt_enable();
/* /*
* We may have multiple threads here if multiple per-cpu * We may have multiple threads here if multiple per-cpu

View file

@ -56,6 +56,9 @@ extern unsigned long __per_cpu_offset[NR_CPUS];
#define __raw_get_cpu_var(var) \ #define __raw_get_cpu_var(var) \
(*SHIFT_PERCPU_PTR(&per_cpu_var(var), __my_cpu_offset)) (*SHIFT_PERCPU_PTR(&per_cpu_var(var), __my_cpu_offset))
#define this_cpu_ptr(ptr) SHIFT_PERCPU_PTR(ptr, my_cpu_offset)
#define __this_cpu_ptr(ptr) SHIFT_PERCPU_PTR(ptr, __my_cpu_offset)
#ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
extern void setup_per_cpu_areas(void); extern void setup_per_cpu_areas(void);
@ -66,6 +69,8 @@ extern void setup_per_cpu_areas(void);
#define per_cpu(var, cpu) (*((void)(cpu), &per_cpu_var(var))) #define per_cpu(var, cpu) (*((void)(cpu), &per_cpu_var(var)))
#define __get_cpu_var(var) per_cpu_var(var) #define __get_cpu_var(var) per_cpu_var(var)
#define __raw_get_cpu_var(var) per_cpu_var(var) #define __raw_get_cpu_var(var) per_cpu_var(var)
#define this_cpu_ptr(ptr) per_cpu_ptr(ptr, 0)
#define __this_cpu_ptr(ptr) this_cpu_ptr(ptr)
#endif /* SMP */ #endif /* SMP */

View file

@ -60,6 +60,7 @@
#define DEFINE_PER_CPU_SECTION(type, name, sec) \ #define DEFINE_PER_CPU_SECTION(type, name, sec) \
__PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \ __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \
extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
__PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \ __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES __weak \ __PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES __weak \
__typeof__(type) per_cpu__##name __typeof__(type) per_cpu__##name

View file

@ -34,8 +34,6 @@
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
#ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA
/* minimum unit size, also is the maximum supported allocation size */ /* minimum unit size, also is the maximum supported allocation size */
#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
@ -130,30 +128,9 @@ extern int __init pcpu_page_first_chunk(size_t reserved_size,
#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
extern void *__alloc_reserved_percpu(size_t size, size_t align); extern void *__alloc_reserved_percpu(size_t size, size_t align);
#else /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */
struct percpu_data {
void *ptrs[1];
};
/* pointer disguising messes up the kmemleak objects tracking */
#ifndef CONFIG_DEBUG_KMEMLEAK
#define __percpu_disguise(pdata) (struct percpu_data *)~(unsigned long)(pdata)
#else
#define __percpu_disguise(pdata) (struct percpu_data *)(pdata)
#endif
#define per_cpu_ptr(ptr, cpu) \
({ \
struct percpu_data *__p = __percpu_disguise(ptr); \
(__typeof__(ptr))__p->ptrs[(cpu)]; \
})
#endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */
extern void *__alloc_percpu(size_t size, size_t align); extern void *__alloc_percpu(size_t size, size_t align);
extern void free_percpu(void *__pdata); extern void free_percpu(void *__pdata);
extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
extern void __init setup_per_cpu_areas(void); extern void __init setup_per_cpu_areas(void);
@ -179,6 +156,11 @@ static inline void free_percpu(void *p)
kfree(p); kfree(p);
} }
static inline phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
return __pa(addr);
}
static inline void __init setup_per_cpu_areas(void) { } static inline void __init setup_per_cpu_areas(void) { }
static inline void *pcpu_lpage_remapped(void *kaddr) static inline void *pcpu_lpage_remapped(void *kaddr)
@ -188,8 +170,8 @@ static inline void *pcpu_lpage_remapped(void *kaddr)
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
#define alloc_percpu(type) (type *)__alloc_percpu(sizeof(type), \ #define alloc_percpu(type) \
__alignof__(type)) (typeof(type) *)__alloc_percpu(sizeof(type), __alignof__(type))
/* /*
* Optional methods for optimized non-lvalue per-cpu variable access. * Optional methods for optimized non-lvalue per-cpu variable access.
@ -243,4 +225,404 @@ do { \
# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
#endif #endif
/*
* Branching function to split up a function into a set of functions that
* are called for different scalar sizes of the objects handled.
*/
extern void __bad_size_call_parameter(void);
#define __pcpu_size_call_return(stem, variable) \
({ typeof(variable) pscr_ret__; \
switch(sizeof(variable)) { \
case 1: pscr_ret__ = stem##1(variable);break; \
case 2: pscr_ret__ = stem##2(variable);break; \
case 4: pscr_ret__ = stem##4(variable);break; \
case 8: pscr_ret__ = stem##8(variable);break; \
default: \
__bad_size_call_parameter();break; \
} \
pscr_ret__; \
})
#define __pcpu_size_call(stem, variable, ...) \
do { \
switch(sizeof(variable)) { \
case 1: stem##1(variable, __VA_ARGS__);break; \
case 2: stem##2(variable, __VA_ARGS__);break; \
case 4: stem##4(variable, __VA_ARGS__);break; \
case 8: stem##8(variable, __VA_ARGS__);break; \
default: \
__bad_size_call_parameter();break; \
} \
} while (0)
/*
* Optimized manipulation for memory allocated through the per cpu
* allocator or for addresses of per cpu variables (can be determined
* using per_cpu_var(xx).
*
* These operation guarantee exclusivity of access for other operations
* on the *same* processor. The assumption is that per cpu data is only
* accessed by a single processor instance (the current one).
*
* The first group is used for accesses that must be done in a
* preemption safe way since we know that the context is not preempt
* safe. Interrupts may occur. If the interrupt modifies the variable
* too then RMW actions will not be reliable.
*
* The arch code can provide optimized functions in two ways:
*
* 1. Override the function completely. F.e. define this_cpu_add().
* The arch must then ensure that the various scalar format passed
* are handled correctly.
*
* 2. Provide functions for certain scalar sizes. F.e. provide
* this_cpu_add_2() to provide per cpu atomic operations for 2 byte
* sized RMW actions. If arch code does not provide operations for
* a scalar size then the fallback in the generic code will be
* used.
*/
#define _this_cpu_generic_read(pcp) \
({ typeof(pcp) ret__; \
preempt_disable(); \
ret__ = *this_cpu_ptr(&(pcp)); \
preempt_enable(); \
ret__; \
})
#ifndef this_cpu_read
# ifndef this_cpu_read_1
# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
# endif
# ifndef this_cpu_read_2
# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
# endif
# ifndef this_cpu_read_4
# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
# endif
# ifndef this_cpu_read_8
# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
# endif
# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
#endif
#define _this_cpu_generic_to_op(pcp, val, op) \
do { \
preempt_disable(); \
*__this_cpu_ptr(&pcp) op val; \
preempt_enable(); \
} while (0)
#ifndef this_cpu_write
# ifndef this_cpu_write_1
# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef this_cpu_write_2
# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef this_cpu_write_4
# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef this_cpu_write_8
# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
# endif
# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
#endif
#ifndef this_cpu_add
# ifndef this_cpu_add_1
# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef this_cpu_add_2
# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef this_cpu_add_4
# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef this_cpu_add_8
# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
# endif
# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
#endif
#ifndef this_cpu_sub
# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
#endif
#ifndef this_cpu_inc
# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
#endif
#ifndef this_cpu_dec
# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
#endif
#ifndef this_cpu_and
# ifndef this_cpu_and_1
# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef this_cpu_and_2
# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef this_cpu_and_4
# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef this_cpu_and_8
# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
# endif
# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
#endif
#ifndef this_cpu_or
# ifndef this_cpu_or_1
# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef this_cpu_or_2
# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef this_cpu_or_4
# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef this_cpu_or_8
# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
# endif
# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
#endif
#ifndef this_cpu_xor
# ifndef this_cpu_xor_1
# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef this_cpu_xor_2
# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef this_cpu_xor_4
# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef this_cpu_xor_8
# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
#endif
/*
* Generic percpu operations that do not require preemption handling.
* Either we do not care about races or the caller has the
* responsibility of handling preemptions issues. Arch code can still
* override these instructions since the arch per cpu code may be more
* efficient and may actually get race freeness for free (that is the
* case for x86 for example).
*
* If there is no other protection through preempt disable and/or
* disabling interupts then one of these RMW operations can show unexpected
* behavior because the execution thread was rescheduled on another processor
* or an interrupt occurred and the same percpu variable was modified from
* the interrupt context.
*/
#ifndef __this_cpu_read
# ifndef __this_cpu_read_1
# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
# endif
# ifndef __this_cpu_read_2
# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
# endif
# ifndef __this_cpu_read_4
# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
# endif
# ifndef __this_cpu_read_8
# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
# endif
# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
#endif
#define __this_cpu_generic_to_op(pcp, val, op) \
do { \
*__this_cpu_ptr(&(pcp)) op val; \
} while (0)
#ifndef __this_cpu_write
# ifndef __this_cpu_write_1
# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef __this_cpu_write_2
# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef __this_cpu_write_4
# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef __this_cpu_write_8
# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
# endif
# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
#endif
#ifndef __this_cpu_add
# ifndef __this_cpu_add_1
# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef __this_cpu_add_2
# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef __this_cpu_add_4
# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef __this_cpu_add_8
# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
# endif
# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
#endif
#ifndef __this_cpu_sub
# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
#endif
#ifndef __this_cpu_inc
# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
#endif
#ifndef __this_cpu_dec
# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
#endif
#ifndef __this_cpu_and
# ifndef __this_cpu_and_1
# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef __this_cpu_and_2
# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef __this_cpu_and_4
# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef __this_cpu_and_8
# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
# endif
# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
#endif
#ifndef __this_cpu_or
# ifndef __this_cpu_or_1
# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef __this_cpu_or_2
# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef __this_cpu_or_4
# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef __this_cpu_or_8
# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
# endif
# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
#endif
#ifndef __this_cpu_xor
# ifndef __this_cpu_xor_1
# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef __this_cpu_xor_2
# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef __this_cpu_xor_4
# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef __this_cpu_xor_8
# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
# endif
# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
#endif
/*
* IRQ safe versions of the per cpu RMW operations. Note that these operations
* are *not* safe against modification of the same variable from another
* processors (which one gets when using regular atomic operations)
. They are guaranteed to be atomic vs. local interrupts and
* preemption only.
*/
#define irqsafe_cpu_generic_to_op(pcp, val, op) \
do { \
unsigned long flags; \
local_irq_save(flags); \
*__this_cpu_ptr(&(pcp)) op val; \
local_irq_restore(flags); \
} while (0)
#ifndef irqsafe_cpu_add
# ifndef irqsafe_cpu_add_1
# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef irqsafe_cpu_add_2
# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef irqsafe_cpu_add_4
# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef irqsafe_cpu_add_8
# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
# endif
# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
#endif
#ifndef irqsafe_cpu_sub
# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
#endif
#ifndef irqsafe_cpu_inc
# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
#endif
#ifndef irqsafe_cpu_dec
# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
#endif
#ifndef irqsafe_cpu_and
# ifndef irqsafe_cpu_and_1
# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef irqsafe_cpu_and_2
# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef irqsafe_cpu_and_4
# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef irqsafe_cpu_and_8
# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
# endif
# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
#endif
#ifndef irqsafe_cpu_or
# ifndef irqsafe_cpu_or_1
# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef irqsafe_cpu_or_2
# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef irqsafe_cpu_or_4
# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef irqsafe_cpu_or_8
# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
# endif
# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
#endif
#ifndef irqsafe_cpu_xor
# ifndef irqsafe_cpu_xor_1
# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef irqsafe_cpu_xor_2
# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef irqsafe_cpu_xor_4
# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
# endif
# ifndef irqsafe_cpu_xor_8
# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
# endif
# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
#endif
#endif /* __LINUX_PERCPU_H */ #endif /* __LINUX_PERCPU_H */

