mirror of
https://github.com/adulau/aha.git
synced 2025-01-03 22:53:18 +00:00
ALSA: ASoC: fix SNDCTL_DSP_SYNC support in Freescale 8610 sound drivers
If an OSS application calls SNDCTL_DSP_SYNC, then ALSA will call the driver's _hw_params and _prepare functions again. On the Freescale MPC8610 DMA ASoC driver, this caused the DMA controller to be unneccessarily re-programmed, and apparently it doesn't like that. The DMA will then not operate when instructed. This patch relocates much of the DMA programming to fsl_dma_open(), which is called only once. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
This commit is contained in:
parent
11589418a1
commit
bf9c8c9dde
1 changed files with 131 additions and 118 deletions
|
@ -327,14 +327,75 @@ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
|
||||||
* fsl_dma_open: open a new substream.
|
* fsl_dma_open: open a new substream.
|
||||||
*
|
*
|
||||||
* Each substream has its own DMA buffer.
|
* Each substream has its own DMA buffer.
|
||||||
|
*
|
||||||
|
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
|
||||||
|
* descriptors that ping-pong from one period to the next. For example, if
|
||||||
|
* there are six periods and two link descriptors, this is how they look
|
||||||
|
* before playback starts:
|
||||||
|
*
|
||||||
|
* The last link descriptor
|
||||||
|
* ____________ points back to the first
|
||||||
|
* | |
|
||||||
|
* V |
|
||||||
|
* ___ ___ |
|
||||||
|
* | |->| |->|
|
||||||
|
* |___| |___|
|
||||||
|
* | |
|
||||||
|
* | |
|
||||||
|
* V V
|
||||||
|
* _________________________________________
|
||||||
|
* | | | | | | | The DMA buffer is
|
||||||
|
* | | | | | | | divided into 6 parts
|
||||||
|
* |______|______|______|______|______|______|
|
||||||
|
*
|
||||||
|
* and here's how they look after the first period is finished playing:
|
||||||
|
*
|
||||||
|
* ____________
|
||||||
|
* | |
|
||||||
|
* V |
|
||||||
|
* ___ ___ |
|
||||||
|
* | |->| |->|
|
||||||
|
* |___| |___|
|
||||||
|
* | |
|
||||||
|
* |______________
|
||||||
|
* | |
|
||||||
|
* V V
|
||||||
|
* _________________________________________
|
||||||
|
* | | | | | | |
|
||||||
|
* | | | | | | |
|
||||||
|
* |______|______|______|______|______|______|
|
||||||
|
*
|
||||||
|
* The first link descriptor now points to the third period. The DMA
|
||||||
|
* controller is currently playing the second period. When it finishes, it
|
||||||
|
* will jump back to the first descriptor and play the third period.
|
||||||
|
*
|
||||||
|
* There are four reasons we do this:
|
||||||
|
*
|
||||||
|
* 1. The only way to get the DMA controller to automatically restart the
|
||||||
|
* transfer when it gets to the end of the buffer is to use chaining
|
||||||
|
* mode. Basic direct mode doesn't offer that feature.
|
||||||
|
* 2. We need to receive an interrupt at the end of every period. The DMA
|
||||||
|
* controller can generate an interrupt at the end of every link transfer
|
||||||
|
* (aka segment). Making each period into a DMA segment will give us the
|
||||||
|
* interrupts we need.
|
||||||
|
* 3. By creating only two link descriptors, regardless of the number of
|
||||||
|
* periods, we do not need to reallocate the link descriptors if the
|
||||||
|
* number of periods changes.
|
||||||
|
* 4. All of the audio data is still stored in a single, contiguous DMA
|
||||||
|
* buffer, which is what ALSA expects. We're just dividing it into
|
||||||
|
* contiguous parts, and creating a link descriptor for each one.
