Staging: rtl8192e: coding style cleanups on r819xE_firmware.c

This cleans up everything but a few 80 column issues in the
r819xE_firmware.c file.

Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Greg Kroah-Hartman 2009-08-12 16:39:54 -07:00
parent 5bf30d9688
commit 96ed5846c4

View file

@ -1,54 +1,56 @@
/**************************************************************************************************
/*
* Procedure: Init boot code/firmware code/data session
*
* Description: This routine will intialize firmware. If any error occurs during the initialization
* process, the routine shall terminate immediately and return fail.
* NIC driver should call NdisOpenFile only from MiniportInitialize.
* Description: This routine will intialize firmware. If any error occurs
* during the initialization process, the routine shall terminate
* immediately and return fail. NIC driver should call
* NdisOpenFile only from MiniportInitialize.
*
* Arguments: The pointer of the adapter
* Returns:
* NDIS_STATUS_FAILURE - the following initialization process should be terminated
* NDIS_STATUS_SUCCESS - if firmware initialization process success
**************************************************************************************************/
//#include "ieee80211.h"
* NDIS_STATUS_FAILURE - the following initialization process
* should be terminated
* NDIS_STATUS_SUCCESS - if firmware initialization process
* success
*/
#include "r8192E.h"
#include "r8192E_hw.h"
#include <linux/firmware.h>
/* It should be double word alignment */
#define GET_COMMAND_PACKET_FRAG_THRESHOLD(v) (4*(v/4) - 8 )
#define GET_COMMAND_PACKET_FRAG_THRESHOLD(v) (4 * (v / 4) - 8)
typedef enum _firmware_init_step{
enum firmware_init_step {
FW_INIT_STEP0_BOOT = 0,
FW_INIT_STEP1_MAIN = 1,
FW_INIT_STEP2_DATA = 2,
}firmware_init_step_e;
};
typedef enum _opt_rst_type{
enum opt_rst_type {
OPT_SYSTEM_RESET = 0,
OPT_FIRMWARE_RESET = 1,
}opt_rst_type_e;
};
void firmware_init_param(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
rt_firmware *pfirmware = priv->pFirmware;
struct r8192_priv *priv = ieee80211_priv(dev);
rt_firmware *pfirmware = priv->pFirmware;
pfirmware->cmdpacket_frag_thresold = GET_COMMAND_PACKET_FRAG_THRESHOLD(MAX_TRANSMIT_BUFFER_SIZE);
pfirmware->cmdpacket_frag_thresold =
GET_COMMAND_PACKET_FRAG_THRESHOLD(MAX_TRANSMIT_BUFFER_SIZE);
}
/*
* segment the img and use the ptr and length to remember info on each segment
*
*/
static bool fw_download_code(struct net_device *dev, u8 *code_virtual_address, u32 buffer_len)
static bool fw_download_code(struct net_device *dev, u8 *code_virtual_address,
u32 buffer_len)
{
struct r8192_priv *priv = ieee80211_priv(dev);
bool rt_status = true;
u16 frag_threshold;
u16 frag_length, frag_offset = 0;
//u16 total_size;
int i;
rt_firmware *pfirmware = priv->pFirmware;
@ -58,83 +60,83 @@ static bool fw_download_code(struct net_device *dev, u8 *code_virtual_address, u
u8 bLastIniPkt;
firmware_init_param(dev);
//Fragmentation might be required
/* Fragmentation might be required */
frag_threshold = pfirmware->cmdpacket_frag_thresold;
do {
if((buffer_len - frag_offset) > frag_threshold) {
if ((buffer_len - frag_offset) > frag_threshold) {
frag_length = frag_threshold ;
bLastIniPkt = 0;
} else {
frag_length = buffer_len - frag_offset;
bLastIniPkt = 1;
}
/* Allocate skb buffer to contain firmware info and tx descriptor info
* add 4 to avoid packet appending overflow.
* */
//skb = dev_alloc_skb(USB_HWDESC_HEADER_LEN + frag_length + 4);
/*
* Allocate skb buffer to contain firmware info and tx
* descriptor info add 4 to avoid packet appending overflow.
