mirror of
https://github.com/adulau/aha.git
synced 2024-12-27 19:26:25 +00:00
rcu: Update trace.txt documentation to reflect recent changes
o Remove the CONFIG_PREEMPT_RCU documentation since this config option has now been removed. o Change the now-incorrect references to "rcu" labels to instead be "rcu_sched". o Add notes stating that CONFIG_TREE_PREEMPT_RCU kernels will have additional "rcu_preempt" output. o Note the new "oqlen" field in the rcuhier output (for RCU callbacks orphaned by an offlined CPU). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com Cc: npiggin@suse.de Cc: jens.axboe@oracle.com LKML-Reference: <1255540559799-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
3397e040df
commit
bd58b43003
1 changed files with 33 additions and 198 deletions
|
@ -1,185 +1,10 @@
|
|||
CONFIG_RCU_TRACE debugfs Files and Formats
|
||||
|
||||
|
||||
The rcupreempt and rcutree implementations of RCU provide debugfs trace
|
||||
output that summarizes counters and state. This information is useful for
|
||||
debugging RCU itself, and can sometimes also help to debug abuses of RCU.
|
||||
Note that the rcuclassic implementation of RCU does not provide debugfs
|
||||
trace output.
|
||||
|
||||
The following sections describe the debugfs files and formats for
|
||||
preemptable RCU (rcupreempt) and hierarchical RCU (rcutree).
|
||||
|
||||
|
||||
Preemptable RCU debugfs Files and Formats
|
||||
|
||||
This implementation of RCU provides three debugfs files under the
|
||||
top-level directory RCU: rcu/rcuctrs (which displays the per-CPU
|
||||
counters used by preemptable RCU) rcu/rcugp (which displays grace-period
|
||||
counters), and rcu/rcustats (which internal counters for debugging RCU).
|
||||
|
||||
The output of "cat rcu/rcuctrs" looks as follows:
|
||||
|
||||
CPU last cur F M
|
||||
0 5 -5 0 0
|
||||
1 -1 0 0 0
|
||||
2 0 1 0 0
|
||||
3 0 1 0 0
|
||||
4 0 1 0 0
|
||||
5 0 1 0 0
|
||||
6 0 2 0 0
|
||||
7 0 -1 0 0
|
||||
8 0 1 0 0
|
||||
ggp = 26226, state = waitzero
|
||||
|
||||
The per-CPU fields are as follows:
|
||||
|
||||
o "CPU" gives the CPU number. Offline CPUs are not displayed.
|
||||
|
||||
o "last" gives the value of the counter that is being decremented
|
||||
for the current grace period phase. In the example above,
|
||||
the counters sum to 4, indicating that there are still four
|
||||
RCU read-side critical sections still running that started
|
||||
before the last counter flip.
|
||||
|
||||
o "cur" gives the value of the counter that is currently being
|
||||
both incremented (by rcu_read_lock()) and decremented (by
|
||||
rcu_read_unlock()). In the example above, the counters sum to
|
||||
1, indicating that there is only one RCU read-side critical section
|
||||
still running that started after the last counter flip.
|
||||
|
||||
o "F" indicates whether RCU is waiting for this CPU to acknowledge
|
||||
a counter flip. In the above example, RCU is not waiting on any,
|
||||
which is consistent with the state being "waitzero" rather than
|
||||
"waitack".
|
||||
|
||||
o "M" indicates whether RCU is waiting for this CPU to execute a
|
||||
memory barrier. In the above example, RCU is not waiting on any,
|
||||
which is consistent with the state being "waitzero" rather than
|
||||
"waitmb".
|
||||
|
||||
o "ggp" is the global grace-period counter.
|
||||
|
||||
o "state" is the RCU state, which can be one of the following:
|
||||
|
||||
o "idle": there is no grace period in progress.
|
||||
|
||||
o "waitack": RCU just incremented the global grace-period
|
||||
counter, which has the effect of reversing the roles of
|
||||
the "last" and "cur" counters above, and is waiting for
|
||||
all the CPUs to acknowledge the flip. Once the flip has
|
||||
been acknowledged, CPUs will no longer be incrementing
|
||||
what are now the "last" counters, so that their sum will
|
||||
decrease monotonically down to zero.
|
||||
|
||||
o "waitzero": RCU is waiting for the sum of the "last" counters
|
||||
to decrease to zero.
|
||||
|
||||
o "waitmb": RCU is waiting for each CPU to execute a memory
|
||||
barrier, which ensures that instructions from a given CPU's
|
||||
last RCU read-side critical section cannot be reordered
|
||||
with instructions following the memory-barrier instruction.