|
||||||
*/
|
*/
|
||||||
static int fsl_dma_open(struct snd_pcm_substream *substream)
|
static int fsl_dma_open(struct snd_pcm_substream *substream)
|
||||||
{
|
{
|
||||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||||
struct fsl_dma_private *dma_private;
|
struct fsl_dma_private *dma_private;
|
||||||
|
struct ccsr_dma_channel __iomem *dma_channel;
|
||||||
dma_addr_t ld_buf_phys;
|
dma_addr_t ld_buf_phys;
|
||||||
|
u64 temp_link; /* Pointer to next link descriptor */
|
||||||
|
u32 mr;
|
||||||
unsigned int channel;
|
unsigned int channel;
|
||||||
int ret = 0;
|
int ret = 0;
|
||||||
|
unsigned int i;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Reject any DMA buffer whose size is not a multiple of the period
|
* Reject any DMA buffer whose size is not a multiple of the period
|
||||||
|
@ -395,135 +456,20 @@ static int fsl_dma_open(struct snd_pcm_substream *substream)
|
||||||
snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
|
snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
|
||||||
runtime->private_data = dma_private;
|
runtime->private_data = dma_private;
|
||||||
|
|
||||||
return 0;
|
/* Program the fixed DMA controller parameters */
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
dma_channel = dma_private->dma_channel;
|
||||||
* fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
|
|
||||||
*
|
|
||||||
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
|
|
||||||
* descriptors that ping-pong from one period to the next. For example, if
|
|
||||||
* there are six periods and two link descriptors, this is how they look
|
|
||||||
* before playback starts:
|
|
||||||
*
|
|
||||||
* The last link descriptor
|
|
||||||
* ____________ points back to the first
|
|
||||||
* | |
|
|
||||||
* V |
|
|
||||||
* ___ ___ |
|
|
||||||
* | |->| |->|
|
|
||||||
* |___| |___|
|
|
||||||
* | |
|
|
||||||
* | |
|
|
||||||
* V V
|
|
||||||
* _________________________________________
|
|
||||||
* | | | | | | | The DMA buffer is
|
|
||||||
* | | | | | | | divided into 6 parts
|
|
||||||
* |______|______|______|______|______|______|
|
|
||||||
*
|
|
||||||
* and here's how they look after the first period is finished playing:
|
|
||||||
*
|
|
||||||
* ____________
|
|
||||||
* | |
|
|
||||||
* V |
|
|
||||||
* ___ ___ |
|
|
||||||
* | |->| |->|
|
|
||||||
* |___| |___|
|
|
||||||
* | |
|
|
||||||
* |______________
|
|
||||||
* | |
|
|
||||||
* V V
|
|
||||||
* _________________________________________
|
|
||||||
* | | | | | | |
|
|
||||||
* | | | | | | |
|
|
||||||
* |______|______|______|______|______|______|
|
|
||||||
*
|
|
||||||
* The first link descriptor now points to the third period. The DMA
|
|
||||||
* controller is currently playing the second period. When it finishes, it
|
|
||||||
* will jump back to the first descriptor and play the third period.
|
|
||||||
*
|
|
||||||
* There are four reasons we do this:
|
|
||||||
*
|
|
||||||
* 1. The only way to get the DMA controller to automatically restart the
|
|
||||||
* transfer when it gets to the end of the buffer is to use chaining
|
|
||||||
* mode. Basic direct mode doesn't offer that feature.
|
|
||||||
* 2. We need to receive an interrupt at the end of every period. The DMA
|
|
||||||
* controller can generate an interrupt at the end of every link transfer
|
|
||||||
* (aka segment). Making each period into a DMA segment will give us the
|
|
||||||
* interrupts we need.
|
|
||||||
* 3. By creating only two link descriptors, regardless of the number of
|
|
||||||
* periods, we do not need to reallocate the link descriptors if the
|
|
||||||
* number of periods changes.
|
|
||||||
* 4. All of the audio data is still stored in a single, contiguous DMA
|
|
||||||
* buffer, which is what ALSA expects. We're just dividing it into
|
|
||||||
* contiguous parts, and creating a link descriptor for each one.
|
|
||||||
*
|
|
||||||
* Note that due to a quirk of the SSI's STX register, the target address
|
|
||||||
* for the DMA operations depends on the sample size. So we don't program
|
|
||||||
* the dest_addr (for playback -- source_addr for capture) fields in the
|
|
||||||
* link descriptors here. We do that in fsl_dma_prepare()
|
|
||||||
*/
|
|
||||||
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
|
||||||
struct snd_pcm_hw_params *hw_params)
|
|
||||||
{
|
|
||||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
||||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
|
||||||
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
|
||||||
|
|
||||||
dma_addr_t temp_addr; /* Pointer to next period */
|
|
||||||
u64 temp_link; /* Pointer to next link descriptor */
|
|
||||||
u32 mr; /* Temporary variable for MR register */
|
|
||||||
|
|
||||||
unsigned int i;
|
|
||||||
|
|
||||||
/* Get all the parameters we need */
|
|
||||||
size_t buffer_size = params_buffer_bytes(hw_params);
|
|
||||||
size_t period_size = params_period_bytes(hw_params);
|
|
||||||
|
|
||||||
/* Initialize our DMA tracking variables */
|
|
||||||
dma_private->period_size = period_size;
|
|
||||||
dma_private->num_periods = params_periods(hw_params);
|
|
||||||
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
|
|
||||||
dma_private->dma_buf_next = dma_private->dma_buf_phys +
|
|
||||||
(NUM_DMA_LINKS * period_size);
|
|
||||||
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
|
||||||
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Initialize each link descriptor.
|
|
||||||
*
|
|
||||||
* The actual address in STX0 (destination for playback, source for
|
|
||||||
* capture) is based on the sample size, but we don't know the sample
|
|
||||||
* size in this function, so we'll have to adjust that later. See
|
|
||||||
* comments in fsl_dma_prepare().
|
|
||||||
*
|
|
||||||
* The DMA controller does not have a cache, so the CPU does not
|
|
||||||
* need to tell it to flush its cache. However, the DMA
|
|
||||||
* controller does need to tell the CPU to flush its cache.
|
|
||||||
* That's what the SNOOP bit does.
|
|
||||||
*
|
|
||||||
* Also, even though the DMA controller supports 36-bit addressing, for
|
|
||||||
* simplicity we currently support only 32-bit addresses for the audio
|
|
||||||
* buffer itself.
