[PATCH] dcdbas: add Dell Systems Management Base Driver with sysfs support

This patch adds the Dell Systems Management Base Driver with sysfs support.

This driver has been tested with Dell OpenManage.

Signed-off-by: Doug Warzecha <Douglas_Warzecha@dell.com>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
Doug Warzecha 2005-09-06 15:17:15 -07:00 committed by Linus Torvalds
parent 6c54c28e69
commit 90563ec412
6 changed files with 818 additions and 0 deletions

91
Documentation/dcdbas.txt Normal file
View file

@ -0,0 +1,91 @@
Overview
The Dell Systems Management Base Driver provides a sysfs interface for
systems management software such as Dell OpenManage to perform system
management interrupts and host control actions (system power cycle or
power off after OS shutdown) on certain Dell systems.
Dell OpenManage requires this driver on the following Dell PowerEdge systems:
300, 1300, 1400, 400SC, 500SC, 1500SC, 1550, 600SC, 1600SC, 650, 1655MC,
700, and 750. Other Dell software such as the open source libsmbios project
is expected to make use of this driver, and it may include the use of this
driver on other Dell systems.
The Dell libsmbios project aims towards providing access to as much BIOS
information as possible. See http://linux.dell.com/libsmbios/main/ for
more information about the libsmbios project.
System Management Interrupt
On some Dell systems, systems management software must access certain
management information via a system management interrupt (SMI). The SMI data
buffer must reside in 32-bit address space, and the physical address of the
buffer is required for the SMI. The driver maintains the memory required for
the SMI and provides a way for the application to generate the SMI.
The driver creates the following sysfs entries for systems management
software to perform these system management interrupts:
/sys/devices/platform/dcdbas/smi_data
/sys/devices/platform/dcdbas/smi_data_buf_phys_addr
/sys/devices/platform/dcdbas/smi_data_buf_size
/sys/devices/platform/dcdbas/smi_request
Systems management software must perform the following steps to execute
a SMI using this driver:
1) Lock smi_data.
2) Write system management command to smi_data.
3) Write "1" to smi_request to generate a calling interface SMI or
"2" to generate a raw SMI.
4) Read system management command response from smi_data.
5) Unlock smi_data.
Host Control Action
Dell OpenManage supports a host control feature that allows the administrator
to perform a power cycle or power off of the system after the OS has finished
shutting down. On some Dell systems, this host control feature requires that
a driver perform a SMI after the OS has finished shutting down.
The driver creates the following sysfs entries for systems management software
to schedule the driver to perform a power cycle or power off host control
action after the system has finished shutting down:
/sys/devices/platform/dcdbas/host_control_action
/sys/devices/platform/dcdbas/host_control_smi_type
/sys/devices/platform/dcdbas/host_control_on_shutdown
Dell OpenManage performs the following steps to execute a power cycle or
power off host control action using this driver:
1) Write host control action to be performed to host_control_action.
2) Write type of SMI that driver needs to perform to host_control_smi_type.
3) Write "1" to host_control_on_shutdown to enable host control action.
4) Initiate OS shutdown.
(Driver will perform host control SMI when it is notified that the OS
has finished shutting down.)
Host Control SMI Type
The following table shows the value to write to host_control_smi_type to
perform a power cycle or power off host control action:
PowerEdge System Host Control SMI Type
---------------- ---------------------
300 HC_SMITYPE_TYPE1
1300 HC_SMITYPE_TYPE1
1400 HC_SMITYPE_TYPE2
500SC HC_SMITYPE_TYPE2
1500SC HC_SMITYPE_TYPE2
1550 HC_SMITYPE_TYPE2
600SC HC_SMITYPE_TYPE2
1600SC HC_SMITYPE_TYPE2
650 HC_SMITYPE_TYPE2
1655MC HC_SMITYPE_TYPE2
700 HC_SMITYPE_TYPE3
750 HC_SMITYPE_TYPE3

View file

@ -696,6 +696,11 @@ M: dz@debian.org
W: http://www.debian.org/~dz/i8k/
S: Maintained
DELL SYSTEMS MANAGEMENT BASE DRIVER (dcdbas)
P: Doug Warzecha
M: Douglas_Warzecha@dell.com
S: Maintained
DEVICE-MAPPER
P: Alasdair Kergon
L: dm-devel@redhat.com

