diff --git a/Documentation/lguest/lguest.txt b/Documentation/lguest/lguest.txt index 28c747362f9..efb3a6a045a 100644 --- a/Documentation/lguest/lguest.txt +++ b/Documentation/lguest/lguest.txt @@ -37,7 +37,6 @@ Running Lguest: "Paravirtualized guest support" = Y "Lguest guest support" = Y "High Memory Support" = off/4GB - "PAE (Physical Address Extension) Support" = N "Alignment value to which kernel should be aligned" = 0x100000 (CONFIG_PARAVIRT=y, CONFIG_LGUEST_GUEST=y, CONFIG_HIGHMEM64G=n and CONFIG_PHYSICAL_ALIGN=0x100000) diff --git a/arch/x86/include/asm/lguest.h b/arch/x86/include/asm/lguest.h index 1caf57628b9..313389cd50d 100644 --- a/arch/x86/include/asm/lguest.h +++ b/arch/x86/include/asm/lguest.h @@ -17,8 +17,13 @@ /* Pages for switcher itself, then two pages per cpu */ #define TOTAL_SWITCHER_PAGES (SHARED_SWITCHER_PAGES + 2 * nr_cpu_ids) -/* We map at -4M for ease of mapping into the guest (one PTE page). */ +/* We map at -4M (-2M when PAE is activated) for ease of mapping + * into the guest (one PTE page). */ +#ifdef CONFIG_X86_PAE +#define SWITCHER_ADDR 0xFFE00000 +#else #define SWITCHER_ADDR 0xFFC00000 +#endif /* Found in switcher.S */ extern unsigned long default_idt_entries[]; diff --git a/arch/x86/include/asm/lguest_hcall.h b/arch/x86/include/asm/lguest_hcall.h index b14b3552a4d..d31c4a68407 100644 --- a/arch/x86/include/asm/lguest_hcall.h +++ b/arch/x86/include/asm/lguest_hcall.h @@ -12,6 +12,7 @@ #define LHCALL_TS 8 #define LHCALL_SET_CLOCKEVENT 9 #define LHCALL_HALT 10 +#define LHCALL_SET_PMD 13 #define LHCALL_SET_PTE 14 #define LHCALL_SET_PGD 15 #define LHCALL_LOAD_TLS 16 @@ -33,7 +34,7 @@ * operations? There are two ways: the direct way is to make a "hypercall", * to make requests of the Host Itself. * - * We use the KVM hypercall mechanism. Eighteen hypercalls are + * We use the KVM hypercall mechanism. Seventeen hypercalls are * available: the hypercall number is put in the %eax register, and the * arguments (when required) are placed in %ebx, %ecx, %edx and %esi. * If a return value makes sense, it's returned in %eax. diff --git a/arch/x86/lguest/Kconfig b/arch/x86/lguest/Kconfig index 8dab8f7844d..38718041efc 100644 --- a/arch/x86/lguest/Kconfig +++ b/arch/x86/lguest/Kconfig @@ -2,7 +2,6 @@ config LGUEST_GUEST bool "Lguest guest support" select PARAVIRT depends on X86_32 - depends on !X86_PAE select VIRTIO select VIRTIO_RING select VIRTIO_CONSOLE diff --git a/arch/x86/lguest/boot.c b/arch/x86/lguest/boot.c index d12f554e5f6..7bc65f0f62c 100644 --- a/arch/x86/lguest/boot.c +++ b/arch/x86/lguest/boot.c @@ -167,6 +167,7 @@ static void lazy_hcall3(unsigned long call, async_hcall(call, arg1, arg2, arg3, 0); } +#ifdef CONFIG_X86_PAE static void lazy_hcall4(unsigned long call, unsigned long arg1, unsigned long arg2, @@ -178,6 +179,7 @@ static void lazy_hcall4(unsigned long call, else async_hcall(call, arg1, arg2, arg3, arg4); } +#endif /* When lazy mode is turned off reset the per-cpu lazy mode variable and then * issue the do-nothing hypercall to flush any stored calls. */ @@ -380,8 +382,8 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx, case 1: /* Basic feature request. */ /* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */ *cx &= 0x00002201; - /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */ - *dx &= 0x07808111; + /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU, PAE. */ + *dx &= 0x07808151; /* The Host can do a nice optimization if it knows that the * kernel mappings (addresses above 0xC0000000 or whatever * PAGE_OFFSET is set to) haven't changed. But Linux calls @@ -400,6 +402,11 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx, if (*ax > 0x80000008) *ax = 0x80000008; break; + case 0x80000001: + /* Here we should fix nx cap depending on host. */ + /* For this version of PAE, we just clear NX bit. */ + *dx &= ~(1 << 20); + break; } } @@ -533,7 +540,12 @@ static void lguest_write_cr4(unsigned long val) static void lguest_pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { +#ifdef CONFIG_X86_PAE + lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr, + ptep->pte_low, ptep->pte_high); +#else lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low); +#endif } static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr, @@ -543,15 +555,37 @@ static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr, lguest_pte_update(mm, addr, ptep); } -/* The Guest calls this to set a top-level entry. Again, we set the entry then - * tell the Host which top-level page we changed, and the index of the entry we - * changed. */ +/* The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd + * to set a middle-level entry when PAE is activated. + * Again, we set the entry then tell the Host which page we changed, + * and the index of the entry we changed. */ +#ifdef CONFIG_X86_PAE +static void lguest_set_pud(pud_t *pudp, pud_t pudval) +{ + native_set_pud(pudp, pudval); + + /* 32 bytes aligned pdpt address and the index. */ + lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0, + (__pa(pudp) & 0x1F) / sizeof(pud_t)); +} + +static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval) +{ + native_set_pmd(pmdp, pmdval); + lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK, + (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t)); +} +#else + +/* The Guest calls lguest_set_pmd to set a top-level entry when PAE is not + * activated. */ static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval) { native_set_pmd(pmdp, pmdval); lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK, (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t)); } +#endif /* There are a couple of legacy places where the kernel sets a PTE, but we * don't know the top level any more. This is useless for us, since we don't @@ -569,6 +603,26 @@ static void lguest_set_pte(pte_t *ptep, pte_t pteval) lazy_hcall1(LHCALL_FLUSH_TLB, 1); } +#ifdef CONFIG_X86_PAE +static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte) +{ + native_set_pte_atomic(ptep, pte); + if (cr3_changed) + lazy_hcall1(LHCALL_FLUSH_TLB, 1); +} + +void lguest_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) +{ + native_pte_clear(mm, addr, ptep); + lguest_pte_update(mm, addr, ptep); +} + +void lguest_pmd_clear(pmd_t *pmdp) +{ + lguest_set_pmd(pmdp, __pmd(0)); +} +#endif + /* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on * native page table operations. On native hardware you can set a new page * table entry whenever you want, but if you want to remove one you have to do @@ -1035,6 +1089,7 @@ __init void lguest_init(void) pv_info.name = "lguest"; pv_info.paravirt_enabled = 1; pv_info.kernel_rpl = 1; + pv_info.shared_kernel_pmd = 1; /* We set up all the lguest overrides for sensitive operations. These * are detailed with the operations themselves. */ @@ -1080,6 +1135,12 @@ __init void lguest_init(void) pv_mmu_ops.set_pte = lguest_set_pte; pv_mmu_ops.set_pte_at = lguest_set_pte_at; pv_mmu_ops.set_pmd = lguest_set_pmd; +#ifdef CONFIG_X86_PAE + pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic; + pv_mmu_ops.pte_clear = lguest_pte_clear; + pv_mmu_ops.pmd_clear = lguest_pmd_clear; + pv_mmu_ops.set_pud = lguest_set_pud; +#endif pv_mmu_ops.read_cr2 = lguest_read_cr2; pv_mmu_ops.read_cr3 = lguest_read_cr3; pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu; diff --git a/drivers/lguest/Kconfig b/drivers/lguest/Kconfig index a3d3cbab359..8f63845db83 100644 --- a/drivers/lguest/Kconfig +++ b/drivers/lguest/Kconfig @@ -1,6 +1,6 @@ config LGUEST tristate "Linux hypervisor example code" - depends on X86_32 && EXPERIMENTAL && !X86_PAE && FUTEX + depends on X86_32 && EXPERIMENTAL && FUTEX select HVC_DRIVER ---help--- This is a very simple module which allows you to run diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c index 51149ca1461..c29ffa19cb7 100644 --- a/drivers/lguest/hypercalls.c +++ b/drivers/lguest/hypercalls.c @@ -77,11 +77,21 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args) guest_set_stack(cpu, args->arg1, args->arg2, args->arg3); break; case LHCALL_SET_PTE: +#ifdef CONFIG_X86_PAE + guest_set_pte(cpu, args->arg1, args->arg2, + __pte(args->arg3 | (u64)args->arg4 << 32)); +#else guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3)); +#endif break; case LHCALL_SET_PGD: guest_set_pgd(cpu->lg, args->arg1, args->arg2); break; +#ifdef CONFIG_X86_PAE + case LHCALL_SET_PMD: + guest_set_pmd(cpu->lg, args->arg1, args->arg2); + break; +#endif case LHCALL_SET_CLOCKEVENT: guest_set_clockevent(cpu, args->arg1); break; diff --git a/drivers/lguest/lg.h b/drivers/lguest/lg.h index cacc2da2058..6201ce59e88 100644 --- a/drivers/lguest/lg.h +++ b/drivers/lguest/lg.h @@ -137,6 +137,8 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user); * in the kernel. */ #define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK) #define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT) +#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK) +#define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT) /* interrupts_and_traps.c: */ unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more); @@ -170,6 +172,9 @@ int init_guest_pagetable(struct lguest *lg); void free_guest_pagetable(struct lguest *lg); void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable); void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 i); +#ifdef CONFIG_X86_PAE +void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i); +#endif void guest_pagetable_clear_all(struct lg_cpu *cpu); void guest_pagetable_flush_user(struct lg_cpu *cpu); void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir, diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c index 6a54d76b623..5e2c26adcf0 100644 --- a/drivers/lguest/page_tables.c +++ b/drivers/lguest/page_tables.c @@ -53,6 +53,17 @@ * page. */ #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1) +/* For PAE we need the PMD index as well. We use the last 2MB, so we + * will need the last pmd entry of the last pmd page. */ +#ifdef CONFIG_X86_PAE +#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1) +#define RESERVE_MEM 2U +#define CHECK_GPGD_MASK _PAGE_PRESENT +#else +#define RESERVE_MEM 4U +#define CHECK_GPGD_MASK _PAGE_TABLE +#endif + /* We actually need a separate PTE page for each CPU. Remember that after the * Switcher code itself comes two pages for each CPU, and we don't want this * CPU's guest to see the pages of any other CPU. */ @@ -73,23 +84,58 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr) { unsigned int index = pgd_index(vaddr); +#ifndef CONFIG_X86_PAE /* We kill any Guest trying to touch the Switcher addresses. */ if (index >= SWITCHER_PGD_INDEX) { kill_guest(cpu, "attempt to access switcher pages"); index = 0; } +#endif /* Return a pointer index'th pgd entry for the i'th page table. */ return &cpu->lg->pgdirs[i].pgdir[index]; } +#ifdef CONFIG_X86_PAE +/* This routine then takes the PGD entry given above, which contains the + * address of the PMD page. It then returns a pointer to the PMD entry for the + * given address. */ +static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) +{ + unsigned int index = pmd_index(vaddr); + pmd_t *page; + + /* We kill any Guest trying to touch the Switcher addresses. */ + if (pgd_index(vaddr) == SWITCHER_PGD_INDEX && + index >= SWITCHER_PMD_INDEX) { + kill_guest(cpu, "attempt to access switcher pages"); + index = 0; + } + + /* You should never call this if the PGD entry wasn't valid */ + BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); + page = __va(pgd_pfn(spgd) << PAGE_SHIFT); + + return &page[index]; +} +#endif + /* This routine then takes the page directory entry returned above, which * contains the address of the page table entry (PTE) page. It then returns a * pointer to the PTE entry for the given address. */ -static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr) +static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) { +#ifdef CONFIG_X86_PAE + pmd_t *pmd = spmd_addr(cpu, spgd, vaddr); + pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT); + + /* You should never call this if the PMD entry wasn't valid */ + BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)); +#else pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT); /* You should never call this if the PGD entry wasn't valid */ BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); +#endif + return &page[pte_index(vaddr)]; } @@ -101,10 +147,31 