[SCSI] advansys: Create AdvLoadMicrocode

Split AdvLoadMicrocode out of AdvInitAsc3550Driver, AdvInitAsc38C0800Driver
and AdvInitAsc38C1600Driver.

Signed-off-by: Matthew Wilcox <matthew@wil.cx>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
This commit is contained in:
Matthew Wilcox 2007-09-09 08:56:28 -06:00 committed by James Bottomley
parent a9f4a59a94
commit b9d9661400

View file

@ -12931,6 +12931,78 @@ static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
} while (buf_size > 0);
}
/*
* Load the Microcode
*
* Write the microcode image to RISC memory starting at address 0.
*
* The microcode is stored compressed in the following format:
*
* 254 word (508 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
*
* Returns 0 or an error if the checksum doesn't match
*/
static int AdvLoadMicrocode(AdvPortAddr iop_base, unsigned char *buf, int size,
int memsize, int chksum)
{
int i, j, end, len = 0;
ADV_DCNT sum;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (i = 253 * 2; i < size; i++) {
if (buf[i] == 0xff) {
unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
for (j = 0; j < buf[i + 1]; j++) {
AdvWriteWordAutoIncLram(iop_base, word);
len += 2;
}
i += 3;
} else if (buf[i] == 0xfe) {
unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
AdvWriteWordAutoIncLram(iop_base, word);
i += 2;
len += 2;
} else {
unsigned char off = buf[i] * 2;
unsigned short word = (buf[off + 1] << 8) | buf[off];
AdvWriteWordAutoIncLram(iop_base, word);
len += 2;
}
}
end = len;
while (len < memsize) {
AdvWriteWordAutoIncLram(iop_base, 0);
len += 2;
}
/* Verify the microcode checksum. */
sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (len = 0; len < end; len += 2) {
sum += AdvReadWordAutoIncLram(iop_base);
}
if (sum != chksum)
return ASC_IERR_MCODE_CHKSUM;
return 0;
}
/*
* Initialize the ASC-3550.
*
@ -12945,13 +13017,10 @@ static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADV_DCNT sum;
int begin_addr;
int end_addr;
ushort code_sum;
int word;
int j;
int adv_asc3550_expanded_size;
int i;
ushort scsi_cfg1;
uchar tid;
@ -12960,15 +13029,14 @@ static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
uchar max_cmd[ADV_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0) {
if (asc_dvc->err_code != 0)
return ADV_ERROR;
}
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC3550.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
@ -13012,84 +13080,11 @@ static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
max_cmd[tid]);
}
/*
* Load the Microcode
*
* Write the microcode image to RISC memory starting at address 0.
*/
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
/* Assume the following compressed format of the microcode buffer:
*
* 254 word (508 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
*/
word = 0;
for (i = 253 * 2; i < _adv_asc3550_size; i++) {
if (_adv_asc3550_buf[i] == 0xff) {
for (j = 0; j < _adv_asc3550_buf[i + 1]; j++) {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc3550_buf
[i +
3] << 8) |
_adv_asc3550_buf
[i + 2]));
word++;
}
i += 3;
} else if (_adv_asc3550_buf[i] == 0xfe) {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc3550_buf[i +
2]
<< 8) |
_adv_asc3550_buf[i +
1]));
i += 2;
word++;
} else {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc3550_buf[(_adv_asc3550_buf[i] * 2) + 1] << 8) | _adv_asc3550_buf[_adv_asc3550_buf[i] * 2]));
word++;
}
}
/*
* Set 'word' for later use to clear the rest of memory and save
* the expanded mcode size.
*/
word *= 2;
adv_asc3550_expanded_size = word;
/*
* Clear the rest of ASC-3550 Internal RAM (8KB).
*/
for (; word < ADV_3550_MEMSIZE; word += 2) {
AdvWriteWordAutoIncLram(iop_base, 0);
}
/*
* Verify the microcode checksum.
*/
sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (word = 0; word < adv_asc3550_expanded_size; word += 2) {
sum += AdvReadWordAutoIncLram(iop_base);
}
if (sum != _adv_asc3550_chksum) {
asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
asc_dvc->err_code = AdvLoadMicrocode(iop_base, _adv_asc3550_buf,
_adv_asc3550_size, ADV_3550_MEMSIZE,
_adv_asc3550_chksum);
if (asc_dvc->err_code)
return ADV_ERROR;
}
/*
* Restore the RISC memory BIOS region.