*/
skb = dev_alloc_skb(frag_length + 4);
memcpy((unsigned char *)(skb->cb),&dev,sizeof(dev));
tcb_desc = (cb_desc*)(skb->cb + MAX_DEV_ADDR_SIZE);
memcpy((unsigned char *)(skb->cb), &dev, sizeof(dev));
tcb_desc = (cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
tcb_desc->queue_index = TXCMD_QUEUE;
tcb_desc->bCmdOrInit = DESC_PACKET_TYPE_INIT;
tcb_desc->bLastIniPkt = bLastIniPkt;
//skb_reserve(skb, USB_HWDESC_HEADER_LEN);
seg_ptr = skb->data;
/*
* Transform from little endian to big endian
* and pending zero
* Transform from little endian to big endian and pending zero
*/
for(i=0 ; i < frag_length; i+=4) {
*seg_ptr++ = ((i+0)<frag_length)?code_virtual_address[i+3]:0;
*seg_ptr++ = ((i+1)<frag_length)?code_virtual_address[i+2]:0;
*seg_ptr++ = ((i+2)<frag_length)?code_virtual_address[i+1]:0;
*seg_ptr++ = ((i+3)<frag_length)?code_virtual_address[i+0]:0;
for (i = 0; i < frag_length; i += 4) {
*seg_ptr++ = ((i+0) < frag_length) ? code_virtual_address[i+3] : 0;
*seg_ptr++ = ((i+1) < frag_length) ? code_virtual_address[i+2] : 0;
*seg_ptr++ = ((i+2) < frag_length) ? code_virtual_address[i+1] : 0;
*seg_ptr++ = ((i+3) < frag_length) ? code_virtual_address[i+0] : 0;
}
tcb_desc->txbuf_size= (u16)i;
tcb_desc->txbuf_size = (u16)i;
skb_put(skb, i);
priv->ieee80211->softmac_hard_start_xmit(skb,dev);
priv->ieee80211->softmac_hard_start_xmit(skb, dev);
code_virtual_address += frag_length;
frag_offset += frag_length;
}while(frag_offset < buffer_len);
} while (frag_offset < buffer_len);
return rt_status;
}
//-----------------------------------------------------------------------------
// Procedure: Check whether main code is download OK. If OK, turn on CPU
//
// Description: CPU register locates in different page against general register.
// Switch to CPU register in the begin and switch back before return
//
//
// Arguments: The pointer of the adapter
//
// Returns:
// NDIS_STATUS_FAILURE - the following initialization process should be terminated
// NDIS_STATUS_SUCCESS - if firmware initialization process success
//-----------------------------------------------------------------------------
/*
* Procedure: Check whether main code is download OK. If OK, turn on CPU
*
* Description: CPU register locates in different page against general
* register. Switch to CPU register in the begin and switch
* back before return
*
* Arguments: The pointer of the adapter
*
* Returns:
* NDIS_STATUS_FAILURE - the following initialization process should be
* terminated
* NDIS_STATUS_SUCCESS - if firmware initialization process success
*/
static bool CPUcheck_maincodeok_turnonCPU(struct net_device *dev)
{
bool rt_status = true;
int check_putcodeOK_time = 200000, check_bootOk_time = 200000;
u32 CPU_status = 0;
bool rt_status = true;
int check_putcodeOK_time = 200000;
int check_bootOk_time = 200000;
u32 CPU_status = 0;
/* Check whether put code OK */
do {
CPU_status = read_nic_dword(dev, CPU_GEN);
if(CPU_status&CPU_GEN_PUT_CODE_OK)
if (CPU_status & CPU_GEN_PUT_CODE_OK)
break;
}while(check_putcodeOK_time--);
} while (check_putcodeOK_time--);
if(!(CPU_status&CPU_GEN_PUT_CODE_OK)) {
