perf_counter: Dynamically allocate tasks' perf_counter_context struct

This replaces the struct perf_counter_context in the task_struct with
a pointer to a dynamically allocated perf_counter_context struct.  The
main reason for doing is this is to allow us to transfer a
perf_counter_context from one task to another when we do lazy PMU
switching in a later patch.

This has a few side-benefits: the task_struct becomes a little smaller,
we save some memory because only tasks that have perf_counters attached
get a perf_counter_context allocated for them, and we can remove the
inclusion of <linux/perf_counter.h> in sched.h, meaning that we don't
end up recompiling nearly everything whenever perf_counter.h changes.

The perf_counter_context structures are reference-counted and freed
when the last reference is dropped.  A context can have references
from its task and the counters on its task.  Counters can outlive the
task so it is possible that a context will be freed well after its
task has exited.

Contexts are allocated on fork if the parent had a context, or
otherwise the first time that a per-task counter is created on a task.
In the latter case, we set the context pointer in the task struct
locklessly using an atomic compare-and-exchange operation in case we
raced with some other task in creating a context for the subject task.

This also removes the task pointer from the perf_counter struct.  The
task pointer was not used anywhere and would make it harder to move a
context from one task to another.  Anything that needed to know which
task a counter was attached to was already using counter->ctx->task.

The __perf_counter_init_context function moves up in perf_counter.c
so that it can be called from find_get_context, and now initializes
the refcount, but is otherwise unchanged.

We were potentially calling list_del_counter twice: once from
__perf_counter_exit_task when the task exits and once from
__perf_counter_remove_from_context when the counter's fd gets closed.
This adds a check in list_del_counter so it doesn't do anything if
the counter has already been removed from the lists.

Since perf_counter_task_sched_in doesn't do anything if the task doesn't
have a context, and leaves cpuctx->task_ctx = NULL, this adds code to
__perf_install_in_context to set cpuctx->task_ctx if necessary, i.e. in
the case where the current task adds the first counter to itself and
thus creates a context for itself.

This also adds similar code to __perf_counter_enable to handle a
similar situation which can arise when the counters have been disabled
using prctl; that also leaves cpuctx->task_ctx = NULL.

[ Impact: refactor counter context management to prepare for new feature ]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18966.10075.781053.231153@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Paul Mackerras 2009-05-22 14:17:31 +10:00 committed by Ingo Molnar
parent 34adc80622
commit a63eaf34ae
7 changed files with 145 additions and 101 deletions

View file

@ -14,6 +14,7 @@
* Mikael Pettersson : PM converted to driver model. * Mikael Pettersson : PM converted to driver model.
*/ */
#include <linux/perf_counter.h>
#include <linux/kernel_stat.h> #include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h> #include <linux/mc146818rtc.h>
#include <linux/acpi_pmtmr.h> #include <linux/acpi_pmtmr.h>

View file

@ -108,18 +108,6 @@ extern struct group_info init_groups;
extern struct cred init_cred; extern struct cred init_cred;
#ifdef CONFIG_PERF_COUNTERS
# define INIT_PERF_COUNTERS(tsk) \
.perf_counter_ctx.counter_list = \
LIST_HEAD_INIT(tsk.perf_counter_ctx.counter_list), \
.perf_counter_ctx.event_list = \
LIST_HEAD_INIT(tsk.perf_counter_ctx.event_list), \
.perf_counter_ctx.lock = \
__SPIN_LOCK_UNLOCKED(tsk.perf_counter_ctx.lock),
#else
# define INIT_PERF_COUNTERS(tsk)
#endif
/* /*
* INIT_TASK is used to set up the first task table, touch at * INIT_TASK is used to set up the first task table, touch at
* your own risk!. Base=0, limit=0x1fffff (=2MB) * your own risk!. Base=0, limit=0x1fffff (=2MB)
@ -183,7 +171,6 @@ extern struct cred init_cred;
}, \ }, \
.dirties = INIT_PROP_LOCAL_SINGLE(dirties), \ .dirties = INIT_PROP_LOCAL_SINGLE(dirties), \
INIT_IDS \ INIT_IDS \
INIT_PERF_COUNTERS(tsk) \
INIT_TRACE_IRQFLAGS \ INIT_TRACE_IRQFLAGS \
INIT_LOCKDEP \ INIT_LOCKDEP \
INIT_FTRACE_GRAPH \ INIT_FTRACE_GRAPH \