@ -13460,13 +13455,10 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADV_DCNT sum;
int begin_addr;
int end_addr;
ushort code_sum;
int word;
int j;
int adv_asc38C0800_expanded_size;
int i;
ushort scsi_cfg1;
uchar byte;
@ -13476,9 +13468,8 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
uchar max_cmd[ADV_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0) {
if (asc_dvc->err_code != 0)
return ADV_ERROR;
}
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
@ -13550,7 +13541,7 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0
|| (byte & 0x0F) != PRE_TEST_VALUE) {
asc_dvc->err_code |= ASC_IERR_BIST_PRE_TEST;
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
@ -13558,7 +13549,7 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
DvcSleepMilliSecond(10); /* Wait for 10ms before reading back. */
if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
!= NORMAL_VALUE) {
asc_dvc->err_code |= ASC_IERR_BIST_PRE_TEST;
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
}
@ -13577,99 +13568,18 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
/* Get here if Done bit not set or Status not 0. */
asc_dvc->bist_err_code = byte; /* for BIOS display message */
asc_dvc->err_code |= ASC_IERR_BIST_RAM_TEST;
asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
return ADV_ERROR;
}
/* We need to reset back to normal mode after LRAM test passes. */
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
/*
* Load the Microcode
*
* Write the microcode image to RISC memory starting at address 0.
*
*/
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
/* Assume the following compressed format of the microcode buffer:
*
* 254 word (508 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
*/
word = 0;
for (i = 253 * 2; i < _adv_asc38C0800_size; i++) {
if (_adv_asc38C0800_buf[i] == 0xff) {
for (j = 0; j < _adv_asc38C0800_buf[i + 1]; j++) {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc38C0800_buf
[i +
3] << 8) |
_adv_asc38C0800_buf
[i + 2]));
word++;
}
i += 3;
} else if (_adv_asc38C0800_buf[i] == 0xfe) {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc38C0800_buf
[i +
2] << 8) |
_adv_asc38C0800_buf[i
+
1]));
i += 2;
word++;
} else {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc38C0800_buf[(_adv_asc38C0800_buf[i] * 2) + 1] << 8) | _adv_asc38C0800_buf[_adv_asc38C0800_buf[i] * 2]));
word++;
}
}
/*
* Set 'word' for later use to clear the rest of memory and save
* the expanded mcode size.
*/
word *= 2;
adv_asc38C0800_expanded_size = word;
/*
* Clear the rest of ASC-38C0800 Internal RAM (16KB).
*/
for (; word < ADV_38C0800_MEMSIZE; word += 2) {
AdvWriteWordAutoIncLram(iop_base, 0);
}
/*
* Verify the microcode checksum.
*/
sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (word = 0; word < adv_asc38C0800_expanded_size; word += 2) {
sum += AdvReadWordAutoIncLram(iop_base);
}
ASC_DBG2(1, "AdvInitAsc38C0800Driver: word %d, i %d\n", word, i);
ASC_DBG2(1,
"AdvInitAsc38C0800Driver: sum 0x%lx, _adv_asc38C0800_chksum 0x%lx\n",
(ulong)sum, (ulong)_adv_asc38C0800_chksum);
if (sum != _adv_asc38C0800_chksum) {
asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
asc_dvc->err_code = AdvLoadMicrocode(iop_base, _adv_asc38C0800_buf,
_adv_asc38C0800_size, ADV_38C0800_MEMSIZE,
_adv_asc38C0800_chksum);
if (asc_dvc->err_code)
return ADV_ERROR;
}
/*
* Restore the RISC memory BIOS region.
@ -13807,16 +13717,18 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
}
/*
* All kind of combinations of devices attached to one of four connectors
* are acceptable except HVD device attached. For example, LVD device can
* be attached to SE connector while SE device attached to LVD connector.
* If LVD device attached to SE connector, it only runs up to Ultra speed.
* All kind of combinations of devices attached to one of four
* connectors are acceptable except HVD device attached. For example,
* LVD device can be attached to SE connector while SE device attached
* to LVD connector. If LVD device attached to SE connector, it only
* runs up to Ultra speed.
