blkio: Introduce the notion of cfq groups

o This patch introduce the notion of cfq groups. Soon we will can have multiple
  groups of different weights in the system.

o Various service trees (prioclass and workload type trees), will become per
  cfq group. So hierarchy looks as follows.

			cfq_groups
			   |
			workload type
			   |
		        cfq queue

o When an scheduling decision has to be taken, first we select the cfq group
  then workload with-in the group and then cfq queue with-in the workload
  type.

o This patch just makes various workload service tree per cfq group and
  introduce the function to be able to choose a group for scheduling.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This commit is contained in:
Vivek Goyal 2009-12-03 12:59:38 -05:00 committed by Jens Axboe
parent bf79193710
commit cdb16e8f73

View file

@ -132,6 +132,7 @@ struct cfq_queue {
struct cfq_rb_root *service_tree; struct cfq_rb_root *service_tree;
struct cfq_queue *new_cfqq; struct cfq_queue *new_cfqq;
struct cfq_group *cfqg;
}; };
/* /*
@ -153,25 +154,30 @@ enum wl_type_t {
SYNC_WORKLOAD = 2 SYNC_WORKLOAD = 2
}; };
/* This is per cgroup per device grouping structure */
/* struct cfq_group {
* Per block device queue structure
*/
struct cfq_data {
struct request_queue *queue;
/* /*
* rr lists of queues with requests, onle rr for each priority class. * rr lists of queues with requests, onle rr for each priority class.
* Counts are embedded in the cfq_rb_root * Counts are embedded in the cfq_rb_root
*/ */
struct cfq_rb_root service_trees[2][3]; struct cfq_rb_root service_trees[2][3];
struct cfq_rb_root service_tree_idle; struct cfq_rb_root service_tree_idle;
};
/*
* Per block device queue structure
*/
struct cfq_data {
struct request_queue *queue;
struct cfq_group root_group;
/* /*
* The priority currently being served * The priority currently being served
*/ */
enum wl_prio_t serving_prio; enum wl_prio_t serving_prio;
enum wl_type_t serving_type; enum wl_type_t serving_type;
unsigned long workload_expires; unsigned long workload_expires;
struct cfq_group *serving_group;
bool noidle_tree_requires_idle; bool noidle_tree_requires_idle;
/* /*
@ -240,14 +246,15 @@ struct cfq_data {
unsigned long last_end_sync_rq; unsigned long last_end_sync_rq;
}; };
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio, static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
enum wl_prio_t prio,
enum wl_type_t type, enum wl_type_t type,
struct cfq_data *cfqd) struct cfq_data *cfqd)
{ {
if (prio == IDLE_WORKLOAD) if (prio == IDLE_WORKLOAD)
return &cfqd->service_tree_idle; return &cfqg->service_tree_idle;
return &cfqd->service_trees[prio][type]; return &cfqg->service_trees[prio][type];
} }
enum cfqq_state_flags { enum cfqq_state_flags {
@ -317,12 +324,14 @@ static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd) static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{ {
if (wl == IDLE_WORKLOAD) struct cfq_group *cfqg = &cfqd->root_group;
return cfqd->service_tree_idle.count;
return cfqd->service_trees[wl][ASYNC_WORKLOAD].count if (wl == IDLE_WORKLOAD)
+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count return cfqg->service_tree_idle.count;
+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
} }
static void cfq_dispatch_insert(struct request_queue *, struct request *); static void cfq_dispatch_insert(struct request_queue *, struct request *);
@ -612,7 +621,7 @@ static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
/* /*
* just an approximation, should be ok. * just an approximation, should be ok.
*/ */
return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) - return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
} }
@ -630,7 +639,8 @@ static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
struct cfq_rb_root *service_tree; struct cfq_rb_root *service_tree;
int left; int left;
service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd); service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
cfqq_type(cfqq), cfqd);
if (cfq_class_idle(cfqq)) { if (cfq_class_idle(cfqq)) {
rb_key = CFQ_IDLE_DELAY; rb_key = CFQ_IDLE_DELAY;