View file

@ -449,7 +449,6 @@ struct perf_counter {
struct hw_perf_counter hw; struct hw_perf_counter hw;
struct perf_counter_context *ctx; struct perf_counter_context *ctx;
struct task_struct *task;
struct file *filp; struct file *filp;
struct perf_counter *parent; struct perf_counter *parent;
@ -498,7 +497,6 @@ struct perf_counter {
* Used as a container for task counters and CPU counters as well: * Used as a container for task counters and CPU counters as well:
*/ */
struct perf_counter_context { struct perf_counter_context {
#ifdef CONFIG_PERF_COUNTERS
/* /*
* Protect the states of the counters in the list, * Protect the states of the counters in the list,
* nr_active, and the list: * nr_active, and the list:
@ -516,6 +514,7 @@ struct perf_counter_context {
int nr_counters; int nr_counters;
int nr_active; int nr_active;
int is_active; int is_active;
atomic_t refcount;
struct task_struct *task; struct task_struct *task;
/* /*
@ -523,7 +522,6 @@ struct perf_counter_context {
*/ */
u64 time; u64 time;
u64 timestamp; u64 timestamp;
#endif
}; };
/** /**

View file

@ -71,7 +71,6 @@ struct sched_param {
#include <linux/path.h> #include <linux/path.h>
#include <linux/compiler.h> #include <linux/compiler.h>
#include <linux/completion.h> #include <linux/completion.h>
#include <linux/perf_counter.h>
#include <linux/pid.h> #include <linux/pid.h>
#include <linux/percpu.h> #include <linux/percpu.h>
#include <linux/topology.h> #include <linux/topology.h>
@ -99,6 +98,7 @@ struct robust_list_head;
struct bio; struct bio;
struct bts_tracer; struct bts_tracer;
struct fs_struct; struct fs_struct;
struct perf_counter_context;
/* /*
* List of flags we want to share for kernel threads, * List of flags we want to share for kernel threads,
@ -1387,7 +1387,9 @@ struct task_struct {
struct list_head pi_state_list; struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache; struct futex_pi_state *pi_state_cache;
#endif #endif
struct perf_counter_context perf_counter_ctx; #ifdef CONFIG_PERF_COUNTERS
struct perf_counter_context *perf_counter_ctxp;
#endif
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
struct mempolicy *mempolicy; struct mempolicy *mempolicy;
short il_next; short il_next;

View file

@ -48,6 +48,7 @@
#include <linux/tracehook.h> #include <linux/tracehook.h>
#include <linux/fs_struct.h> #include <linux/fs_struct.h>
#include <linux/init_task.h> #include <linux/init_task.h>
#include <linux/perf_counter.h>
#include <trace/sched.h> #include <trace/sched.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
@ -159,7 +160,7 @@ static void delayed_put_task_struct(struct rcu_head *rhp)
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
#ifdef CONFIG_PERF_COUNTERS #ifdef CONFIG_PERF_COUNTERS
WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list)); WARN_ON_ONCE(tsk->perf_counter_ctxp);
#endif #endif
trace_sched_process_free(tsk); trace_sched_process_free(tsk);
put_task_struct(tsk); put_task_struct(tsk);

View file

@ -63,6 +63,7 @@
#include <linux/fs_struct.h> #include <linux/fs_struct.h>
#include <trace/sched.h> #include <trace/sched.h>
#include <linux/magic.h> #include <linux/magic.h>
#include <linux/perf_counter.h>
#include <asm/pgtable.h> #include <asm/pgtable.h>
#include <asm/pgalloc.h> #include <asm/pgalloc.h>