*
* If an HVD device is attached to one of LVD connectors, return an error.
* However, there is no way to detect HVD device attached to SE connectors.
* If an HVD device is attached to one of LVD connectors, return an
* error. However, there is no way to detect HVD device attached to
* SE connectors.
*/
if (scsi_cfg1 & HVD) {
asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
return ADV_ERROR;
}
@ -13825,8 +13737,8 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
* set the termination value based on a table listed in a_condor.h.
*
* If manual termination was specified with an EEPROM setting then
* 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready to
* be 'ored' into SCSI_CFG1.
* 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
* to be 'ored' into SCSI_CFG1.
*/
if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
/* SE automatic termination control is enabled. */
@ -13872,9 +13784,9 @@ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
/*
* Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE bits
* and set possibly modified termination control bits in the Microcode
* SCSI_CFG1 Register Value.
* Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
* bits and set possibly modified termination control bits in the
* Microcode SCSI_CFG1 Register Value.
*/
scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
@ -14022,13 +13934,10 @@ static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADV_DCNT sum;
int begin_addr;
int end_addr;
ushort code_sum;
long word;
int j;
int adv_asc38C1600_expanded_size;
int i;
ushort scsi_cfg1;
uchar byte;
@ -14113,7 +14022,7 @@ static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0
|| (byte & 0x0F) != PRE_TEST_VALUE) {
asc_dvc->err_code |= ASC_IERR_BIST_PRE_TEST;
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
@ -14121,7 +14030,7 @@ static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
DvcSleepMilliSecond(10); /* Wait for 10ms before reading back. */
if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
!= NORMAL_VALUE) {
asc_dvc->err_code |= ASC_IERR_BIST_PRE_TEST;
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
}
@ -14140,95 +14049,18 @@ static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
/* Get here if Done bit not set or Status not 0. */
asc_dvc->bist_err_code = byte; /* for BIOS display message */
asc_dvc->err_code |= ASC_IERR_BIST_RAM_TEST;
asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
return ADV_ERROR;
}
/* We need to reset back to normal mode after LRAM test passes. */
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
/*
* Load the Microcode
*
* Write the microcode image to RISC memory starting at address 0.
*
*/
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
/*
* Assume the following compressed format of the microcode buffer:
*
* 254 word (508 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
*/
word = 0;
for (i = 253 * 2; i < _adv_asc38C1600_size; i++) {
if (_adv_asc38C1600_buf[i] == 0xff) {
for (j = 0; j < _adv_asc38C1600_buf[i + 1]; j++) {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc38C1600_buf
[i +
3] << 8) |
_adv_asc38C1600_buf
[i + 2]));
word++;
}
i += 3;
} else if (_adv_asc38C1600_buf[i] == 0xfe) {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc38C1600_buf
[i +
2] << 8) |
_adv_asc38C1600_buf[i
+
1]));
i += 2;
word++;
} else {
AdvWriteWordAutoIncLram(iop_base, (((ushort)
_adv_asc38C1600_buf[(_adv_asc38C1600_buf[i] * 2) + 1] << 8) | _adv_asc38C1600_buf[_adv_asc38C1600_buf[i] * 2]));
word++;
}
}
/*
* Set 'word' for later use to clear the rest of memory and save
* the expanded mcode size.
*/
word *= 2;
adv_asc38C1600_expanded_size = word;
/*
* Clear the rest of ASC-38C1600 Internal RAM (32KB).
*/
for (; word < ADV_38C1600_MEMSIZE; word += 2) {
AdvWriteWordAutoIncLram(iop_base, 0);
}
/*
* Verify the microcode checksum.
*/
sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (word = 0; word < adv_asc38C1600_expanded_size; word += 2) {
sum += AdvReadWordAutoIncLram(iop_base);
}
if (sum != _adv_asc38C1600_chksum) {
asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
asc_dvc->err_code = AdvLoadMicrocode(iop_base, _adv_asc38C1600_buf,
_adv_asc38C1600_size, ADV_38C1600_MEMSIZE,
_adv_asc38C1600_chksum);
if (asc_dvc->err_code)
return ADV_ERROR;
}
/*
* Restore the RISC memory BIOS region.