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
oldggp=48870 newggp=48873
|
||||
|
||||
Note that reading from this file provokes a synchronize_rcu(). The
|
||||
"oldggp" value is that of "ggp" from rcu/rcuctrs above, taken before
|
||||
executing the synchronize_rcu(), and the "newggp" value is also the
|
||||
"ggp" value, but taken after the synchronize_rcu() command returns.
|
||||
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
na=1337955 nl=40 wa=1337915 wl=44 da=1337871 dl=0 dr=1337871 di=1337871
|
||||
1=50989 e1=6138 i1=49722 ie1=82 g1=49640 a1=315203 ae1=265563 a2=49640
|
||||
z1=1401244 ze1=1351605 z2=49639 m1=5661253 me1=5611614 m2=49639
|
||||
|
||||
These are counters tracking internal preemptable-RCU events, however,
|
||||
some of them may be useful for debugging algorithms using RCU. In
|
||||
particular, the "nl", "wl", and "dl" values track the number of RCU
|
||||
callbacks in various states. The fields are as follows:
|
||||
|
||||
o "na" is the total number of RCU callbacks that have been enqueued
|
||||
since boot.
|
||||
|
||||
o "nl" is the number of RCU callbacks waiting for the previous
|
||||
grace period to end so that they can start waiting on the next
|
||||
grace period.
|
||||
|
||||
o "wa" is the total number of RCU callbacks that have started waiting
|
||||
for a grace period since boot. "na" should be roughly equal to
|
||||
"nl" plus "wa".
|
||||
|
||||
o "wl" is the number of RCU callbacks currently waiting for their
|
||||
grace period to end.
|
||||
|
||||
o "da" is the total number of RCU callbacks whose grace periods
|
||||
have completed since boot. "wa" should be roughly equal to
|
||||
"wl" plus "da".
|
||||
|
||||
o "dr" is the total number of RCU callbacks that have been removed
|
||||
from the list of callbacks ready to invoke. "dr" should be roughly
|
||||
equal to "da".
|
||||
|
||||
o "di" is the total number of RCU callbacks that have been invoked
|
||||
since boot. "di" should be roughly equal to "da", though some
|
||||
early versions of preemptable RCU had a bug so that only the
|
||||
last CPU's count of invocations was displayed, rather than the
|
||||
sum of all CPU's counts.
|
||||
|
||||
o "1" is the number of calls to rcu_try_flip(). This should be
|
||||
roughly equal to the sum of "e1", "i1", "a1", "z1", and "m1"
|
||||
described below. In other words, the number of times that
|
||||
the state machine is visited should be equal to the sum of the
|
||||
number of times that each state is visited plus the number of
|
||||
times that the state-machine lock acquisition failed.
|
||||
|
||||
o "e1" is the number of times that rcu_try_flip() was unable to
|
||||
acquire the fliplock.
|
||||
|
||||
o "i1" is the number of calls to rcu_try_flip_idle().
|
||||
|
||||
o "ie1" is the number of times rcu_try_flip_idle() exited early
|
||||
due to the calling CPU having no work for RCU.
|
||||
|
||||
o "g1" is the number of times that rcu_try_flip_idle() decided
|
||||
to start a new grace period. "i1" should be roughly equal to
|
||||
"ie1" plus "g1".
|
||||
|
||||
o "a1" is the number of calls to rcu_try_flip_waitack().
|
||||
|
||||
o "ae1" is the number of times that rcu_try_flip_waitack() found
|
||||
that at least one CPU had not yet acknowledge the new grace period
|
||||
(AKA "counter flip").
|
||||
|
||||
o "a2" is the number of time rcu_try_flip_waitack() found that
|
||||
all CPUs had acknowledged. "a1" should be roughly equal to
|
||||
"ae1" plus "a2". (This particular output was collected on
|
||||
a 128-CPU machine, hence the smaller-than-usual fraction of
|
||||
calls to rcu_try_flip_waitack() finding all CPUs having already
|
||||
acknowledged.)
|
||||
|
||||
o "z1" is the number of calls to rcu_try_flip_waitzero().
|
||||
|
||||
o "ze1" is the number of times that rcu_try_flip_waitzero() found
|
||||
that not all of the old RCU read-side critical sections had
|
||||
completed.