View file

@ -97,6 +97,17 @@ void perf_enable(void)
hw_perf_enable(); hw_perf_enable();
} }
static void get_ctx(struct perf_counter_context *ctx)
{
atomic_inc(&ctx->refcount);
}
static void put_ctx(struct perf_counter_context *ctx)
{
if (atomic_dec_and_test(&ctx->refcount))
kfree(ctx);
}
static void static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{ {
@ -118,11 +129,17 @@ list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
ctx->nr_counters++; ctx->nr_counters++;
} }
/*
* Remove a counter from the lists for its context.
* Must be called with counter->mutex and ctx->mutex held.
*/
static void static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{ {
struct perf_counter *sibling, *tmp; struct perf_counter *sibling, *tmp;
if (list_empty(&counter->list_entry))
return;
ctx->nr_counters--; ctx->nr_counters--;
list_del_init(&counter->list_entry); list_del_init(&counter->list_entry);
@ -216,8 +233,6 @@ static void __perf_counter_remove_from_context(void *info)
counter_sched_out(counter, cpuctx, ctx); counter_sched_out(counter, cpuctx, ctx);
counter->task = NULL;
list_del_counter(counter, ctx); list_del_counter(counter, ctx);
if (!ctx->task) { if (!ctx->task) {
@ -279,7 +294,6 @@ retry:
*/ */
if (!list_empty(&counter->list_entry)) { if (!list_empty(&counter->list_entry)) {
list_del_counter(counter, ctx); list_del_counter(counter, ctx);
counter->task = NULL;
} }
spin_unlock_irq(&ctx->lock); spin_unlock_irq(&ctx->lock);
} }
@ -568,11 +582,17 @@ static void __perf_install_in_context(void *info)
* If this is a task context, we need to check whether it is * If this is a task context, we need to check whether it is
* the current task context of this cpu. If not it has been * the current task context of this cpu. If not it has been
* scheduled out before the smp call arrived. * scheduled out before the smp call arrived.
* Or possibly this is the right context but it isn't
* on this cpu because it had no counters.
*/ */
if (ctx->task && cpuctx->task_ctx != ctx) if (ctx->task && cpuctx->task_ctx != ctx) {
return; if (cpuctx->task_ctx || ctx->task != current)
return;
cpuctx->task_ctx = ctx;
}
spin_lock_irqsave(&ctx->lock, flags); spin_lock_irqsave(&ctx->lock, flags);
ctx->is_active = 1;
update_context_time(ctx); update_context_time(ctx);
/* /*
@ -653,7 +673,6 @@ perf_install_in_context(struct perf_counter_context *ctx,
return; return;
} }
counter->task = task;
retry: retry:
task_oncpu_function_call(task, __perf_install_in_context, task_oncpu_function_call(task, __perf_install_in_context,
counter); counter);
@ -693,10 +712,14 @@ static void __perf_counter_enable(void *info)
* If this is a per-task counter, need to check whether this * If this is a per-task counter, need to check whether this
* counter's task is the current task on this cpu. * counter's task is the current task on this cpu.
*/ */
if (ctx->task && cpuctx->task_ctx != ctx) if (ctx->task && cpuctx->task_ctx != ctx) {
return; if (cpuctx->task_ctx || ctx->task != current)
return;
cpuctx->task_ctx = ctx;
}
spin_lock_irqsave(&ctx->lock, flags); spin_lock_irqsave(&ctx->lock, flags);
ctx->is_active = 1;
update_context_time(ctx); update_context_time(ctx);
counter->prev_state = counter->state; counter->prev_state = counter->state;
@ -852,10 +875,10 @@ void __perf_counter_sched_out(struct perf_counter_context *ctx,
void perf_counter_task_sched_out(struct task_struct *task, int cpu) void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{ {
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
struct perf_counter_context *ctx = &task->perf_counter_ctx; struct perf_counter_context *ctx = task->perf_counter_ctxp;
struct pt_regs *regs; struct pt_regs *regs;
if (likely(!cpuctx->task_ctx)) if (likely(!ctx || !cpuctx->task_ctx))
return; return;
update_context_time(ctx); update_context_time(ctx);
@ -871,6 +894,8 @@ static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{ {