View file

@ -67,4 +67,22 @@ config DELL_RBU
supporting application to comunicate with the BIOS regarding the new
image for the image update to take effect.
See <file:Documentation/dell_rbu.txt> for more details on the driver.
config DCDBAS
tristate "Dell Systems Management Base Driver"
depends on X86 || X86_64
default m
help
The Dell Systems Management Base Driver provides a sysfs interface
for systems management software to perform System Management
Interrupts (SMIs) and Host Control Actions (system power cycle or
power off after OS shutdown) on certain Dell systems.
See <file:Documentation/dcdbas.txt> for more details on the driver
and the Dell systems on which Dell systems management software makes
use of this driver.
Say Y or M here to enable the driver for use by Dell systems
management software such as Dell OpenManage.
endmenu

View file

@ -5,3 +5,4 @@ obj-$(CONFIG_EDD) += edd.o
obj-$(CONFIG_EFI_VARS) += efivars.o
obj-$(CONFIG_EFI_PCDP) += pcdp.o
obj-$(CONFIG_DELL_RBU) += dell_rbu.o
obj-$(CONFIG_DCDBAS) += dcdbas.o

596
drivers/firmware/dcdbas.c Normal file
View file

@ -0,0 +1,596 @@
/*
* dcdbas.c: Dell Systems Management Base Driver
*
* The Dell Systems Management Base Driver provides a sysfs interface for
* systems management software to perform System Management Interrupts (SMIs)
* and Host Control Actions (power cycle or power off after OS shutdown) on
* Dell systems.
*
* See Documentation/dcdbas.txt for more information.
*
* Copyright (C) 1995-2005 Dell Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License v2.0 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mc146818rtc.h>
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/io.h>
#include <asm/semaphore.h>
#include "dcdbas.h"
#define DRIVER_NAME "dcdbas"
#define DRIVER_VERSION "5.6.0-1"
#define DRIVER_DESCRIPTION "Dell Systems Management Base Driver"
static struct platform_device *dcdbas_pdev;
static u8 *smi_data_buf;
static dma_addr_t smi_data_buf_handle;
static unsigned long smi_data_buf_size;
static u32 smi_data_buf_phys_addr;
static DECLARE_MUTEX(smi_data_lock);
static unsigned int host_control_action;
static unsigned int host_control_smi_type;
static unsigned int host_control_on_shutdown;
/**
* smi_data_buf_free: free SMI data buffer
*/
static void smi_data_buf_free(void)
{
if (!smi_data_buf)
return;
dev_dbg(&dcdbas_pdev->dev, "%s: phys: %x size: %lu\n",
__FUNCTION__, smi_data_buf_phys_addr, smi_data_buf_size);
dma_free_coherent(&dcdbas_pdev->dev, smi_data_buf_size, smi_data_buf,
smi_data_buf_handle);
smi_data_buf = NULL;
smi_data_buf_handle = 0;
smi_data_buf_phys_addr = 0;
smi_data_buf_size = 0;
}
/**
* smi_data_buf_realloc: grow SMI data buffer if needed
*/
static int smi_data_buf_realloc(unsigned long size)
{
void *buf;
dma_addr_t handle;
if (smi_data_buf_size >= size)
return 0;
if (size > MAX_SMI_DATA_BUF_SIZE)
return -EINVAL;
/* new buffer is needed */
buf = dma_alloc_coherent(&dcdbas_pdev->dev, size, &handle, GFP_KERNEL);
if (!buf) {
dev_dbg(&dcdbas_pdev->dev,
"%s: failed to allocate memory size %lu\n",
__FUNCTION__, size);
return -ENOMEM;
}
/* memory zeroed by dma_alloc_coherent */
if (smi_data_buf)
memcpy(buf, smi_data_buf, smi_data_buf_size);
/* free any existing buffer */
smi_data_buf_free();
/* set up new buffer for use */
smi_data_buf = buf;
smi_data_buf_handle = handle;
smi_data_buf_phys_addr = (u32) virt_to_phys(buf);
smi_data_buf_size = size;
dev_dbg(&dcdbas_pdev->dev, "%s: phys: %x size: %lu\n",
__FUNCTION__, smi_data_buf_phys_addr, smi_data_buf_size);
return 0;
}
static ssize_t smi_data_buf_phys_addr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%x\n", smi_data_buf_phys_addr);
}
static ssize_t smi_data_buf_size_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%lu\n", smi_data_buf_size);
}