View file

@ -76,24 +76,22 @@ DECLARE_PER_CPU(struct vm_event_state, vm_event_states);
static inline void __count_vm_event(enum vm_event_item item) static inline void __count_vm_event(enum vm_event_item item)
{ {
__get_cpu_var(vm_event_states).event[item]++; __this_cpu_inc(per_cpu_var(vm_event_states).event[item]);
} }
static inline void count_vm_event(enum vm_event_item item) static inline void count_vm_event(enum vm_event_item item)
{ {
get_cpu_var(vm_event_states).event[item]++; this_cpu_inc(per_cpu_var(vm_event_states).event[item]);
put_cpu();
} }
static inline void __count_vm_events(enum vm_event_item item, long delta) static inline void __count_vm_events(enum vm_event_item item, long delta)
{ {
__get_cpu_var(vm_event_states).event[item] += delta; __this_cpu_add(per_cpu_var(vm_event_states).event[item], delta);
} }
static inline void count_vm_events(enum vm_event_item item, long delta) static inline void count_vm_events(enum vm_event_item item, long delta)
{ {
get_cpu_var(vm_event_states).event[item] += delta; this_cpu_add(per_cpu_var(vm_event_states).event[item], delta);
put_cpu();
} }
extern void all_vm_events(unsigned long *); extern void all_vm_events(unsigned long *);

View file

@ -88,12 +88,7 @@ struct neigh_statistics {
unsigned long unres_discards; /* number of unresolved drops */ unsigned long unres_discards; /* number of unresolved drops */
}; };
#define NEIGH_CACHE_STAT_INC(tbl, field) \ #define NEIGH_CACHE_STAT_INC(tbl, field) this_cpu_inc((tbl)->stats->field)
do { \
preempt_disable(); \
(per_cpu_ptr((tbl)->stats, smp_processor_id())->field)++; \
preempt_enable(); \
} while (0)
struct neighbour { struct neighbour {
struct neighbour *next; struct neighbour *next;

View file

@ -293,11 +293,11 @@ extern unsigned int nf_conntrack_htable_size;
extern unsigned int nf_conntrack_max; extern unsigned int nf_conntrack_max;
#define NF_CT_STAT_INC(net, count) \ #define NF_CT_STAT_INC(net, count) \
(per_cpu_ptr((net)->ct.stat, raw_smp_processor_id())->count++) __this_cpu_inc((net)->ct.stat->count)
#define NF_CT_STAT_INC_ATOMIC(net, count) \ #define NF_CT_STAT_INC_ATOMIC(net, count) \
do { \ do { \
local_bh_disable(); \ local_bh_disable(); \
per_cpu_ptr((net)->ct.stat, raw_smp_processor_id())->count++; \ __this_cpu_inc((net)->ct.stat->count); \
local_bh_enable(); \ local_bh_enable(); \
} while (0) } while (0)