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
if (!cpuctx->task_ctx)
return;
__perf_counter_sched_out(ctx, cpuctx); __perf_counter_sched_out(ctx, cpuctx);
cpuctx->task_ctx = NULL; cpuctx->task_ctx = NULL;
} }
@ -969,8 +994,10 @@ __perf_counter_sched_in(struct perf_counter_context *ctx,
void perf_counter_task_sched_in(struct task_struct *task, int cpu) void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{ {
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
struct perf_counter_context *ctx = &task->perf_counter_ctx; struct perf_counter_context *ctx = task->perf_counter_ctxp;
if (likely(!ctx))
return;
__perf_counter_sched_in(ctx, cpuctx, cpu); __perf_counter_sched_in(ctx, cpuctx, cpu);
cpuctx->task_ctx = ctx; cpuctx->task_ctx = ctx;
} }
@ -985,11 +1012,11 @@ static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
int perf_counter_task_disable(void) int perf_counter_task_disable(void)
{ {
struct task_struct *curr = current; struct task_struct *curr = current;
struct perf_counter_context *ctx = &curr->perf_counter_ctx; struct perf_counter_context *ctx = curr->perf_counter_ctxp;
struct perf_counter *counter; struct perf_counter *counter;
unsigned long flags; unsigned long flags;
if (likely(!ctx->nr_counters)) if (!ctx || !ctx->nr_counters)
return 0; return 0;
local_irq_save(flags); local_irq_save(flags);
@ -1020,12 +1047,12 @@ int perf_counter_task_disable(void)
int perf_counter_task_enable(void) int perf_counter_task_enable(void)
{ {
struct task_struct *curr = current; struct task_struct *curr = current;
struct perf_counter_context *ctx = &curr->perf_counter_ctx; struct perf_counter_context *ctx = curr->perf_counter_ctxp;
struct perf_counter *counter; struct perf_counter *counter;
unsigned long flags; unsigned long flags;
int cpu; int cpu;
if (likely(!ctx->nr_counters)) if (!ctx || !ctx->nr_counters)
return 0; return 0;
local_irq_save(flags); local_irq_save(flags);
@ -1128,19 +1155,23 @@ void perf_counter_task_tick(struct task_struct *curr, int cpu)
return; return;
cpuctx = &per_cpu(perf_cpu_context, cpu); cpuctx = &per_cpu(perf_cpu_context, cpu);
ctx = &curr->perf_counter_ctx; ctx = curr->perf_counter_ctxp;
perf_adjust_freq(&cpuctx->ctx); perf_adjust_freq(&cpuctx->ctx);
perf_adjust_freq(ctx); if (ctx)
perf_adjust_freq(ctx);
perf_counter_cpu_sched_out(cpuctx); perf_counter_cpu_sched_out(cpuctx);
__perf_counter_task_sched_out(ctx); if (ctx)
__perf_counter_task_sched_out(ctx);
rotate_ctx(&cpuctx->ctx); rotate_ctx(&cpuctx->ctx);
rotate_ctx(ctx); if (ctx)
rotate_ctx(ctx);
perf_counter_cpu_sched_in(cpuctx, cpu); perf_counter_cpu_sched_in(cpuctx, cpu);
perf_counter_task_sched_in(curr, cpu); if (ctx)
perf_counter_task_sched_in(curr, cpu);
} }
/* /*
@ -1176,6 +1207,22 @@ static u64 perf_counter_read(struct perf_counter *counter)
return atomic64_read(&counter->count); return atomic64_read(&counter->count);
} }
/*
* Initialize the perf_counter context in a task_struct:
*/
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
struct task_struct *task)
{
memset(ctx, 0, sizeof(*ctx));
spin_lock_init(&ctx->lock);
mutex_init(&ctx->mutex);
INIT_LIST_HEAD(&ctx->counter_list);
INIT_LIST_HEAD(&ctx->event_list);
atomic_set(&ctx->refcount, 1);
ctx->task = task;
}
static void put_context(struct perf_counter_context *ctx) static void put_context(struct perf_counter_context *ctx)
{ {
if (ctx->task) if (ctx->task)
@ -1186,6 +1233,7 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{ {
struct perf_cpu_context *cpuctx; struct perf_cpu_context *cpuctx;
struct perf_counter_context *ctx; struct perf_counter_context *ctx;
struct perf_counter_context *tctx;
struct task_struct *task; struct task_struct *task;
/* /*
@ -1225,15 +1273,36 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
if (!task) if (!task)
return ERR_PTR(-ESRCH); return ERR_PTR(-ESRCH);
ctx = &task->perf_counter_ctx;
ctx->task = task;