|
|
||||||
*/
|
|
||||||
temp_addr = substream->dma_buffer.addr;
|
|
||||||
temp_link = dma_private->ld_buf_phys +
|
temp_link = dma_private->ld_buf_phys +
|
||||||
sizeof(struct fsl_dma_link_descriptor);
|
sizeof(struct fsl_dma_link_descriptor);
|
||||||
|
|
||||||
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
||||||
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
||||||
|
|
||||||
link->count = cpu_to_be32(period_size);
|
|
||||||
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||||
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||||
link->next = cpu_to_be64(temp_link);
|
link->next = cpu_to_be64(temp_link);
|
||||||
|
|
||||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
||||||
link->source_addr = cpu_to_be32(temp_addr);
|
|
||||||
else
|
|
||||||
link->dest_addr = cpu_to_be32(temp_addr);
|
|
||||||
|
|
||||||
temp_addr += period_size;
|
|
||||||
temp_link += sizeof(struct fsl_dma_link_descriptor);
|
temp_link += sizeof(struct fsl_dma_link_descriptor);
|
||||||
}
|
}
|
||||||
/* The last link descriptor points to the first */
|
/* The last link descriptor points to the first */
|
||||||
|
@ -549,7 +495,7 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
||||||
* We want External Master Start and External Master Pause enabled,
|
* We want External Master Start and External Master Pause enabled,
|
||||||
* because the SSI is controlling the DMA controller. We want the DMA
|
* because the SSI is controlling the DMA controller. We want the DMA
|
||||||
* controller to be set up in advance, and then we signal only the SSI
|
* controller to be set up in advance, and then we signal only the SSI
|
||||||
* to start transfering.
|
* to start transferring.
|
||||||
*
|
*
|
||||||
* We want End-Of-Segment Interrupts enabled, because this will generate
|
* We want End-Of-Segment Interrupts enabled, because this will generate
|
||||||
* an interrupt at the end of each segment (each link descriptor
|
* an interrupt at the end of each segment (each link descriptor
|
||||||
|
@ -573,6 +519,73 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* fsl_dma_hw_params: continue initializing the DMA links
|
||||||
|
*
|
||||||
|
* This function obtains hardware parameters about the opened stream and
|
||||||
|
* programs the DMA controller accordingly.
|
||||||
|
*
|
||||||
|
* Note that due to a quirk of the SSI's STX register, the target address
|
||||||
|
* for the DMA operations depends on the sample size. So we don't program
|
||||||
|
* the dest_addr (for playback -- source_addr for capture) fields in the
|
||||||
|
* link descriptors here. We do that in fsl_dma_prepare()
|
||||||
|
*/
|
||||||
|
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
||||||
|
struct snd_pcm_hw_params *hw_params)
|
||||||
|
{
|
||||||
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||||
|
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||||
|
|
||||||
|
dma_addr_t temp_addr; /* Pointer to next period */
|
||||||
|
|
||||||
|
unsigned int i;
|
||||||
|
|
||||||
|
/* Get all the parameters we need */
|
||||||
|
size_t buffer_size = params_buffer_bytes(hw_params);
|
||||||
|
size_t period_size = params_period_bytes(hw_params);
|
||||||
|
|
||||||
|
/* Initialize our DMA tracking variables */
|
||||||
|
dma_private->period_size = period_size;
|
||||||
|
dma_private->num_periods = params_periods(hw_params);
|
||||||
|
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
|
||||||
|
dma_private->dma_buf_next = dma_private->dma_buf_phys +
|
||||||
|
(NUM_DMA_LINKS * period_size);
|
||||||
|
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
||||||
|
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The actual address in STX0 (destination for playback, source for
|
||||||
|
* capture) is based on the sample size, but we don't know the sample
|
||||||
|
* size in this function, so we'll have to adjust that later. See
|
||||||
|
* comments in fsl_dma_prepare().
|
||||||
|
*
|
||||||
|
* The DMA controller does not have a cache, so the CPU does not
|
||||||
|
* need to tell it to flush its cache. However, the DMA
|
||||||
|
* controller does need to tell the CPU to flush its cache.
|
||||||
|
* That's what the SNOOP bit does.
|
||||||
|
*
|
||||||
|
* Also, even though the DMA controller supports 36-bit addressing, for
|
||||||
|
* simplicity we currently support only 32-bit addresses for the audio
|
||||||
|
* buffer itself.
|
||||||
|
*/
|
||||||
|
temp_addr = substream->dma_buffer.addr;
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
||||||
|
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
||||||
|
|
||||||
|
link->count = cpu_to_be32(period_size);
|
||||||
|
|
||||||
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||||
|
link->source_addr = cpu_to_be32(temp_addr);
|
||||||
|
else
|
||||||
|
link->dest_addr = cpu_to_be32(temp_addr);
|
||||||
|
|
||||||
|
temp_addr += period_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* fsl_dma_prepare - prepare the DMA registers for playback.
|
* fsl_dma_prepare - prepare the DMA registers for playback.
|
||||||
*
|
*
|
||||||
|
|
Loading…
Reference in a new issue