parent = rb_last(&service_tree->rb); parent = rb_last(&service_tree->rb);
@ -1066,7 +1076,8 @@ static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
{ {
struct cfq_rb_root *service_tree = struct cfq_rb_root *service_tree =
service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd); service_tree_for(cfqd->serving_group, cfqd->serving_prio,
cfqd->serving_type, cfqd);
if (RB_EMPTY_ROOT(&service_tree->rb)) if (RB_EMPTY_ROOT(&service_tree->rb))
return NULL; return NULL;
@ -1218,7 +1229,8 @@ static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
* in their service tree. * in their service tree.
*/ */
if (!service_tree) if (!service_tree)
service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd); service_tree = service_tree_for(cfqq->cfqg, prio,
cfqq_type(cfqq), cfqd);
if (service_tree->count == 0) if (service_tree->count == 0)
return true; return true;
@ -1377,8 +1389,9 @@ static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
} }
} }
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio, static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
bool prio_changed) struct cfq_group *cfqg, enum wl_prio_t prio,
bool prio_changed)
{ {
struct cfq_queue *queue; struct cfq_queue *queue;
int i; int i;
@ -1392,10 +1405,10 @@ static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
* from SYNC_NOIDLE (first choice), or just SYNC * from SYNC_NOIDLE (first choice), or just SYNC
* over ASYNC * over ASYNC
*/ */
if (service_tree_for(prio, cur_best, cfqd)->count) if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
return cur_best; return cur_best;
cur_best = SYNC_WORKLOAD; cur_best = SYNC_WORKLOAD;
if (service_tree_for(prio, cur_best, cfqd)->count) if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
return cur_best; return cur_best;
return ASYNC_WORKLOAD; return ASYNC_WORKLOAD;
@ -1403,7 +1416,7 @@ static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
for (i = 0; i < 3; ++i) { for (i = 0; i < 3; ++i) {
/* otherwise, select the one with lowest rb_key */ /* otherwise, select the one with lowest rb_key */
queue = cfq_rb_first(service_tree_for(prio, i, cfqd)); queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
if (queue && if (queue &&
(!key_valid || time_before(queue->rb_key, lowest_key))) { (!key_valid || time_before(queue->rb_key, lowest_key))) {
lowest_key = queue->rb_key; lowest_key = queue->rb_key;
@ -1415,12 +1428,13 @@ static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
return cur_best; return cur_best;
} }
static void choose_service_tree(struct cfq_data *cfqd) static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
{ {
enum wl_prio_t previous_prio = cfqd->serving_prio; enum wl_prio_t previous_prio = cfqd->serving_prio;
bool prio_changed; bool prio_changed;
unsigned slice; unsigned slice;
unsigned count; unsigned count;
struct cfq_rb_root *st;
/* Choose next priority. RT > BE > IDLE */ /* Choose next priority. RT > BE > IDLE */
if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd)) if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
@ -1439,8 +1453,9 @@ static void choose_service_tree(struct cfq_data *cfqd)
* expiration time * expiration time
*/ */
prio_changed = (cfqd->serving_prio != previous_prio); prio_changed = (cfqd->serving_prio != previous_prio);
count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd) st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
->count; cfqd);
count = st->count;
/* /*
* If priority didn't change, check workload expiration, * If priority didn't change, check workload expiration,
@ -1452,9 +1467,10 @@ static void choose_service_tree(struct cfq_data *cfqd)
/* otherwise select new workload type */ /* otherwise select new workload type */
cfqd->serving_type = cfqd->serving_type =
cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed); cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd) st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
->count; cfqd);
count = st->count;
/* /*
* the workload slice is computed as a fraction of target latency * the workload slice is computed as a fraction of target latency