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr) return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t); } -static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr) +#ifdef CONFIG_X86_PAE +static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr) { unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); + return gpage + pmd_index(vaddr) * sizeof(pmd_t); +} +#endif + +static unsigned long gpte_addr(struct lg_cpu *cpu, + pgd_t gpgd, unsigned long vaddr) +{ +#ifdef CONFIG_X86_PAE + pmd_t gpmd; +#endif + unsigned long gpage; + + BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); +#ifdef CONFIG_X86_PAE + gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t); + gpage = pmd_pfn(gpmd) << PAGE_SHIFT; + BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT)); +#else + gpage = pgd_pfn(gpgd) << PAGE_SHIFT; +#endif return gpage + pte_index(vaddr) * sizeof(pte_t); } /*:*/ @@ -184,11 +251,20 @@ static void check_gpte(struct lg_cpu *cpu, pte_t gpte) static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd) { - if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || + if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) || (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) kill_guest(cpu, "bad page directory entry"); } +#ifdef CONFIG_X86_PAE +static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd) +{ + if ((pmd_flags(gpmd) & ~_PAGE_TABLE) || + (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) + kill_guest(cpu, "bad page middle directory entry"); +} +#endif + /*H:330 * (i) Looking up a page table entry when the Guest faults. * @@ -207,6 +283,11 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) pte_t gpte; pte_t *spte; +#ifdef CONFIG_X86_PAE + pmd_t *spmd; + pmd_t gpmd; +#endif + /* First step: get the top-level Guest page table entry. */ gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); /* Toplevel not present? We can't map it in. */ @@ -228,12 +309,40 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) check_gpgd(cpu, gpgd); /* And we copy the flags to the shadow PGD entry. The page * number in the shadow PGD is the page we just allocated. */ - *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd)); + set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd))); } +#ifdef CONFIG_X86_PAE + gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t); + /* middle level not present? We can't map it in. */ + if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) + return false; + + /* Now look at the matching shadow entry. */ + spmd = spmd_addr(cpu, *spgd, vaddr); + + if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) { + /* No shadow entry: allocate a new shadow PTE page. */ + unsigned long ptepage = get_zeroed_page(GFP_KERNEL); + + /* This is not really the Guest's fault, but killing it is + * simple for this corner case. */ + if (!ptepage) { + kill_guest(cpu, "out of memory allocating pte page"); + return false; + } + + /* We check that the Guest pmd is OK. */ + check_gpmd(cpu, gpmd); + + /* And we copy the flags to the shadow PMD entry. The page + * number in the shadow PMD is the page we just allocated. */ + native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd))); + } +#endif /* OK, now we look at the lower level in the Guest page table: keep its * address, because we might update it later. */ - gpte_ptr = gpte_addr(gpgd, vaddr); + gpte_ptr = gpte_addr(cpu, gpgd, vaddr); gpte = lgread(cpu, gpte_ptr, pte_t); /* If this page isn't in the Guest page tables, we can't page it in. */ @@ -259,7 +368,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) gpte = pte_mkdirty(gpte); /* Get the pointer to the shadow PTE entry we're going to set. */ - spte = spte_addr(*spgd, vaddr); + spte = spte_addr(cpu, *spgd, vaddr); /* If there was a valid shadow PTE entry here before, we release it. * This can happen with a write to a previously read-only entry. */ release_pte(*spte); @@ -301,14 +410,23 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr) pgd_t *spgd; unsigned long flags; +#ifdef CONFIG_X86_PAE + pmd_t *spmd; +#endif /* Look at the current top level entry: is it present? */ spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr); if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) return false; +#ifdef CONFIG_X86_PAE + spmd = spmd_addr(cpu, *spgd, vaddr); + if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) + return false; +#endif + /* Check the flags on the pte entry itself: it must be present and * writable. */ - flags = pte_flags(*(spte_addr(*spgd, vaddr))); + flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr))); return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); } @@ -322,6 +440,41 @@ void pin_page(struct lg_cpu *cpu, unsigned long vaddr) kill_guest(cpu, "bad stack page %#lx", vaddr); } +#ifdef CONFIG_X86_PAE +static void release_pmd(pmd_t *spmd) +{ + /* If the entry's not present, there's nothing to release. */ + if (pmd_flags(*spmd) & _PAGE_PRESENT) { + unsigned int i; + pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT); + /* For each entry in the page, we might need to release it. */ + for (i = 0; i < PTRS_PER_PTE; i++) + release_pte(ptepage[i]); + /* Now we can free the page of PTEs */ + free_page((long)ptepage); + /* And zero out the PMD entry so we never release it twice. */ + native_set_pmd(spmd, __pmd(0)); + } +} + +static void release_pgd(pgd_t *spgd) +{ + /* If the entry's not present, there's nothing to release. */ + if (pgd_flags(*spgd) & _PAGE_PRESENT) { + unsigned int i; + pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); + + for (i = 0; i < PTRS_PER_PMD; i++) + release_pmd(&pmdpage[i]); + + /* Now we can free the page of PMDs */ + free_page((long)pmdpage); + /* And zero out the PGD entry so we never release it twice. */ + set_pgd(spgd, __pgd(0)); + } +} + +#else /* !CONFIG_X86_PAE */ /*H:450 If we chase down the release_pgd() code, it looks like this: */ static void release_pgd(pgd_t *spgd) { @@ -341,7 +494,7 @@ static void release_pgd(pgd_t *spgd) *spgd = __pgd(0); } } - +#endif /*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings() * hypercall and once in new_pgdir() when we re-used a top-level pgdir page. * It simply releases every PTE page from 0 up to the Guest's kernel address. */ @@ -370,6 +523,9 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr) pgd_t gpgd; pte_t gpte; +#ifdef CONFIG_X86_PAE + pmd_t gpmd; +#endif /* First step: get the top-level Guest page table entry. */ gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); /* Toplevel not present? We can't map it in. */ @@ -378,7 +534,13 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr) return -1UL; } - gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t); + gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t); +#ifdef CONFIG_X86_PAE + gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t); + if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) + kill_guest(cpu, "Bad address %#lx", vaddr); +#endif + gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t); if (!(pte_flags(gpte) & _PAGE_PRESENT)) kill_guest(cpu, "Bad address %#lx", vaddr); @@ -405,6 +567,9 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, int *blank_pgdir) { unsigned int next; +#ifdef CONFIG_X86_PAE + pmd_t *pmd_table; +#endif /* We pick one entry at random to throw out. Choosing the Least * Recently Used might be better, but this is easy. */ @@ -416,10 +581,27 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, /* If the allocation fails, just keep using the one we have */ if (!cpu->lg->pgdirs[next].pgdir) next = cpu->cpu_pgd; - else - /* This is a blank page, so there are no kernel - * mappings: caller must map the stack! */ + else { +#ifdef CONFIG_X86_PAE + /* In PAE mode, allocate a pmd page and populate the + * last pgd entry. */ + pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL); + if (!pmd_table) { + free_page((long)cpu->lg->pgdirs[next].pgdir); + set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0)); + next = cpu->cpu_pgd; + } else { + set_pgd(cpu->lg->pgdirs[next].pgdir + + SWITCHER_PGD_INDEX, + __pgd(__pa(pmd_table) | _PAGE_PRESENT)); + /* This is a blank page, so there are no kernel + * mappings: caller must map the stack! */ + *blank_pgdir = 1; + } +#else *blank_pgdir = 1; +#endif + } } /* Record which Guest toplevel this