View file

@ -137,44 +137,30 @@ struct linux_xfrm_mib {
#define SNMP_STAT_USRPTR(name) (name[1]) #define SNMP_STAT_USRPTR(name) (name[1])
#define SNMP_INC_STATS_BH(mib, field) \ #define SNMP_INC_STATS_BH(mib, field) \
(per_cpu_ptr(mib[0], raw_smp_processor_id())->mibs[field]++) __this_cpu_inc(mib[0]->mibs[field])
#define SNMP_INC_STATS_USER(mib, field) \ #define SNMP_INC_STATS_USER(mib, field) \
do { \ this_cpu_inc(mib[1]->mibs[field])
per_cpu_ptr(mib[1], get_cpu())->mibs[field]++; \
put_cpu(); \
} while (0)
#define SNMP_INC_STATS(mib, field) \ #define SNMP_INC_STATS(mib, field) \
do { \ this_cpu_inc(mib[!in_softirq()]->mibs[field])
per_cpu_ptr(mib[!in_softirq()], get_cpu())->mibs[field]++; \
put_cpu(); \
} while (0)
#define SNMP_DEC_STATS(mib, field) \ #define SNMP_DEC_STATS(mib, field) \
do { \ this_cpu_dec(mib[!in_softirq()]->mibs[field])
per_cpu_ptr(mib[!in_softirq()], get_cpu())->mibs[field]--; \
put_cpu(); \
} while (0)
#define SNMP_ADD_STATS(mib, field, addend) \
do { \
per_cpu_ptr(mib[!in_softirq()], get_cpu())->mibs[field] += addend; \
put_cpu(); \
} while (0)
#define SNMP_ADD_STATS_BH(mib, field, addend) \ #define SNMP_ADD_STATS_BH(mib, field, addend) \
(per_cpu_ptr(mib[0], raw_smp_processor_id())->mibs[field] += addend) __this_cpu_add(mib[0]->mibs[field], addend)
#define SNMP_ADD_STATS_USER(mib, field, addend) \ #define SNMP_ADD_STATS_USER(mib, field, addend) \
do { \ this_cpu_add(mib[1]->mibs[field], addend)
per_cpu_ptr(mib[1], get_cpu())->mibs[field] += addend; \
put_cpu(); \
} while (0)
#define SNMP_UPD_PO_STATS(mib, basefield, addend) \ #define SNMP_UPD_PO_STATS(mib, basefield, addend) \
do { \ do { \
__typeof__(mib[0]) ptr = per_cpu_ptr(mib[!in_softirq()], get_cpu());\ __typeof__(mib[0]) ptr; \
preempt_disable(); \
ptr = this_cpu_ptr((mib)[!in_softirq()]); \
ptr->mibs[basefield##PKTS]++; \ ptr->mibs[basefield##PKTS]++; \
ptr->mibs[basefield##OCTETS] += addend;\ ptr->mibs[basefield##OCTETS] += addend;\
put_cpu(); \ preempt_enable(); \
} while (0) } while (0)
#define SNMP_UPD_PO_STATS_BH(mib, basefield, addend) \ #define SNMP_UPD_PO_STATS_BH(mib, basefield, addend) \
do { \ do { \
__typeof__(mib[0]) ptr = per_cpu_ptr(mib[!in_softirq()], raw_smp_processor_id());\ __typeof__(mib[0]) ptr = \
__this_cpu_ptr((mib)[!in_softirq()]); \
ptr->mibs[basefield##PKTS]++; \ ptr->mibs[basefield##PKTS]++; \
ptr->mibs[basefield##OCTETS] += addend;\ ptr->mibs[basefield##OCTETS] += addend;\
} while (0) } while (0)

View file

@ -140,7 +140,8 @@ static inline struct lock_class *hlock_class(struct held_lock *hlock)
} }
#ifdef CONFIG_LOCK_STAT #ifdef CONFIG_LOCK_STAT
static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], lock_stats); static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS],
cpu_lock_stats);
static inline u64 lockstat_clock(void) static inline u64 lockstat_clock(void)
{ {
@ -198,7 +199,7 @@ struct lock_class_stats lock_stats(struct lock_class *class)
memset(&stats, 0, sizeof(struct lock_class_stats)); memset(&stats, 0, sizeof(struct lock_class_stats));
for_each_possible_cpu(cpu) { for_each_possible_cpu(cpu) {
struct lock_class_stats *pcs = struct lock_class_stats *pcs =
&per_cpu(lock_stats, cpu)[class - lock_classes]; &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
stats.contention_point[i] += pcs->contention_point[i]; stats.contention_point[i] += pcs->contention_point[i];
@ -225,7 +226,7 @@ void clear_lock_stats(struct lock_class *class)
for_each_possible_cpu(cpu) { for_each_possible_cpu(cpu) {
struct lock_class_stats *cpu_stats = struct lock_class_stats *cpu_stats =
&per_cpu(lock_stats, cpu)[class - lock_classes]; &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
memset(cpu_stats, 0, sizeof(struct lock_class_stats)); memset(cpu_stats, 0, sizeof(struct lock_class_stats));
} }
@ -235,12 +236,12 @@ void clear_lock_stats(struct lock_class *class)
static struct lock_class_stats *get_lock_stats(struct lock_class *class) static struct lock_class_stats *get_lock_stats(struct lock_class *class)
{ {
return &get_cpu_var(lock_stats)[class - lock_classes]; return &get_cpu_var(cpu_lock_stats)[class - lock_classes];
} }
static void put_lock_stats(struct lock_class_stats *stats) static void put_lock_stats(struct lock_class_stats *stats)
{ {
put_cpu_var(lock_stats); put_cpu_var(cpu_lock_stats);
} }
static void lock_release_holdtime(struct held_lock *hlock) static void lock_release_holdtime(struct held_lock *hlock)