if (!(CPU_status & CPU_GEN_PUT_CODE_OK)) {
RT_TRACE(COMP_ERR, "Download Firmware: Put code fail!\n");
goto CPUCheckMainCodeOKAndTurnOnCPU_Fail;
} else {
@ -143,27 +145,27 @@ static bool CPUcheck_maincodeok_turnonCPU(struct net_device *dev)
/* Turn On CPU */
CPU_status = read_nic_dword(dev, CPU_GEN);
write_nic_byte(dev, CPU_GEN, (u8)((CPU_status|CPU_GEN_PWR_STB_CPU)&0xff));
write_nic_byte(dev, CPU_GEN,
(u8)((CPU_status | CPU_GEN_PWR_STB_CPU) & 0xff));
mdelay(1);
/* Check whether CPU boot OK */
do {
CPU_status = read_nic_dword(dev, CPU_GEN);
if(CPU_status&CPU_GEN_BOOT_RDY)
if (CPU_status & CPU_GEN_BOOT_RDY)
break;
}while(check_bootOk_time--);
} while (check_bootOk_time--);
if(!(CPU_status&CPU_GEN_BOOT_RDY)) {
if (!(CPU_status & CPU_GEN_BOOT_RDY))
goto CPUCheckMainCodeOKAndTurnOnCPU_Fail;
} else {
else
RT_TRACE(COMP_FIRMWARE, "Download Firmware: Boot ready!\n");
}
return rt_status;
CPUCheckMainCodeOKAndTurnOnCPU_Fail:
RT_TRACE(COMP_ERR, "ERR in %s()\n", __FUNCTION__);
RT_TRACE(COMP_ERR, "ERR in %s()\n", __func__);
rt_status = FALSE;
return rt_status;
}
@ -179,12 +181,12 @@ static bool CPUcheck_firmware_ready(struct net_device *dev)
do {
CPU_status = read_nic_dword(dev, CPU_GEN);
if(CPU_status&CPU_GEN_FIRM_RDY)
if (CPU_status & CPU_GEN_FIRM_RDY)
break;
}while(check_time--);
} while (check_time--);
if(!(CPU_status&CPU_GEN_FIRM_RDY))
if (!(CPU_status & CPU_GEN_FIRM_RDY))
goto CPUCheckFirmwareReady_Fail;
else
RT_TRACE(COMP_FIRMWARE, "Download Firmware: Firmware ready!\n");
@ -192,7 +194,7 @@ static bool CPUcheck_firmware_ready(struct net_device *dev)
return rt_status;
CPUCheckFirmwareReady_Fail:
RT_TRACE(COMP_ERR, "ERR in %s()\n", __FUNCTION__);
RT_TRACE(COMP_ERR, "ERR in %s()\n", __func__);
rt_status = false;
return rt_status;
@ -205,85 +207,71 @@ bool init_firmware(struct net_device *dev)
u32 file_length = 0;
u8 *mapped_file = NULL;
u32 init_step = 0;
opt_rst_type_e rst_opt = OPT_SYSTEM_RESET;
firmware_init_step_e starting_state = FW_INIT_STEP0_BOOT;
enum opt_rst_type rst_opt = OPT_SYSTEM_RESET;
enum firmware_init_step starting_state = FW_INIT_STEP0_BOOT;
rt_firmware *pfirmware = priv->pFirmware;
const struct firmware *fw_entry;
const char *fw_name[3] = { "RTL8192E/boot.img",
"RTL8192E/main.img",
"RTL8192E/data.img"};
"RTL8192E/main.img",
"RTL8192E/data.img"};
int rc;
RT_TRACE(COMP_FIRMWARE, " PlatformInitFirmware()==>\n");
if (pfirmware->firmware_status == FW_STATUS_0_INIT ) {
if (pfirmware->firmware_status == FW_STATUS_0_INIT) {
/* it is called by reset */
rst_opt = OPT_SYSTEM_RESET;
starting_state = FW_INIT_STEP0_BOOT;
// TODO: system reset
/* TODO: system reset */
}else if(pfirmware->firmware_status == FW_STATUS_5_READY) {
} else if (pfirmware->firmware_status == FW_STATUS_5_READY) {
/* it is called by Initialize */
rst_opt = OPT_FIRMWARE_RESET;
starting_state = FW_INIT_STEP2_DATA;
}else {
RT_TRACE(COMP_FIRMWARE, "PlatformInitFirmware: undefined firmware state\n");
} else {
RT_TRACE(COMP_FIRMWARE,
"PlatformInitFirmware: undefined firmware state\n");
}
/*
* Download boot, main, and data image for System reset.