shadows. */ cpu->lg->pgdirs[next].gpgdir = gpgdir; @@ -460,10 +642,25 @@ static void release_all_pagetables(struct lguest *lg) /* Every shadow pagetable this Guest has */ for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) - if (lg->pgdirs[i].pgdir) + if (lg->pgdirs[i].pgdir) { +#ifdef CONFIG_X86_PAE + pgd_t *spgd; + pmd_t *pmdpage; + unsigned int k; + + /* Get the last pmd page. */ + spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX; + pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); + + /* And release the pmd entries of that pmd page, + * except for the switcher pmd. */ + for (k = 0; k < SWITCHER_PMD_INDEX; k++) + release_pmd(&pmdpage[k]); +#endif /* Every PGD entry except the Switcher at the top */ for (j = 0; j < SWITCHER_PGD_INDEX; j++) release_pgd(lg->pgdirs[i].pgdir + j); + } } /* We also throw away everything when a Guest tells us it's changed a kernel @@ -504,24 +701,37 @@ static void do_set_pte(struct lg_cpu *cpu, int idx, { /* Look up the matching shadow page directory entry. */ pgd_t *spgd = spgd_addr(cpu, idx, vaddr); +#ifdef CONFIG_X86_PAE + pmd_t *spmd; +#endif /* If the top level isn't present, there's no entry to update. */ if (pgd_flags(*spgd) & _PAGE_PRESENT) { - /* Otherwise, we start by releasing the existing entry. */ - pte_t *spte = spte_addr(*spgd, vaddr); - release_pte(*spte); +#ifdef CONFIG_X86_PAE + spmd = spmd_addr(cpu, *spgd, vaddr); + if (pmd_flags(*spmd) & _PAGE_PRESENT) { +#endif + /* Otherwise, we start by releasing + * the existing entry. */ + pte_t *spte = spte_addr(cpu, *spgd, vaddr); + release_pte(*spte); - /* If they're setting this entry as dirty or accessed, we might - * as well put that entry they've given us in now. This shaves - * 10% off a copy-on-write micro-benchmark. */ - if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { - check_gpte(cpu, gpte); - *spte = gpte_to_spte(cpu, gpte, - pte_flags(gpte) & _PAGE_DIRTY); - } else - /* Otherwise kill it and we can demand_page() it in - * later. */ - *spte = __pte(0); + /* If they're setting this entry as dirty or accessed, + * we might as well put that entry they've given us + * in now. This shaves 10% off a + * copy-on-write micro-benchmark. */ + if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { + check_gpte(cpu, gpte); + native_set_pte(spte, + gpte_to_spte(cpu, gpte, + pte_flags(gpte) & _PAGE_DIRTY)); + } else + /* Otherwise kill it and we can demand_page() + * it in later. */ + native_set_pte(spte, __pte(0)); +#ifdef CONFIG_X86_PAE + } +#endif } } @@ -572,8 +782,6 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx) { int pgdir; - /* The kernel seems to try to initialize this early on: we ignore its - * attempts to map over the Switcher. */ if (idx >= SWITCHER_PGD_INDEX) return; @@ -583,6 +791,12 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx) /* ... throw it away. */ release_pgd(lg->pgdirs[pgdir].pgdir + idx); } +#ifdef CONFIG_X86_PAE +void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx) +{ + guest_pagetable_clear_all(&lg->cpus[0]); +} +#endif /* Once we know how much memory we have we can construct simple identity * (which set virtual == physical) and linear mappings @@ -596,8 +810,16 @@ static unsigned long setup_pagetables(struct lguest *lg, { pgd_t __user *pgdir; pte_t __user *linear; - unsigned int mapped_pages, i, linear_pages, phys_linear; unsigned long mem_base = (unsigned long)lg->mem_base; + unsigned int mapped_pages, i, linear_pages; +#ifdef CONFIG_X86_PAE + pmd_t __user *pmds; + unsigned int j; + pgd_t pgd; + pmd_t pmd; +#else + unsigned int phys_linear; +#endif /* We have mapped_pages frames to map, so we need * linear_pages page tables to map them. */ @@ -610,6 +832,9 @@ static unsigned long setup_pagetables(struct lguest *lg, /* Now we use the next linear_pages pages as pte pages */ linear = (void *)pgdir - linear_pages * PAGE_SIZE; +#ifdef CONFIG_X86_PAE + pmds = (void *)linear - PAGE_SIZE; +#endif /* Linear mapping is easy: put every page's address into the * mapping in order. */ for (i = 0; i < mapped_pages; i++) { @@ -621,6 +846,22 @@ static unsigned long setup_pagetables(struct lguest *lg, /* The top