View file

@ -370,8 +370,6 @@ EXPORT_SYMBOL_GPL(find_module);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
#ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA
static void *percpu_modalloc(unsigned long size, unsigned long align, static void *percpu_modalloc(unsigned long size, unsigned long align,
const char *name) const char *name)
{ {
@ -395,154 +393,6 @@ static void percpu_modfree(void *freeme)
free_percpu(freeme); free_percpu(freeme);
} }
#else /* ... CONFIG_HAVE_LEGACY_PER_CPU_AREA */
/* Number of blocks used and allocated. */
static unsigned int pcpu_num_used, pcpu_num_allocated;
/* Size of each block. -ve means used. */
static int *pcpu_size;
static int split_block(unsigned int i, unsigned short size)
{
/* Reallocation required? */
if (pcpu_num_used + 1 > pcpu_num_allocated) {
int *new;
new = krealloc(pcpu_size, sizeof(new[0])*pcpu_num_allocated*2,
GFP_KERNEL);
if (!new)
return 0;
pcpu_num_allocated *= 2;
pcpu_size = new;
}
/* Insert a new subblock */
memmove(&pcpu_size[i+1], &pcpu_size[i],
sizeof(pcpu_size[0]) * (pcpu_num_used - i));
pcpu_num_used++;
pcpu_size[i+1] -= size;
pcpu_size[i] = size;
return 1;
}
static inline unsigned int block_size(int val)
{
if (val < 0)
return -val;
return val;
}
static void *percpu_modalloc(unsigned long size, unsigned long align,
const char *name)
{
unsigned long extra;
unsigned int i;
void *ptr;
int cpu;
if (align > PAGE_SIZE) {
printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
name, align, PAGE_SIZE);
align = PAGE_SIZE;
}
ptr = __per_cpu_start;
for (i = 0; i < pcpu_num_used; ptr += block_size(pcpu_size[i]), i++) {
/* Extra for alignment requirement. */
extra = ALIGN((unsigned long)ptr, align) - (unsigned long)ptr;
BUG_ON(i == 0 && extra != 0);
if (pcpu_size[i] < 0 || pcpu_size[i] < extra + size)
continue;
/* Transfer extra to previous block. */
if (pcpu_size[i-1] < 0)
pcpu_size[i-1] -= extra;
else
pcpu_size[i-1] += extra;
pcpu_size[i] -= extra;
ptr += extra;
/* Split block if warranted */
if (pcpu_size[i] - size > sizeof(unsigned long))
if (!split_block(i, size))
return NULL;
/* add the per-cpu scanning areas */
for_each_possible_cpu(cpu)
kmemleak_alloc(ptr + per_cpu_offset(cpu), size, 0,
GFP_KERNEL);
/* Mark allocated */
pcpu_size[i] = -pcpu_size[i];
return ptr;
}
printk(KERN_WARNING "Could not allocate %lu bytes percpu data\n",
size);
return NULL;
}
static void percpu_modfree(void *freeme)
{
unsigned int i;
void *ptr = __per_cpu_start + block_size(pcpu_size[0]);
int cpu;
/* First entry is core kernel percpu data. */
for (i = 1; i < pcpu_num_used; ptr += block_size(pcpu_size[i]), i++) {
if (ptr == freeme) {
pcpu_size[i] = -pcpu_size[i];
goto free;
}
}
BUG();
free:
/* remove the per-cpu scanning areas */
for_each_possible_cpu(cpu)
kmemleak_free(freeme + per_cpu_offset(cpu));
/* Merge with previous? */
if (pcpu_size[i-1] >= 0) {
pcpu_size[i-1] += pcpu_size[i];
pcpu_num_used--;
memmove(&pcpu_size[i], &pcpu_size[i+1],
(pcpu_num_used - i) * sizeof(pcpu_size[0]));
i--;
}
/* Merge with next? */
if (i+1 < pcpu_num_used && pcpu_size[i+1] >= 0) {
pcpu_size[i] += pcpu_size[i+1];
pcpu_num_used--;
memmove(&pcpu_size[i+1], &pcpu_size[i+2],
(pcpu_num_used - (i+1)) * sizeof(pcpu_size[0]));
}
}
static int percpu_modinit(void)
{
pcpu_num_used = 2;
pcpu_num_allocated = 2;
pcpu_size = kmalloc(sizeof(pcpu_size[0]) * pcpu_num_allocated,
GFP_KERNEL);
/* Static in-kernel percpu data (used). */
pcpu_size[0] = -(__per_cpu_end-__per_cpu_start);
/* Free room. */
pcpu_size[1] = PERCPU_ENOUGH_ROOM + pcpu_size[0];
if (pcpu_size[1] < 0) {
printk(KERN_ERR "No per-cpu room for modules.\n");
pcpu_num_used = 1;
}
return 0;
}
__initcall(percpu_modinit);
#endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */
static unsigned int find_pcpusec(Elf_Ehdr *hdr, static unsigned int find_pcpusec(Elf_Ehdr *hdr,
Elf_Shdr *sechdrs, Elf_Shdr *sechdrs,
const char *secstrings) const char *secstrings)

View file

@ -763,13 +763,13 @@ static void rcu_torture_timer(unsigned long unused)
/* Should not happen, but... */ /* Should not happen, but... */
pipe_count = RCU_TORTURE_PIPE_LEN; pipe_count = RCU_TORTURE_PIPE_LEN;
} }
++__get_cpu_var(rcu_torture_count)[pipe_count]; __this_cpu_inc(per_cpu_var(rcu_torture_count)[pipe_count]);
completed = cur_ops->completed() - completed; completed = cur_ops->completed() - completed;
if (completed > RCU_TORTURE_PIPE_LEN) { if (completed > RCU_TORTURE_PIPE_LEN) {
/* Should not happen, but... */ /* Should not happen, but... */
completed = RCU_TORTURE_PIPE_LEN; completed = RCU_TORTURE_PIPE_LEN;
} }
++__get_cpu_var(rcu_torture_batch)[completed]; __this_cpu_inc(per_cpu_var(rcu_torture_batch)[completed]);
preempt_enable(); preempt_enable();
cur_ops->readunlock(idx); cur_ops->readunlock(idx);
} }
@ -818,13 +818,13 @@ rcu_torture_reader(void *arg)
/* Should not happen, but... */ /* Should not happen, but... */
pipe_count = RCU_TORTURE_PIPE_LEN; pipe_count = RCU_TORTURE_PIPE_LEN;
} }
++__get_cpu_var(rcu_torture_count)[pipe_count]; __this_cpu_inc(per_cpu_var(rcu_torture_count)[pipe_count]);
completed = cur_ops->completed() - completed; completed = cur_ops->completed() - completed;
if (completed > RCU_TORTURE_PIPE_LEN) { if (completed > RCU_TORTURE_PIPE_LEN) {
/* Should not happen, but... */ /* Should not happen, but... */
completed = RCU_TORTURE_PIPE_LEN; completed = RCU_TORTURE_PIPE_LEN;
} }
++__get_cpu_var(rcu_torture_batch)[completed]; __this_cpu_inc(per_cpu_var(rcu_torture_batch)[completed]);
preempt_enable(); preempt_enable();
cur_ops->readunlock(idx); cur_ops->readunlock(idx);
schedule(); schedule();

View file

@ -298,7 +298,7 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
#ifdef CONFIG_RT_GROUP_SCHED #ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
#endif /* CONFIG_RT_GROUP_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_USER_SCHED */ #else /* !CONFIG_USER_SCHED */
#define root_task_group init_task_group #define root_task_group init_task_group
@ -8286,14 +8286,14 @@ enum s_alloc {
*/ */
#ifdef CONFIG_SCHED_SMT #ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
static int static int
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
struct sched_group **sg, struct cpumask *unused) struct sched_group **sg, struct cpumask *unused)
{ {
if (sg) if (sg)
*sg = &per_cpu(sched_group_cpus, cpu).sg; *sg = &per_cpu(sched_groups, cpu).sg;
return cpu; return cpu;
} }
#endif /* CONFIG_SCHED_SMT */ #endif /* CONFIG_SCHED_SMT */
@ -9583,7 +9583,7 @@ void __init sched_init(void)
#elif defined CONFIG_USER_SCHED #elif defined CONFIG_USER_SCHED
init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
init_tg_rt_entry(&init_task_group, init_tg_rt_entry(&init_task_group,
&per_cpu(init_rt_rq, i), &per_cpu(init_rt_rq_var, i),
&per_cpu(init_sched_rt_entity, i), i, 1, &per_cpu(init_sched_rt_entity, i), i, 1,
root_task_group.rt_se[i]); root_task_group.rt_se[i]);
#endif #endif

View file

@ -697,7 +697,7 @@ void __init softirq_init(void)
open_softirq(HI_SOFTIRQ, tasklet_hi_action); open_softirq(HI_SOFTIRQ, tasklet_hi_action);
} }
static int ksoftirqd(void * __bind_cpu) static int run_ksoftirqd(void * __bind_cpu)
{ {
set_current_state(TASK_INTERRUPTIBLE); set_current_state(TASK_INTERRUPTIBLE);
@ -810,7 +810,7 @@ static int __cpuinit cpu_callback(struct notifier_block *nfb,
switch (action) { switch (action) {
case CPU_UP_PREPARE: case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN: case CPU_UP_PREPARE_FROZEN:
p = kthread_create(ksoftirqd, hcpu, "ksoftirqd/%d", hotcpu); p = kthread_create(run_ksoftirqd, hcpu, "ksoftirqd/%d", hotcpu);
if (IS_ERR(p)) { if (IS_ERR(p)) {
printk("ksoftirqd for %i failed\n", hotcpu); printk("ksoftirqd for %i failed\n", hotcpu);
return NOTIFY_BAD; return NOTIFY_BAD;