|
||||
|
||||
o "z2" is the number of times that rcu_try_flip_waitzero() finds
|
||||
the sum of the counters equal to zero, in other words, that
|
||||
all of the old RCU read-side critical sections had completed.
|
||||
The value of "z1" should be roughly equal to "ze1" plus
|
||||
"z2".
|
||||
|
||||
o "m1" is the number of calls to rcu_try_flip_waitmb().
|
||||
|
||||
o "me1" is the number of times that rcu_try_flip_waitmb() finds
|
||||
that at least one CPU has not yet executed a memory barrier.
|
||||
|
||||
o "m2" is the number of times that rcu_try_flip_waitmb() finds that
|
||||
all CPUs have executed a memory barrier.
|
||||
The rcutree implementation of RCU provides debugfs trace output that
|
||||
summarizes counters and state. This information is useful for debugging
|
||||
RCU itself, and can sometimes also help to debug abuses of RCU.
|
||||
The following sections describe the debugfs files and formats.
|
||||
|
||||
|
||||
Hierarchical RCU debugfs Files and Formats
|
||||
|
@ -210,9 +35,10 @@ rcu_bh:
|
|||
6 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=859/1 dn=0 df=15 of=0 ri=0 ql=0 b=10
|
||||
7 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=3761/1 dn=0 df=15 of=0 ri=0 ql=0 b=10
|
||||
|
||||
The first section lists the rcu_data structures for rcu, the second for
|
||||
rcu_bh. Each section has one line per CPU, or eight for this 8-CPU system.
|
||||
The fields are as follows:
|
||||
The first section lists the rcu_data structures for rcu_sched, the second
|
||||
for rcu_bh. Note that CONFIG_TREE_PREEMPT_RCU kernels will have an
|
||||
additional section for rcu_preempt. Each section has one line per CPU,
|
||||
or eight for this 8-CPU system. The fields are as follows:
|
||||
|
||||
o The number at the beginning of each line is the CPU number.
|
||||
CPUs numbers followed by an exclamation mark are offline,
|
||||
|
@ -223,9 +49,9 @@ o The number at the beginning of each line is the CPU number.
|
|||
|
||||
o "c" is the count of grace periods that this CPU believes have
|
||||
completed. CPUs in dynticks idle mode may lag quite a ways
|
||||
behind, for example, CPU 4 under "rcu" above, which has slept
|
||||
through the past 25 RCU grace periods. It is not unusual to
|
||||
see CPUs lagging by thousands of grace periods.
|
||||
behind, for example, CPU 4 under "rcu_sched" above, which has
|
||||
slept through the past 25 RCU grace periods. It is not unusual
|
||||
to see CPUs lagging by thousands of grace periods.
|
||||
|
||||
o "g" is the count of grace periods that this CPU believes have
|
||||
started. Again, CPUs in dynticks idle mode may lag behind.
|
||||
|
@ -308,8 +134,10 @@ The output of "cat rcu/rcugp" looks as follows:
|
|||
rcu_sched: completed=33062 gpnum=33063
|
||||
rcu_bh: completed=464 gpnum=464
|
||||
|
||||
Again, this output is for both "rcu" and "rcu_bh". The fields are
|
||||
taken from the rcu_state structure, and are as follows:
|
||||
Again, this output is for both "rcu_sched" and "rcu_bh". Note that
|
||||
kernels built with CONFIG_TREE_PREEMPT_RCU will have an additional
|
||||
"rcu_preempt" line. The fields are taken from the rcu_state structure,
|
||||
and are as follows:
|
||||
|
||||
o "completed" is the number of grace periods that have completed.
|
||||
It is comparable to the "c" field from rcu/rcudata in that a
|
||||
|
@ -324,23 +152,24 @@ o "gpnum" is the number of grace periods that have started. It is
|
|||
If these two fields are equal (as they are for "rcu_bh" above),
|
||||
then there is no grace period in progress, in other words, RCU
|
||||
is idle. On the other hand, if the two fields differ (as they
|
||||
do for "rcu" above), then an RCU grace period is in progress.
|
||||
do for "rcu_sched" above), then an RCU grace period is in progress.