/* Reuse ptrace permission checks for now. */ /* Reuse ptrace permission checks for now. */
if (!ptrace_may_access(task, PTRACE_MODE_READ)) { if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
put_context(ctx); put_task_struct(task);
return ERR_PTR(-EACCES); return ERR_PTR(-EACCES);
} }
ctx = task->perf_counter_ctxp;
if (!ctx) {
ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
if (!ctx) {
put_task_struct(task);
return ERR_PTR(-ENOMEM);
}
__perf_counter_init_context(ctx, task);
/*
* Make sure other cpus see correct values for *ctx
* once task->perf_counter_ctxp is visible to them.
*/
smp_wmb();
tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
if (tctx) {
/*
* We raced with some other task; use
* the context they set.
*/
kfree(ctx);
ctx = tctx;
}
}
return ctx; return ctx;
} }
@ -1242,6 +1311,7 @@ static void free_counter_rcu(struct rcu_head *head)
struct perf_counter *counter; struct perf_counter *counter;
counter = container_of(head, struct perf_counter, rcu_head); counter = container_of(head, struct perf_counter, rcu_head);
put_ctx(counter->ctx);
kfree(counter); kfree(counter);
} }
@ -2247,7 +2317,7 @@ static void perf_counter_comm_event(struct perf_comm_event *comm_event)
perf_counter_comm_ctx(&cpuctx->ctx, comm_event); perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
put_cpu_var(perf_cpu_context); put_cpu_var(perf_cpu_context);
perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event); perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
} }
void perf_counter_comm(struct task_struct *task) void perf_counter_comm(struct task_struct *task)
@ -2256,7 +2326,9 @@ void perf_counter_comm(struct task_struct *task)
if (!atomic_read(&nr_comm_tracking)) if (!atomic_read(&nr_comm_tracking))
return; return;
if (!current->perf_counter_ctxp)
return;
comm_event = (struct perf_comm_event){ comm_event = (struct perf_comm_event){
.task = task, .task = task,
.event = { .event = {
@ -2372,7 +2444,7 @@ got_name:
perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
put_cpu_var(perf_cpu_context); put_cpu_var(perf_cpu_context);
perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event); perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
kfree(buf); kfree(buf);
} }
@ -2384,6 +2456,8 @@ void perf_counter_mmap(unsigned long addr, unsigned long len,
if (!atomic_read(&nr_mmap_tracking)) if (!atomic_read(&nr_mmap_tracking))
return; return;
if (!current->perf_counter_ctxp)
return;
mmap_event = (struct perf_mmap_event){ mmap_event = (struct perf_mmap_event){
.file = file, .file = file,
@ -2985,6 +3059,7 @@ perf_counter_alloc(struct perf_counter_hw_event *hw_event,
counter->group_leader = group_leader; counter->group_leader = group_leader;
counter->pmu = NULL; counter->pmu = NULL;
counter->ctx = ctx; counter->ctx = ctx;
get_ctx(ctx);
counter->state = PERF_COUNTER_STATE_INACTIVE; counter->state = PERF_COUNTER_STATE_INACTIVE;
if (hw_event->disabled) if (hw_event->disabled)
@ -3149,21 +3224,6 @@ err_put_context:
goto out_fput; goto out_fput;
} }
/*
* Initialize the perf_counter context in a task_struct:
*/
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
struct task_struct *task)
{
memset(ctx, 0, sizeof(*ctx));
spin_lock_init(&ctx->lock);
mutex_init(&ctx->mutex);
INIT_LIST_HEAD(&ctx->counter_list);
INIT_LIST_HEAD(&ctx->event_list);
ctx->task = task;
}
/* /*
* inherit a counter from parent task to child task: * inherit a counter from parent task to child task:
*/ */
@ -3195,7 +3255,6 @@ inherit_counter(struct perf_counter *parent_counter,
/* /*
* Link it up in the child's context: * Link it up in the child's context:
*/ */
child_counter->task = child;
add_counter_to_ctx(child_counter, child_ctx); add_counter_to_ctx(child_counter, child_ctx);
child_counter->parent = parent_counter; child_counter->parent = parent_counter;
@ -3294,40 +3353,15 @@ __perf_counter_exit_task(struct task_struct *child,