View file

@ -22,9 +22,9 @@
static DEFINE_SPINLOCK(print_lock); static DEFINE_SPINLOCK(print_lock);
static DEFINE_PER_CPU(unsigned long, touch_timestamp); static DEFINE_PER_CPU(unsigned long, softlockup_touch_ts); /* touch timestamp */
static DEFINE_PER_CPU(unsigned long, print_timestamp); static DEFINE_PER_CPU(unsigned long, softlockup_print_ts); /* print timestamp */
static DEFINE_PER_CPU(struct task_struct *, watchdog_task); static DEFINE_PER_CPU(struct task_struct *, softlockup_watchdog);
static int __read_mostly did_panic; static int __read_mostly did_panic;
int __read_mostly softlockup_thresh = 60; int __read_mostly softlockup_thresh = 60;
@ -70,12 +70,12 @@ static void __touch_softlockup_watchdog(void)
{ {
int this_cpu = raw_smp_processor_id(); int this_cpu = raw_smp_processor_id();
__raw_get_cpu_var(touch_timestamp) = get_timestamp(this_cpu); __raw_get_cpu_var(softlockup_touch_ts) = get_timestamp(this_cpu);
} }
void touch_softlockup_watchdog(void) void touch_softlockup_watchdog(void)
{ {
__raw_get_cpu_var(touch_timestamp) = 0; __raw_get_cpu_var(softlockup_touch_ts) = 0;
} }
EXPORT_SYMBOL(touch_softlockup_watchdog); EXPORT_SYMBOL(touch_softlockup_watchdog);
@ -85,7 +85,7 @@ void touch_all_softlockup_watchdogs(void)
/* Cause each CPU to re-update its timestamp rather than complain */ /* Cause each CPU to re-update its timestamp rather than complain */
for_each_online_cpu(cpu) for_each_online_cpu(cpu)
per_cpu(touch_timestamp, cpu) = 0; per_cpu(softlockup_touch_ts, cpu) = 0;
} }
EXPORT_SYMBOL(touch_all_softlockup_watchdogs); EXPORT_SYMBOL(touch_all_softlockup_watchdogs);
@ -104,28 +104,28 @@ int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
void softlockup_tick(void) void softlockup_tick(void)
{ {
int this_cpu = smp_processor_id(); int this_cpu = smp_processor_id();
unsigned long touch_timestamp = per_cpu(touch_timestamp, this_cpu); unsigned long touch_ts = per_cpu(softlockup_touch_ts, this_cpu);
unsigned long print_timestamp; unsigned long print_ts;
struct pt_regs *regs = get_irq_regs(); struct pt_regs *regs = get_irq_regs();
unsigned long now; unsigned long now;
/* Is detection switched off? */ /* Is detection switched off? */
if (!per_cpu(watchdog_task, this_cpu) || softlockup_thresh <= 0) { if (!per_cpu(softlockup_watchdog, this_cpu) || softlockup_thresh <= 0) {
/* Be sure we don't false trigger if switched back on */ /* Be sure we don't false trigger if switched back on */
if (touch_timestamp) if (touch_ts)
per_cpu(touch_timestamp, this_cpu) = 0; per_cpu(softlockup_touch_ts, this_cpu) = 0;
return; return;
} }
if (touch_timestamp == 0) { if (touch_ts == 0) {
__touch_softlockup_watchdog(); __touch_softlockup_watchdog();
return; return;
} }
print_timestamp = per_cpu(print_timestamp, this_cpu); print_ts = per_cpu(softlockup_print_ts, this_cpu);
/* report at most once a second */ /* report at most once a second */
if (print_timestamp == touch_timestamp || did_panic) if (print_ts == touch_ts || did_panic)
return; return;
/* do not print during early bootup: */ /* do not print during early bootup: */
@ -140,18 +140,18 @@ void softlockup_tick(void)
* Wake up the high-prio watchdog task twice per * Wake up the high-prio watchdog task twice per
* threshold timespan. * threshold timespan.
*/ */
if (now > touch_timestamp + softlockup_thresh/2) if (now > touch_ts + softlockup_thresh/2)
wake_up_process(per_cpu(watchdog_task, this_cpu)); wake_up_process(per_cpu(softlockup_watchdog, this_cpu));
/* Warn about unreasonable delays: */ /* Warn about unreasonable delays: */
if (now <= (touch_timestamp + softlockup_thresh)) if (now <= (touch_ts + softlockup_thresh))
return; return;
per_cpu(print_timestamp, this_cpu) = touch_timestamp; per_cpu(softlockup_print_ts, this_cpu) = touch_ts;
spin_lock(&print_lock); spin_lock(&print_lock);
printk(KERN_ERR "BUG: soft lockup - CPU#%d stuck for %lus! [%s:%d]\n", printk(KERN_ERR "BUG: soft lockup - CPU#%d stuck for %lus! [%s:%d]\n",
this_cpu, now - touch_timestamp, this_cpu, now - touch_ts,
current->comm, task_pid_nr(current)); current->comm, task_pid_nr(current));
print_modules(); print_modules();
print_irqtrace_events(current); print_irqtrace_events(current);
@ -209,32 +209,32 @@ cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
switch (action) { switch (action) {
case CPU_UP_PREPARE: case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN: case CPU_UP_PREPARE_FROZEN:
BUG_ON(per_cpu(watchdog_task, hotcpu)); BUG_ON(per_cpu(softlockup_watchdog, hotcpu));
p = kthread_create(watchdog, hcpu, "watchdog/%d", hotcpu); p = kthread_create(watchdog, hcpu, "watchdog/%d", hotcpu);
if (IS_ERR(p)) { if (IS_ERR(p)) {
printk(KERN_ERR "watchdog for %i failed\n", hotcpu); printk(KERN_ERR "watchdog for %i failed\n", hotcpu);
return NOTIFY_BAD; return NOTIFY_BAD;
} }
per_cpu(touch_timestamp, hotcpu) = 0; per_cpu(softlockup_touch_ts, hotcpu) = 0;
per_cpu(watchdog_task, hotcpu) = p; per_cpu(softlockup_watchdog, hotcpu) = p;
kthread_bind(p, hotcpu); kthread_bind(p, hotcpu);
break; break;
case CPU_ONLINE: case CPU_ONLINE:
case CPU_ONLINE_FROZEN: case CPU_ONLINE_FROZEN:
wake_up_process(per_cpu(watchdog_task, hotcpu)); wake_up_process(per_cpu(softlockup_watchdog, hotcpu));
break; break;
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED: case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN: case CPU_UP_CANCELED_FROZEN:
if (!per_cpu(watchdog_task, hotcpu)) if (!per_cpu(softlockup_watchdog, hotcpu))
break; break;
/* Unbind so it can run. Fall thru. */ /* Unbind so it can run. Fall thru. */
kthread_bind(per_cpu(watchdog_task, hotcpu), kthread_bind(per_cpu(softlockup_watchdog, hotcpu),
cpumask_any(cpu_online_mask)); cpumask_any(cpu_online_mask));
case CPU_DEAD: case CPU_DEAD:
case CPU_DEAD_FROZEN: case CPU_DEAD_FROZEN:
p = per_cpu(watchdog_task, hotcpu); p = per_cpu(softlockup_watchdog, hotcpu);
per_cpu(watchdog_task, hotcpu) = NULL; per_cpu(softlockup_watchdog, hotcpu) = NULL;
kthread_stop(p); kthread_stop(p);
break; break;
#endif /* CONFIG_HOTPLUG_CPU */ #endif /* CONFIG_HOTPLUG_CPU */