* Download data image for firmware reseta
*/
priv->firmware_source = FW_SOURCE_IMG_FILE;
for(init_step = starting_state; init_step <= FW_INIT_STEP2_DATA; init_step++) {
for (init_step = starting_state; init_step <= FW_INIT_STEP2_DATA; init_step++) {
/*
* Open Image file, and map file to contineous memory if open file success.
* or read image file from array. Default load from IMG file
*/
if(rst_opt == OPT_SYSTEM_RESET) {
switch(priv->firmware_source) {
case FW_SOURCE_IMG_FILE:
{
if(pfirmware->firmware_buf_size[init_step] == 0) {
rc = request_firmware(&fw_entry, fw_name[init_step],&priv->pdev->dev);
if(rc < 0 ) {
RT_TRACE(COMP_FIRMWARE, "request firmware fail!\n");
goto download_firmware_fail;
}
if(fw_entry->size > sizeof(pfirmware->firmware_buf[init_step])) {
RT_TRACE(COMP_FIRMWARE, "img file size exceed the container buffer fail!\n");
goto download_firmware_fail;
}
if(init_step != FW_INIT_STEP1_MAIN) {
memcpy(pfirmware->firmware_buf[init_step],fw_entry->data,fw_entry->size);
pfirmware->firmware_buf_size[init_step] = fw_entry->size;
} else {
memset(pfirmware->firmware_buf[init_step],0,128);
memcpy(&pfirmware->firmware_buf[init_step][128],fw_entry->data,fw_entry->size);
//mapped_file = pfirmware->firmware_buf[init_step];
pfirmware->firmware_buf_size[init_step] = fw_entry->size+128;
//file_length = fw_entry->size + 128;
}
//pfirmware->firmware_buf_size = file_length;
if(rst_opt == OPT_SYSTEM_RESET) {
release_firmware(fw_entry);
}
}
mapped_file = pfirmware->firmware_buf[init_step];
file_length = pfirmware->firmware_buf_size[init_step];
break;
if (rst_opt == OPT_SYSTEM_RESET) {
if (pfirmware->firmware_buf_size[init_step] == 0) {
rc = request_firmware(&fw_entry, fw_name[init_step], &priv->pdev->dev);
if (rc < 0) {
RT_TRACE(COMP_FIRMWARE, "request firmware fail!\n");
goto download_firmware_fail;
}
default:
break;
if (fw_entry->size > sizeof(pfirmware->firmware_buf[init_step])) {
RT_TRACE(COMP_FIRMWARE, "img file size exceed the container buffer fail!\n");
goto download_firmware_fail;
}
if (init_step != FW_INIT_STEP1_MAIN) {
memcpy(pfirmware->firmware_buf[init_step], fw_entry->data, fw_entry->size);
pfirmware->firmware_buf_size[init_step] = fw_entry->size;
} else {
memset(pfirmware->firmware_buf[init_step], 0, 128);
memcpy(&pfirmware->firmware_buf[init_step][128], fw_entry->data, fw_entry->size);
pfirmware->firmware_buf_size[init_step] = fw_entry->size+128;
}
if (rst_opt == OPT_SYSTEM_RESET)
release_firmware(fw_entry);
}
}else if(rst_opt == OPT_FIRMWARE_RESET ) {
mapped_file = pfirmware->firmware_buf[init_step];
file_length = pfirmware->firmware_buf_size[init_step];
} else if (rst_opt == OPT_FIRMWARE_RESET) {
/* we only need to download data.img here */
mapped_file = pfirmware->firmware_buf[init_step];
file_length = pfirmware->firmware_buf_size[init_step];
@ -291,68 +279,71 @@ bool init_firmware(struct net_device *dev)
/* Download image file */
/* The firmware download process is just as following,
* 1. that is each packet will be segmented and inserted to the wait queue.
* 1. that is each packet will be segmented and inserted to the
* wait queue.