struct perf_counter *parent_counter; struct perf_counter *parent_counter;
/* /*
* If we do not self-reap then we have to wait for the * Protect against concurrent operations on child_counter
* child task to unschedule (it will happen for sure), * due its fd getting closed, etc.
* so that its counter is at its final count. (This
* condition triggers rarely - child tasks usually get
* off their CPU before the parent has a chance to
* get this far into the reaping action)
*/ */
if (child != current) { mutex_lock(&child_counter->mutex);
wait_task_inactive(child, 0);
update_counter_times(child_counter);
list_del_counter(child_counter, child_ctx);
} else {
struct perf_cpu_context *cpuctx;
unsigned long flags;
/* update_counter_times(child_counter);
* Disable and unlink this counter. list_del_counter(child_counter, child_ctx);
*
* Be careful about zapping the list - IRQ/NMI context
* could still be processing it:
*/
local_irq_save(flags);
perf_disable();
cpuctx = &__get_cpu_var(perf_cpu_context); mutex_unlock(&child_counter->mutex);
group_sched_out(child_counter, cpuctx, child_ctx);
update_counter_times(child_counter);
list_del_counter(child_counter, child_ctx);
perf_enable();
local_irq_restore(flags);
}
parent_counter = child_counter->parent; parent_counter = child_counter->parent;
/* /*
@ -3346,19 +3380,29 @@ __perf_counter_exit_task(struct task_struct *child,
* *
* Note: we may be running in child context, but the PID is not hashed * Note: we may be running in child context, but the PID is not hashed
* anymore so new counters will not be added. * anymore so new counters will not be added.
* (XXX not sure that is true when we get called from flush_old_exec.
* -- paulus)
*/ */
void perf_counter_exit_task(struct task_struct *child) void perf_counter_exit_task(struct task_struct *child)
{ {
struct perf_counter *child_counter, *tmp; struct perf_counter *child_counter, *tmp;
struct perf_counter_context *child_ctx; struct perf_counter_context *child_ctx;
unsigned long flags;
WARN_ON_ONCE(child != current); WARN_ON_ONCE(child != current);
child_ctx = &child->perf_counter_ctx; child_ctx = child->perf_counter_ctxp;
if (likely(!child_ctx->nr_counters)) if (likely(!child_ctx))
return; return;
local_irq_save(flags);
__perf_counter_task_sched_out(child_ctx);
child->perf_counter_ctxp = NULL;
local_irq_restore(flags);
mutex_lock(&child_ctx->mutex);
again: again:
list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
list_entry) list_entry)
@ -3371,6 +3415,10 @@ again:
*/ */
if (!list_empty(&child_ctx->counter_list)) if (!list_empty(&child_ctx->counter_list))
goto again; goto again;
mutex_unlock(&child_ctx->mutex);
put_ctx(child_ctx);
} }
/* /*
@ -3382,19 +3430,25 @@ void perf_counter_init_task(struct task_struct *child)
struct perf_counter *counter; struct perf_counter *counter;
struct task_struct *parent = current; struct task_struct *parent = current;
child_ctx = &child->perf_counter_ctx; child->perf_counter_ctxp = NULL;
parent_ctx = &parent->perf_counter_ctx;
__perf_counter_init_context(child_ctx, child);
/* /*
* This is executed from the parent task context, so inherit * This is executed from the parent task context, so inherit
* counters that have been marked for cloning: * counters that have been marked for cloning.
* First allocate and initialize a context for the child.
*/ */
if (likely(!parent_ctx->nr_counters)) child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
if (!child_ctx)
return; return;
parent_ctx = parent->perf_counter_ctxp;
if (likely(!parent_ctx || !parent_ctx->nr_counters))
return;
__perf_counter_init_context(child_ctx, child);
child->perf_counter_ctxp = child_ctx;
/* /*
* Lock the parent list. No need to lock the child - not PID * Lock the parent list. No need to lock the child - not PID
* hashed yet and not running, so nobody can access it. * hashed yet and not running, so nobody can access it.