View file

@ -86,7 +86,7 @@ static DEFINE_SPINLOCK(table_lock);
/* /*
* Per-CPU lookup locks for fast hash lookup: * Per-CPU lookup locks for fast hash lookup:
*/ */
static DEFINE_PER_CPU(spinlock_t, lookup_lock); static DEFINE_PER_CPU(spinlock_t, tstats_lookup_lock);
/* /*
* Mutex to serialize state changes with show-stats activities: * Mutex to serialize state changes with show-stats activities:
@ -245,7 +245,7 @@ void timer_stats_update_stats(void *timer, pid_t pid, void *startf,
if (likely(!timer_stats_active)) if (likely(!timer_stats_active))
return; return;
lock = &per_cpu(lookup_lock, raw_smp_processor_id()); lock = &per_cpu(tstats_lookup_lock, raw_smp_processor_id());
input.timer = timer; input.timer = timer;
input.start_func = startf; input.start_func = startf;
@ -348,9 +348,10 @@ static void sync_access(void)
int cpu; int cpu;
for_each_online_cpu(cpu) { for_each_online_cpu(cpu) {
spin_lock_irqsave(&per_cpu(lookup_lock, cpu), flags); spinlock_t *lock = &per_cpu(tstats_lookup_lock, cpu);
spin_lock_irqsave(lock, flags);
/* nothing */ /* nothing */
spin_unlock_irqrestore(&per_cpu(lookup_lock, cpu), flags); spin_unlock_irqrestore(lock, flags);
} }
} }
@ -408,7 +409,7 @@ void __init init_timer_stats(void)
int cpu; int cpu;
for_each_possible_cpu(cpu) for_each_possible_cpu(cpu)
spin_lock_init(&per_cpu(lookup_lock, cpu)); spin_lock_init(&per_cpu(tstats_lookup_lock, cpu));
} }
static int __init init_tstats_procfs(void) static int __init init_tstats_procfs(void)

View file

@ -86,17 +86,17 @@ static int dummy_set_flag(u32 old_flags, u32 bit, int set)
*/ */
static int tracing_disabled = 1; static int tracing_disabled = 1;
DEFINE_PER_CPU(local_t, ftrace_cpu_disabled); DEFINE_PER_CPU(int, ftrace_cpu_disabled);
static inline void ftrace_disable_cpu(void) static inline void ftrace_disable_cpu(void)
{ {
preempt_disable(); preempt_disable();
local_inc(&__get_cpu_var(ftrace_cpu_disabled)); __this_cpu_inc(per_cpu_var(ftrace_cpu_disabled));
} }
static inline void ftrace_enable_cpu(void) static inline void ftrace_enable_cpu(void)
{ {
local_dec(&__get_cpu_var(ftrace_cpu_disabled)); __this_cpu_dec(per_cpu_var(ftrace_cpu_disabled));
preempt_enable(); preempt_enable();
} }
@ -203,7 +203,7 @@ cycle_t ftrace_now(int cpu)
*/ */
static struct trace_array max_tr; static struct trace_array max_tr;
static DEFINE_PER_CPU(struct trace_array_cpu, max_data); static DEFINE_PER_CPU(struct trace_array_cpu, max_tr_data);
/* tracer_enabled is used to toggle activation of a tracer */ /* tracer_enabled is used to toggle activation of a tracer */
static int tracer_enabled = 1; static int tracer_enabled = 1;
@ -1085,7 +1085,7 @@ trace_function(struct trace_array *tr,
struct ftrace_entry *entry; struct ftrace_entry *entry;
/* If we are reading the ring buffer, don't trace */ /* If we are reading the ring buffer, don't trace */
if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) if (unlikely(__this_cpu_read(per_cpu_var(ftrace_cpu_disabled))))
return; return;
event = trace_buffer_lock_reserve(buffer, TRACE_FN, sizeof(*entry), event = trace_buffer_lock_reserve(buffer, TRACE_FN, sizeof(*entry),
@ -4454,7 +4454,7 @@ __init static int tracer_alloc_buffers(void)
/* Allocate the first page for all buffers */ /* Allocate the first page for all buffers */
for_each_tracing_cpu(i) { for_each_tracing_cpu(i) {
global_trace.data[i] = &per_cpu(global_trace_cpu, i); global_trace.data[i] = &per_cpu(global_trace_cpu, i);
max_tr.data[i] = &per_cpu(max_data, i); max_tr.data[i] = &per_cpu(max_tr_data, i);
} }
trace_init_cmdlines(); trace_init_cmdlines();

View file

@ -443,7 +443,7 @@ extern int DYN_FTRACE_TEST_NAME(void);
extern int ring_buffer_expanded; extern int ring_buffer_expanded;
extern bool tracing_selftest_disabled; extern bool tracing_selftest_disabled;
DECLARE_PER_CPU(local_t, ftrace_cpu_disabled); DECLARE_PER_CPU(int, ftrace_cpu_disabled);
#ifdef CONFIG_FTRACE_STARTUP_TEST #ifdef CONFIG_FTRACE_STARTUP_TEST
extern int trace_selftest_startup_function(struct tracer *trace, extern int trace_selftest_startup_function(struct tracer *trace,

View file

@ -187,7 +187,7 @@ static int __trace_graph_entry(struct trace_array *tr,
struct ring_buffer *buffer = tr->buffer; struct ring_buffer *buffer = tr->buffer;
struct ftrace_graph_ent_entry *entry; struct ftrace_graph_ent_entry *entry;
if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) if (unlikely(__this_cpu_read(per_cpu_var(ftrace_cpu_disabled))))
return 0; return 0;
event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_ENT, event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_ENT,
@ -251,7 +251,7 @@ static void __trace_graph_return(struct trace_array *tr,
struct ring_buffer *buffer = tr->buffer; struct ring_buffer *buffer = tr->buffer;
struct ftrace_graph_ret_entry *entry; struct ftrace_graph_ret_entry *entry;
if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) if (unlikely(__this_cpu_read(per_cpu_var(ftrace_cpu_disabled))))
return; return;
event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_RET, event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_RET,

