Remove deadlock potential in md_open

A recent commit:
  commit 449aad3e25

introduced the possibility of an A-B/B-A deadlock between
bd_mutex and reconfig_mutex.

__blkdev_get holds bd_mutex while calling md_open which takes
   reconfig_mutex,
do_md_run is always called with reconfig_mutex held, and it now
   takes bd_mutex in the call the revalidate_disk.

This potential deadlock was not caught by lockdep due to the
use of mutex_lock_interruptible_nexted which was introduced
by
   commit d63a5a74de
do avoid a warning of an impossible deadlock.

It is quite possible to split reconfig_mutex in to two locks.
One protects the array data structures while it is being
reconfigured, the other ensures that an array is never even partially
open while it is being deactivated.
In particular, the second lock prevents an open from completing
between the time when do_md_stop checks if there are any active opens,
and the time when the array is either set read-only, or when ->pers is
set to NULL.  So we can be certain that no IO is in flight as the
array is being destroyed.

So create a new lock, open_mutex, just to ensure exclusion between
'open' and 'stop'.

This avoids the deadlock and also avoids the lockdep warning mentioned
in commit d63a5a74d

Reported-by: "Mike Snitzer" <snitzer@gmail.com>
Reported-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: NeilBrown <neilb@suse.de>
This commit is contained in:
NeilBrown 2009-08-10 12:50:52 +10:00
parent 7b2aa037e8
commit c8c00a6915
2 changed files with 20 additions and 8 deletions

View file

@ -359,6 +359,7 @@ static mddev_t * mddev_find(dev_t unit)
else
new->md_minor = MINOR(unit) >> MdpMinorShift;
mutex_init(&new->open_mutex);
mutex_init(&new->reconfig_mutex);
INIT_LIST_HEAD(&new->disks);
INIT_LIST_HEAD(&new->all_mddevs);
@ -4304,12 +4305,11 @@ static int do_md_stop(mddev_t * mddev, int mode, int is_open)
struct gendisk *disk = mddev->gendisk;
mdk_rdev_t *rdev;
mutex_lock(&mddev->open_mutex);
if (atomic_read(&mddev->openers) > is_open) {
printk("md: %s still in use.\n",mdname(mddev));
return -EBUSY;
}
if (mddev->pers) {
err = -EBUSY;
} else if (mddev->pers) {
if (mddev->sync_thread) {
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
@ -4367,7 +4367,10 @@ static int do_md_stop(mddev_t * mddev, int mode, int is_open)
set_disk_ro(disk, 1);
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
}
out:
mutex_unlock(&mddev->open_mutex);
if (err)
return err;
/*
* Free resources if final stop
*/
@ -4433,7 +4436,6 @@ static int do_md_stop(mddev_t * mddev, int mode, int is_open)
blk_integrity_unregister(disk);
md_new_event(mddev);
sysfs_notify_dirent(mddev->sysfs_state);
out:
return err;
}
@ -5518,12 +5520,12 @@ static int md_open(struct block_device *bdev, fmode_t mode)
}
BUG_ON(mddev != bdev->bd_disk->private_data);
if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
goto out;
err = 0;
atomic_inc(&mddev->openers);
mddev_unlock(mddev);
mutex_unlock(&mddev->open_mutex);
check_disk_change(bdev);
out:

View file

@ -223,6 +223,16 @@ struct mddev_s
* so we don't loop trying */
int in_sync; /* know to not need resync */
/* 'open_mutex' avoids races between 'md_open' and 'do_md_stop', so
* that we are never stopping an array while it is open.
* 'reconfig_mutex' protects all other reconfiguration.
* These locks are separate due to conflicting interactions
* with bdev->bd_mutex.
* Lock ordering is:
* reconfig_mutex -> bd_mutex : e.g. do_md_run -> revalidate_disk
* bd_mutex -> open_mutex: e.g. __blkdev_get -> md_open
*/
struct mutex open_mutex;
struct mutex reconfig_mutex;
atomic_t active; /* general refcount */
atomic_t openers; /* number of active opens */