level points to the linear page table pages above. * We setup the identity and linear mappings here. */ +#ifdef CONFIG_X86_PAE + for (i = 0, j; i < mapped_pages && j < PTRS_PER_PMD; + i += PTRS_PER_PTE, j++) { + native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i) + - mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER)); + + if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0) + return -EFAULT; + } + + set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT)); + if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0) + return -EFAULT; + if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0) + return -EFAULT; +#else phys_linear = (unsigned long)linear - mem_base; for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) { pgd_t pgd; @@ -633,6 +874,7 @@ static unsigned long setup_pagetables(struct lguest *lg, &pgd, sizeof(pgd))) return -EFAULT; } +#endif /* We return the top level (guest-physical) address: remember where * this is. */ @@ -648,7 +890,10 @@ int init_guest_pagetable(struct lguest *lg) u64 mem; u32 initrd_size; struct boot_params __user *boot = (struct boot_params *)lg->mem_base; - +#ifdef CONFIG_X86_PAE + pgd_t *pgd; + pmd_t *pmd_table; +#endif /* Get the Guest memory size and the ramdisk size from the boot header * located at lg->mem_base (Guest address 0). */ if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem)) @@ -663,6 +908,15 @@ int init_guest_pagetable(struct lguest *lg) lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL); if (!lg->pgdirs[0].pgdir) return -ENOMEM; +#ifdef CONFIG_X86_PAE + pgd = lg->pgdirs[0].pgdir; + pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL); + if (!pmd_table) + return -ENOMEM; + + set_pgd(pgd + SWITCHER_PGD_INDEX, + __pgd(__pa(pmd_table) | _PAGE_PRESENT)); +#endif lg->cpus[0].cpu_pgd = 0; return 0; } @@ -672,17 +926,24 @@ void page_table_guest_data_init(struct lg_cpu *cpu) { /* We get the kernel address: above this is all kernel memory. */ if (get_user(cpu->lg->kernel_address, - &cpu->lg->lguest_data->kernel_address) - /* We tell the Guest that it can't use the top 4MB of virtual - * addresses used by the Switcher. */ - || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem) - || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir)) + &cpu->lg->lguest_data->kernel_address) + /* We tell the Guest that it can't use the top 2 or 4 MB + * of virtual addresses used by the Switcher. */ + || put_user(RESERVE_MEM * 1024 * 1024, + &cpu->lg->lguest_data->reserve_mem) + || put_user(cpu->lg->pgdirs[0].gpgdir, + &cpu->lg->lguest_data->pgdir)) kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data); /* In flush_user_mappings() we loop from 0 to * "pgd_index(lg->kernel_address)". This assumes it won't hit the * Switcher mappings, so check that now. */ +#ifdef CONFIG_X86_PAE + if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX && + pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX) +#else if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX) +#endif kill_guest(cpu, "bad kernel address %#lx", cpu->lg->kernel_address); } @@ -708,16 +969,30 @@ void free_guest_pagetable(struct lguest *lg) void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) { pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); - pgd_t switcher_pgd; pte_t regs_pte; unsigned long pfn; +#ifdef CONFIG_X86_PAE + pmd_t switcher_pmd; + pmd_t *pmd_table; + + native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >> + PAGE_SHIFT, PAGE_KERNEL_EXEC)); + + pmd_table = __va(pgd_pfn(cpu->lg-> + pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX]) + << PAGE_SHIFT); + native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd); +#else + pgd_t switcher_pgd; + /* Make the last PGD entry for this Guest point to the Switcher's PTE * page for this CPU (with appropriate flags). */ switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC); cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; +#endif /* We also change the Switcher PTE page. When we're running the Guest, * we want the Guest's "regs" page to appear where the first Switcher * page for this CPU is. This is an optimization: when the Switcher