@ -1478,6 +1494,12 @@ static void choose_service_tree(struct cfq_data *cfqd)
cfqd->noidle_tree_requires_idle = false; cfqd->noidle_tree_requires_idle = false;
} }
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
cfqd->serving_group = &cfqd->root_group;
choose_service_tree(cfqd, &cfqd->root_group);
}
/* /*
* Select a queue for service. If we have a current active queue, * Select a queue for service. If we have a current active queue,
* check whether to continue servicing it, or retrieve and set a new one. * check whether to continue servicing it, or retrieve and set a new one.
@ -1535,7 +1557,7 @@ new_queue:
* service tree * service tree
*/ */
if (!new_cfqq) if (!new_cfqq)
choose_service_tree(cfqd); cfq_choose_cfqg(cfqd);
cfqq = cfq_set_active_queue(cfqd, new_cfqq); cfqq = cfq_set_active_queue(cfqd, new_cfqq);
keep_queue: keep_queue:
@ -1564,13 +1586,15 @@ static int cfq_forced_dispatch(struct cfq_data *cfqd)
struct cfq_queue *cfqq; struct cfq_queue *cfqq;
int dispatched = 0; int dispatched = 0;
int i, j; int i, j;
struct cfq_group *cfqg = &cfqd->root_group;
for (i = 0; i < 2; ++i) for (i = 0; i < 2; ++i)
for (j = 0; j < 3; ++j) for (j = 0; j < 3; ++j)
while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j])) while ((cfqq = cfq_rb_first(&cfqg->service_trees[i][j]))
!= NULL) != NULL)
dispatched += __cfq_forced_dispatch_cfqq(cfqq); dispatched += __cfq_forced_dispatch_cfqq(cfqq);
while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL) while ((cfqq = cfq_rb_first(&cfqg->service_tree_idle)) != NULL)
dispatched += __cfq_forced_dispatch_cfqq(cfqq); dispatched += __cfq_forced_dispatch_cfqq(cfqq);
cfq_slice_expired(cfqd, 0); cfq_slice_expired(cfqd, 0);
@ -2041,14 +2065,26 @@ static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
cfqq->pid = pid; cfqq->pid = pid;
} }
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
cfqq->cfqg = cfqg;
}
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
return &cfqd->root_group;
}
static struct cfq_queue * static struct cfq_queue *
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
struct io_context *ioc, gfp_t gfp_mask) struct io_context *ioc, gfp_t gfp_mask)
{ {
struct cfq_queue *cfqq, *new_cfqq = NULL; struct cfq_queue *cfqq, *new_cfqq = NULL;
struct cfq_io_context *cic; struct cfq_io_context *cic;
struct cfq_group *cfqg;
retry: retry:
cfqg = cfq_get_cfqg(cfqd, 1);
cic = cfq_cic_lookup(cfqd, ioc); cic = cfq_cic_lookup(cfqd, ioc);
/* cic always exists here */ /* cic always exists here */
cfqq = cic_to_cfqq(cic, is_sync); cfqq = cic_to_cfqq(cic, is_sync);
@ -2079,6 +2115,7 @@ retry:
if (cfqq) { if (cfqq) {
cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync); cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
cfq_init_prio_data(cfqq, ioc); cfq_init_prio_data(cfqq, ioc);
cfq_link_cfqq_cfqg(cfqq, cfqg);
cfq_log_cfqq(cfqd, cfqq, "alloced"); cfq_log_cfqq(cfqd, cfqq, "alloced");
} else } else
cfqq = &cfqd->oom_cfqq; cfqq = &cfqd->oom_cfqq;
@ -2931,15 +2968,19 @@ static void *cfq_init_queue(struct request_queue *q)
{ {
struct cfq_data *cfqd; struct cfq_data *cfqd;
int i, j; int i, j;
struct cfq_group *cfqg;
cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node); cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
if (!cfqd) if (!cfqd)
return NULL; return NULL;
/* Init root group */
cfqg = &cfqd->root_group;
for (i = 0; i < 2; ++i) for (i = 0; i < 2; ++i)
for (j = 0; j < 3; ++j) for (j = 0; j < 3; ++j)
cfqd->service_trees[i][j] = CFQ_RB_ROOT; cfqg->service_trees[i][j] = CFQ_RB_ROOT;
cfqd->service_tree_idle = CFQ_RB_ROOT; cfqg->service_tree_idle = CFQ_RB_ROOT;
/* /*
* Not strictly needed (since RB_ROOT just clears the node and we * Not strictly needed (since RB_ROOT just clears the node and we
@ -2956,6 +2997,7 @@ static void *cfq_init_queue(struct request_queue *q)
*/ */
cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0); cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
atomic_inc(&cfqd->oom_cfqq.ref); atomic_inc(&cfqd->oom_cfqq.ref);
cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
INIT_LIST_HEAD(&cfqd->cic_list); INIT_LIST_HEAD(&cfqd->cic_list);