* 2. each packet segment will be put in the skb_buff packet.
* 3. each skb_buff packet data content will already include the firmware info
* and Tx descriptor info
* */
rt_status = fw_download_code(dev,mapped_file,file_length);
if(rt_status != TRUE) {
* 3. each skb_buff packet data content will already include
* the firmware info and Tx descriptor info
*/
rt_status = fw_download_code(dev, mapped_file, file_length);
if (rt_status != TRUE)
goto download_firmware_fail;
}
switch(init_step) {
case FW_INIT_STEP0_BOOT:
/* Download boot
* initialize command descriptor.
* will set polling bit when firmware code is also configured
*/
pfirmware->firmware_status = FW_STATUS_1_MOVE_BOOT_CODE;
//mdelay(1000);
/*
* To initialize IMEM, CPU move code from 0x80000080,
* hence, we send 0x80 byte packet
*/
break;
switch (init_step) {
case FW_INIT_STEP0_BOOT:
/* Download boot
* initialize command descriptor.
* will set polling bit when firmware code is also
* configured
*/
pfirmware->firmware_status = FW_STATUS_1_MOVE_BOOT_CODE;
/* mdelay(1000); */
/*
* To initialize IMEM, CPU move code from 0x80000080,
* hence, we send 0x80 byte packet
*/
break;
case FW_INIT_STEP1_MAIN:
/* Download firmware code. Wait until Boot Ready and Turn on CPU */
pfirmware->firmware_status = FW_STATUS_2_MOVE_MAIN_CODE;
case FW_INIT_STEP1_MAIN:
/* Download firmware code.
* Wait until Boot Ready and Turn on CPU */
pfirmware->firmware_status = FW_STATUS_2_MOVE_MAIN_CODE;
/* Check Put Code OK and Turn On CPU */
rt_status = CPUcheck_maincodeok_turnonCPU(dev);
if(rt_status != TRUE) {
RT_TRACE(COMP_FIRMWARE, "CPUcheck_maincodeok_turnonCPU fail!\n");
goto download_firmware_fail;
}
/* Check Put Code OK and Turn On CPU */
rt_status = CPUcheck_maincodeok_turnonCPU(dev);
if (rt_status != TRUE) {
RT_TRACE(COMP_FIRMWARE,
"CPUcheck_maincodeok_turnonCPU fail!\n");
goto download_firmware_fail;
}
pfirmware->firmware_status = FW_STATUS_3_TURNON_CPU;
break;
pfirmware->firmware_status = FW_STATUS_3_TURNON_CPU;
break;
case FW_INIT_STEP2_DATA:
/* download initial data code */
pfirmware->firmware_status = FW_STATUS_4_MOVE_DATA_CODE;
mdelay(1);
case FW_INIT_STEP2_DATA:
/* download initial data code */
pfirmware->firmware_status = FW_STATUS_4_MOVE_DATA_CODE;
mdelay(1);
rt_status = CPUcheck_firmware_ready(dev);
if(rt_status != TRUE) {
RT_TRACE(COMP_FIRMWARE, "CPUcheck_firmware_ready fail(%d)!\n",rt_status);
goto download_firmware_fail;
}
rt_status = CPUcheck_firmware_ready(dev);
if (rt_status != TRUE) {
RT_TRACE(COMP_FIRMWARE,
"CPUcheck_firmware_ready fail(%d)!\n",
rt_status);
goto download_firmware_fail;
}
/* wait until data code is initialized ready.*/
pfirmware->firmware_status = FW_STATUS_5_READY;
break;
/* wait until data code is initialized ready.*/
pfirmware->firmware_status = FW_STATUS_5_READY;
break;
}
}
RT_TRACE(COMP_FIRMWARE, "Firmware Download Success\n");
//assert(pfirmware->firmware_status == FW_STATUS_5_READY, ("Firmware Download Fail\n"));
return rt_status;
download_firmware_fail:
RT_TRACE(COMP_ERR, "ERR in %s()\n", __FUNCTION__);
RT_TRACE(COMP_ERR, "ERR in %s()\n", __func__);
rt_status = FALSE;
return rt_status;