|
||||
|
||||
|
||||
The output of "cat rcu/rcuhier" looks as follows, with very long lines:
|
||||
|
||||
c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6
|
||||
c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6 oqlen=0
|
||||
1/1 0:127 ^0
|
||||
3/3 0:35 ^0 0/0 36:71 ^1 0/0 72:107 ^2 0/0 108:127 ^3
|
||||
3/3f 0:5 ^0 2/3 6:11 ^1 0/0 12:17 ^2 0/0 18:23 ^3 0/0 24:29 ^4 0/0 30:35 ^5 0/0 36:41 ^0 0/0 42:47 ^1 0/0 48:53 ^2 0/0 54:59 ^3 0/0 60:65 ^4 0/0 66:71 ^5 0/0 72:77 ^0 0/0 78:83 ^1 0/0 84:89 ^2 0/0 90:95 ^3 0/0 96:101 ^4 0/0 102:107 ^5 0/0 108:113 ^0 0/0 114:119 ^1 0/0 120:125 ^2 0/0 126:127 ^3
|
||||
rcu_bh:
|
||||
c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0
|
||||
c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0 oqlen=0
|
||||
0/1 0:127 ^0
|
||||
0/3 0:35 ^0 0/0 36:71 ^1 0/0 72:107 ^2 0/0 108:127 ^3
|
||||
0/3f 0:5 ^0 0/3 6:11 ^1 0/0 12:17 ^2 0/0 18:23 ^3 0/0 24:29 ^4 0/0 30:35 ^5 0/0 36:41 ^0 0/0 42:47 ^1 0/0 48:53 ^2 0/0 54:59 ^3 0/0 60:65 ^4 0/0 66:71 ^5 0/0 72:77 ^0 0/0 78:83 ^1 0/0 84:89 ^2 0/0 90:95 ^3 0/0 96:101 ^4 0/0 102:107 ^5 0/0 108:113 ^0 0/0 114:119 ^1 0/0 120:125 ^2 0/0 126:127 ^3
|
||||
|
||||
This is once again split into "rcu" and "rcu_bh" portions. The fields are
|
||||
as follows:
|
||||
This is once again split into "rcu_sched" and "rcu_bh" portions,
|
||||
and CONFIG_TREE_PREEMPT_RCU kernels will again have an additional
|
||||
"rcu_preempt" section. The fields are as follows:
|
||||
|
||||
o "c" is exactly the same as "completed" under rcu/rcugp.
|
||||
|
||||
|
@ -372,6 +201,11 @@ o "fqlh" is the number of calls to force_quiescent_state() that
|
|||
exited immediately (without even being counted in nfqs above)
|
||||
due to contention on ->fqslock.
|
||||
|
||||
o "oqlen" is the number of callbacks on the "orphan" callback
|
||||
list. RCU callbacks are placed on this list by CPUs going
|
||||
offline, and are "adopted" either by the CPU helping the outgoing
|
||||
CPU or by the next rcu_barrier*() call, whichever comes first.
|
||||
|
||||
o Each element of the form "1/1 0:127 ^0" represents one struct
|
||||
rcu_node. Each line represents one level of the hierarchy, from
|
||||
root to leaves. It is best to think of the rcu_data structures
|
||||
|
@ -389,10 +223,10 @@ o Each element of the form "1/1 0:127 ^0" represents one struct
|
|||
The value of qsmaskinit is assigned to that of qsmask
|
||||
at the beginning of each grace period.
|
||||
|
||||
For example, for "rcu", the qsmask of the first entry
|
||||
of the lowest level is 0x14, meaning that we are still
|
||||
waiting for CPUs 2 and 4 to check in for the current
|
||||
grace period.
|
||||
For example, for "rcu_sched", the qsmask of the first
|
||||
entry of the lowest level is 0x14, meaning that we
|
||||
are still waiting for CPUs 2 and 4 to check in for the
|
||||
current grace period.
|
||||
|
||||
o The numbers separated by the ":" are the range of CPUs
|
||||
served by this struct rcu_node. This can be helpful
|
||||
|
@ -431,8 +265,9 @@ rcu_bh:
|
|||
6 np=120834 qsp=9902 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921
|
||||
7 np=144888 qsp=26336 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542
|
||||
|
||||
As always, this is once again split into "rcu" and "rcu_bh" portions.
|
||||
The fields are as follows:
|
||||
As always, this is once again split into "rcu_sched" and "rcu_bh"
|
||||
portions, with CONFIG_TREE_PREEMPT_RCU kernels having an additional
|
||||
"rcu_preempt" section. The fields are as follows:
|
||||
|
||||
o "np" is the number of times that __rcu_pending() has been invoked
|
||||
for the corresponding flavor of RCU.
|
||||
|
|
Loading…
Reference in a new issue