View file

@ -20,10 +20,10 @@
#define BTS_BUFFER_SIZE (1 << 13) #define BTS_BUFFER_SIZE (1 << 13)
static DEFINE_PER_CPU(struct bts_tracer *, tracer); static DEFINE_PER_CPU(struct bts_tracer *, hwb_tracer);
static DEFINE_PER_CPU(unsigned char[BTS_BUFFER_SIZE], buffer); static DEFINE_PER_CPU(unsigned char[BTS_BUFFER_SIZE], hwb_buffer);
#define this_tracer per_cpu(tracer, smp_processor_id()) #define this_tracer per_cpu(hwb_tracer, smp_processor_id())
static int trace_hw_branches_enabled __read_mostly; static int trace_hw_branches_enabled __read_mostly;
static int trace_hw_branches_suspended __read_mostly; static int trace_hw_branches_suspended __read_mostly;
@ -32,12 +32,13 @@ static struct trace_array *hw_branch_trace __read_mostly;
static void bts_trace_init_cpu(int cpu) static void bts_trace_init_cpu(int cpu)
{ {
per_cpu(tracer, cpu) = per_cpu(hwb_tracer, cpu) =
ds_request_bts_cpu(cpu, per_cpu(buffer, cpu), BTS_BUFFER_SIZE, ds_request_bts_cpu(cpu, per_cpu(hwb_buffer, cpu),
NULL, (size_t)-1, BTS_KERNEL); BTS_BUFFER_SIZE, NULL, (size_t)-1,
BTS_KERNEL);
if (IS_ERR(per_cpu(tracer, cpu))) if (IS_ERR(per_cpu(hwb_tracer, cpu)))
per_cpu(tracer, cpu) = NULL; per_cpu(hwb_tracer, cpu) = NULL;
} }
static int bts_trace_init(struct trace_array *tr) static int bts_trace_init(struct trace_array *tr)
@ -51,7 +52,7 @@ static int bts_trace_init(struct trace_array *tr)
for_each_online_cpu(cpu) { for_each_online_cpu(cpu) {
bts_trace_init_cpu(cpu); bts_trace_init_cpu(cpu);
if (likely(per_cpu(tracer, cpu))) if (likely(per_cpu(hwb_tracer, cpu)))
trace_hw_branches_enabled = 1; trace_hw_branches_enabled = 1;
} }
trace_hw_branches_suspended = 0; trace_hw_branches_suspended = 0;
@ -67,9 +68,9 @@ static void bts_trace_reset(struct trace_array *tr)
get_online_cpus(); get_online_cpus();
for_each_online_cpu(cpu) { for_each_online_cpu(cpu) {
if (likely(per_cpu(tracer, cpu))) { if (likely(per_cpu(hwb_tracer, cpu))) {
ds_release_bts(per_cpu(tracer, cpu)); ds_release_bts(per_cpu(hwb_tracer, cpu));
per_cpu(tracer, cpu) = NULL; per_cpu(hwb_tracer, cpu) = NULL;
} }
} }
trace_hw_branches_enabled = 0; trace_hw_branches_enabled = 0;
@ -83,8 +84,8 @@ static void bts_trace_start(struct trace_array *tr)
get_online_cpus(); get_online_cpus();
for_each_online_cpu(cpu) for_each_online_cpu(cpu)
if (likely(per_cpu(tracer, cpu))) if (likely(per_cpu(hwb_tracer, cpu)))
ds_resume_bts(per_cpu(tracer, cpu)); ds_resume_bts(per_cpu(hwb_tracer, cpu));
trace_hw_branches_suspended = 0; trace_hw_branches_suspended = 0;
put_online_cpus(); put_online_cpus();
} }
@ -95,8 +96,8 @@ static void bts_trace_stop(struct trace_array *tr)
get_online_cpus(); get_online_cpus();
for_each_online_cpu(cpu) for_each_online_cpu(cpu)
if (likely(per_cpu(tracer, cpu))) if (likely(per_cpu(hwb_tracer, cpu)))
ds_suspend_bts(per_cpu(tracer, cpu)); ds_suspend_bts(per_cpu(hwb_tracer, cpu));
trace_hw_branches_suspended = 1; trace_hw_branches_suspended = 1;
put_online_cpus(); put_online_cpus();
} }
@ -114,16 +115,16 @@ static int __cpuinit bts_hotcpu_handler(struct notifier_block *nfb,
bts_trace_init_cpu(cpu); bts_trace_init_cpu(cpu);
if (trace_hw_branches_suspended && if (trace_hw_branches_suspended &&
likely(per_cpu(tracer, cpu))) likely(per_cpu(hwb_tracer, cpu)))
ds_suspend_bts(per_cpu(tracer, cpu)); ds_suspend_bts(per_cpu(hwb_tracer, cpu));
} }
break; break;
case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE:
/* The notification is sent with interrupts enabled. */ /* The notification is sent with interrupts enabled. */
if (likely(per_cpu(tracer, cpu))) { if (likely(per_cpu(hwb_tracer, cpu))) {
ds_release_bts(per_cpu(tracer, cpu)); ds_release_bts(per_cpu(hwb_tracer, cpu));
per_cpu(tracer, cpu) = NULL; per_cpu(hwb_tracer, cpu) = NULL;
} }
} }
@ -258,8 +259,8 @@ static void trace_bts_prepare(struct trace_iterator *iter)
get_online_cpus(); get_online_cpus();
for_each_online_cpu(cpu) for_each_online_cpu(cpu)
if (likely(per_cpu(tracer, cpu))) if (likely(per_cpu(hwb_tracer, cpu)))
ds_suspend_bts(per_cpu(tracer, cpu)); ds_suspend_bts(per_cpu(hwb_tracer, cpu));
/* /*
* We need to collect the trace on the respective cpu since ftrace * We need to collect the trace on the respective cpu since ftrace
* implicitly adds the record for the current cpu. * implicitly adds the record for the current cpu.
@ -268,8 +269,8 @@ static void trace_bts_prepare(struct trace_iterator *iter)
on_each_cpu(trace_bts_cpu, iter->tr, 1); on_each_cpu(trace_bts_cpu, iter->tr, 1);
for_each_online_cpu(cpu) for_each_online_cpu(cpu)
if (likely(per_cpu(tracer, cpu))) if (likely(per_cpu(hwb_tracer, cpu)))
ds_resume_bts(per_cpu(tracer, cpu)); ds_resume_bts(per_cpu(hwb_tracer, cpu));
put_online_cpus(); put_online_cpus();
} }

View file

@ -34,11 +34,7 @@ obj-$(CONFIG_FAILSLAB) += failslab.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o obj-$(CONFIG_MIGRATION) += migrate.o
ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA
obj-$(CONFIG_SMP) += percpu.o obj-$(CONFIG_SMP) += percpu.o
else
obj-$(CONFIG_SMP) += allocpercpu.o
endif
obj-$(CONFIG_QUICKLIST) += quicklist.o obj-$(CONFIG_QUICKLIST) += quicklist.o
obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o
obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o

View file

@ -1,177 +0,0 @@
/*
* linux/mm/allocpercpu.c
*
* Separated from slab.c August 11, 2006 Christoph Lameter
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bootmem.h>
#include <asm/sections.h>
#ifndef cache_line_size
#define cache_line_size() L1_CACHE_BYTES
#endif
/**
* percpu_depopulate - depopulate per-cpu data for given cpu
* @__pdata: per-cpu data to depopulate
* @cpu: depopulate per-cpu data for this cpu
*
* Depopulating per-cpu data for a cpu going offline would be a typical
* use case. You need to register a cpu hotplug handler for that purpose.
*/
static void percpu_depopulate(void *__pdata, int cpu)
{
struct percpu_data *pdata = __percpu_disguise(__pdata);
kfree(pdata->ptrs[cpu]);
pdata->ptrs[cpu] = NULL;
}
/**
* percpu_depopulate_mask - depopulate per-cpu data for some cpu's
* @__pdata: per-cpu data to depopulate
* @mask: depopulate per-cpu data for cpu's selected through mask bits
*/
static void __percpu_depopulate_mask(void *__pdata, const cpumask_t *mask)
{
int cpu;
for_each_cpu_mask_nr(cpu, *mask)
percpu_depopulate(__pdata, cpu);
}
#define percpu_depopulate_mask(__pdata, mask) \
__percpu_depopulate_mask((__pdata), &(mask))
/**
* percpu_populate - populate per-cpu data for given cpu
* @__pdata: per-cpu data to populate further
* @size: size of per-cpu object
* @gfp: may sleep or not etc.
* @cpu: populate per-data for this cpu
*
* Populating per-cpu data for a cpu coming online would be a typical
* use case. You need to register a cpu hotplug handler for that purpose.
* Per-cpu object is populated with zeroed buffer.
*/
static void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
{
struct percpu_data *pdata = __percpu_disguise(__pdata);
int node = cpu_to_node(cpu);
/*
* We should make sure each CPU gets private memory.
*/
size = roundup(size, cache_line_size());
BUG_ON(pdata->ptrs[cpu]);
if (node_online(node))
pdata->ptrs[cpu] = kmalloc_node(size, gfp|__GFP_ZERO, node);
else
pdata->ptrs[cpu] = kzalloc(size, gfp);
return pdata->ptrs[cpu];
}
/**
* percpu_populate_mask - populate per-cpu data for more cpu's
* @__pdata: per-cpu data to populate further
* @size: size of per-cpu object
* @gfp: may sleep or not etc.
* @mask: populate per-cpu data for cpu's selected through mask bits
*
* Per-cpu objects are populated with zeroed buffers.
*/
static int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
cpumask_t *mask)
{
cpumask_t populated;
int cpu;
cpus_clear(populated);
for_each_cpu_mask_nr(cpu, *mask)
if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
__percpu_depopulate_mask(__pdata, &populated);
return -ENOMEM;
} else
cpu_set(cpu, populated);
return 0;
}
#define percpu_populate_mask(__pdata, size, gfp, mask) \
__percpu_populate_mask((__pdata), (size), (gfp), &(mask))
/**
* alloc_percpu - initial setup of per-cpu data
* @size: size of per-cpu object
* @align: alignment
*
* Allocate dynamic percpu area. Percpu objects are populated with
* zeroed buffers.
*/
void *__alloc_percpu(size_t size, size_t align)
{
/*
* We allocate whole cache lines to avoid false sharing
*/
size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size());
void *pdata = kzalloc(sz, GFP_KERNEL);
void *__pdata = __percpu_disguise(pdata);
/*
* Can't easily make larger alignment work with kmalloc. WARN
* on it. Larger alignment should only be used for module
* percpu sections on SMP for which this path isn't used.
*/
WARN_ON_ONCE(align > SMP_CACHE_BYTES);
if (unlikely(!pdata))
return NULL;
if (likely(!__percpu_populate_mask(__pdata, size, GFP_KERNEL,
&cpu_possible_map)))
return __pdata;
kfree(pdata);
return NULL;
}
EXPORT_SYMBOL_GPL(__alloc_percpu);
/**
* free_percpu - final cleanup of per-cpu data
* @__pdata: object to clean up
*
* We simply clean up any per-cpu object left. No need for the client to
* track and specify through a bis mask which per-cpu objects are to free.
*/
void free_percpu(void *__pdata)
{
if (unlikely(!__pdata))
return;
__percpu_depopulate_mask(__pdata, cpu_possible_mask);
kfree(__percpu_disguise(__pdata));
}
EXPORT_SYMBOL_GPL(free_percpu);
/*
* Generic percpu area setup.
*/
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);
void __init setup_per_cpu_areas(void)
{
unsigned long size, i;
char *ptr;
unsigned long nr_possible_cpus = num_possible_cpus();
/* Copy section for each CPU (we discard the original) */
size = ALIGN(PERCPU_ENOUGH_ROOM, PAGE_SIZE);
ptr = alloc_bootmem_pages(size * nr_possible_cpus);
for_each_possible_cpu(i) {
__per_cpu_offset[i] = ptr - __per_cpu_start;
memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
ptr += size;
}
}
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */

View file

@ -46,8 +46,6 @@
* *
* To use this allocator, arch code should do the followings. * To use this allocator, arch code should do the followings.
* *
* - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
*
* - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
* regular address to percpu pointer and back if they need to be * regular address to percpu pointer and back if they need to be
* different from the default * different from the default
@ -74,6 +72,7 @@
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/sections.h> #include <asm/sections.h>
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
#include <asm/io.h>
#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
@ -1302,6 +1301,27 @@ void free_percpu(void *ptr)
} }
EXPORT_SYMBOL_GPL(free_percpu); EXPORT_SYMBOL_GPL(free_percpu);
/**
* per_cpu_ptr_to_phys - convert translated percpu address to physical address
* @addr: the address to be converted to physical address
*
* Given @addr which is dereferenceable address obtained via one of
* percpu access macros, this function translates it into its physical
* address. The caller is responsible for ensuring @addr stays valid
* until this function finishes.
*
* RETURNS:
* The physical address for @addr.
*/
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
if ((unsigned long)addr < VMALLOC_START ||
(unsigned long)addr >= VMALLOC_END)
return __pa(addr);
else
return page_to_phys(vmalloc_to_page(addr));
}
static inline size_t pcpu_calc_fc_sizes(size_t static_size, static inline size_t pcpu_calc_fc_sizes(size_t static_size,
size_t reserved_size, size_t reserved_size,
ssize_t *dyn_sizep) ssize_t *dyn_sizep)

View file

@ -697,7 +697,7 @@ static inline void init_lock_keys(void)
static DEFINE_MUTEX(cache_chain_mutex); static DEFINE_MUTEX(cache_chain_mutex);
static struct list_head cache_chain; static struct list_head cache_chain;
static DEFINE_PER_CPU(struct delayed_work, reap_work); static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
{ {
@ -838,7 +838,7 @@ __setup("noaliencache", noaliencache_setup);
* objects freed on different nodes from which they were allocated) and the * objects freed on different nodes from which they were allocated) and the
* flushing of remote pcps by calling drain_node_pages. * flushing of remote pcps by calling drain_node_pages.
*/ */
static DEFINE_PER_CPU(unsigned long, reap_node); static DEFINE_PER_CPU(unsigned long, slab_reap_node);
static void init_reap_node(int cpu) static void init_reap_node(int cpu)
{ {
@ -848,17 +848,17 @@ static void init_reap_node(int cpu)
if (node == MAX_NUMNODES) if (node == MAX_NUMNODES)
node = first_node(node_online_map); node = first_node(node_online_map);
per_cpu(reap_node, cpu) = node; per_cpu(slab_reap_node, cpu) = node;
} }
static void next_reap_node(void) static void next_reap_node(void)
{ {
int node = __get_cpu_var(reap_node); int node = __get_cpu_var(slab_reap_node);
node = next_node(node, node_online_map); node = next_node(node, node_online_map);
if (unlikely(node >= MAX_NUMNODES)) if (unlikely(node >= MAX_NUMNODES))
node = first_node(node_online_map); node = first_node(node_online_map);
__get_cpu_var(reap_node) = node; __get_cpu_var(slab_reap_node) = node;
} }
#else #else
@ -875,7 +875,7 @@ static void next_reap_node(void)
*/ */
static void __cpuinit start_cpu_timer(int cpu) static void __cpuinit start_cpu_timer(int cpu)
{ {
struct delayed_work *reap_work = &per_cpu(reap_work, cpu); struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
/* /*
* When this gets called from do_initcalls via cpucache_init(), * When this gets called from do_initcalls via cpucache_init(),
@ -1039,7 +1039,7 @@ static void __drain_alien_cache(struct kmem_cache *cachep,
*/ */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{ {
int node = __get_cpu_var(reap_node); int node = __get_cpu_var(slab_reap_node);
if (l3->alien) { if (l3->alien) {
struct array_cache *ac = l3->alien[node]; struct array_cache *ac = l3->alien[node];
@ -1300,9 +1300,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
* anything expensive but will only modify reap_work * anything expensive but will only modify reap_work
* and reschedule the timer. * and reschedule the timer.
*/ */
cancel_rearming_delayed_work(&per_cpu(reap_work, cpu)); cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
/* Now the cache_reaper is guaranteed to be not running. */ /* Now the cache_reaper is guaranteed to be not running. */
per_cpu(reap_work, cpu).work.func = NULL; per_cpu(slab_reap_work, cpu).work.func = NULL;
break; break;
case CPU_DOWN_FAILED: case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN: case CPU_DOWN_FAILED_FROZEN:

View file

@ -761,7 +761,7 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
spin_lock(&vbq->lock); spin_lock(&vbq->lock);
list_add(&vb->free_list, &vbq->free); list_add(&vb->free_list, &vbq->free);
spin_unlock(&vbq->lock); spin_unlock(&vbq->lock);
put_cpu_var(vmap_cpu_blocks); put_cpu_var(vmap_block_queue);
return vb; return vb;
} }
@ -826,7 +826,7 @@ again:
} }
spin_unlock(&vb->lock); spin_unlock(&vb->lock);
} }
put_cpu_var(vmap_cpu_blocks); put_cpu_var(vmap_block_queue);
rcu_read_unlock(); rcu_read_unlock();
if (!addr) { if (!addr) {

View file

@ -883,11 +883,10 @@ static void vmstat_update(struct work_struct *w)
static void __cpuinit start_cpu_timer(int cpu) static void __cpuinit start_cpu_timer(int cpu)
{ {
struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu); struct delayed_work *work = &per_cpu(vmstat_work, cpu);
INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update); INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
schedule_delayed_work_on(cpu, vmstat_work, schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
__round_jiffies_relative(HZ, cpu));
} }
/* /*