static ssize_t smi_data_buf_size_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long buf_size;
ssize_t ret;
buf_size = simple_strtoul(buf, NULL, 10);
/* make sure SMI data buffer is at least buf_size */
down(&smi_data_lock);
ret = smi_data_buf_realloc(buf_size);
up(&smi_data_lock);
if (ret)
return ret;
return count;
}
static ssize_t smi_data_read(struct kobject *kobj, char *buf, loff_t pos,
size_t count)
{
size_t max_read;
ssize_t ret;
down(&smi_data_lock);
if (pos >= smi_data_buf_size) {
ret = 0;
goto out;
}
max_read = smi_data_buf_size - pos;
ret = min(max_read, count);
memcpy(buf, smi_data_buf + pos, ret);
out:
up(&smi_data_lock);
return ret;
}
static ssize_t smi_data_write(struct kobject *kobj, char *buf, loff_t pos,
size_t count)
{
ssize_t ret;
down(&smi_data_lock);
ret = smi_data_buf_realloc(pos + count);
if (ret)
goto out;
memcpy(smi_data_buf + pos, buf, count);
ret = count;
out:
up(&smi_data_lock);
return ret;
}
static ssize_t host_control_action_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", host_control_action);
}
static ssize_t host_control_action_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t ret;
/* make sure buffer is available for host control command */
down(&smi_data_lock);
ret = smi_data_buf_realloc(sizeof(struct apm_cmd));
up(&smi_data_lock);
if (ret)
return ret;
host_control_action = simple_strtoul(buf, NULL, 10);
return count;
}
static ssize_t host_control_smi_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", host_control_smi_type);
}
static ssize_t host_control_smi_type_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
host_control_smi_type = simple_strtoul(buf, NULL, 10);
return count;
}
static ssize_t host_control_on_shutdown_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", host_control_on_shutdown);
}
static ssize_t host_control_on_shutdown_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
host_control_on_shutdown = simple_strtoul(buf, NULL, 10);
return count;
}
/**
* smi_request: generate SMI request
*
* Called with smi_data_lock.
*/
static int smi_request(struct smi_cmd *smi_cmd)
{
cpumask_t old_mask;
int ret = 0;
if (smi_cmd->magic != SMI_CMD_MAGIC) {
dev_info(&dcdbas_pdev->dev, "%s: invalid magic value\n",
__FUNCTION__);
return -EBADR;
}
/* SMI requires CPU 0 */
old_mask = current->cpus_allowed;
set_cpus_allowed(current, cpumask_of_cpu(0));
if (smp_processor_id() != 0) {
dev_dbg(&dcdbas_pdev->dev, "%s: failed to get CPU 0\n",
__FUNCTION__);
ret = -EBUSY;
goto out;
}
/* generate SMI */
asm volatile (
"outb %b0,%w1"
: /* no output args */
: "a" (smi_cmd->command_code),
"d" (smi_cmd->command_address),
"b" (smi_cmd->ebx),
"c" (smi_cmd->ecx)
: "memory"
);
out:
set_cpus_allowed(current, old_mask);
return ret;
}
/**
* smi_request_store:
*
* The valid values are:
* 0: zero SMI data buffer
* 1: generate calling interface SMI
* 2: generate raw SMI
*
* User application writes smi_cmd to smi_data before telling driver
* to generate SMI.
*/
static ssize_t smi_request_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct smi_cmd *smi_cmd;
unsigned long val = simple_strtoul(buf, NULL, 10);
ssize_t ret;
down(&smi_data_lock);
if (smi_data_buf_size < sizeof(struct smi_cmd)) {
ret = -ENODEV;
goto out;
}
smi_cmd = (struct smi_cmd *)smi_data_buf;
switch (val) {
case 2:
/* Raw SMI */
ret = smi_request(smi_cmd);
if (!ret)
ret = count;
break;
case 1:
/* Calling Interface SMI */
smi_cmd->ebx = (u32) virt_to_phys(smi_cmd->command_buffer);
ret = smi_request(smi_cmd);
if (!ret)
ret = count;
break;
case 0:
memset(smi_data_buf, 0, smi_data_buf_size);
ret = count;
break;
default:
ret = -EINVAL;
break;
}
out:
up(&smi_data_lock);
return ret;
}
/**
* host_control_smi: generate host control SMI
*
* Caller must set up the host control command in smi_data_buf.
*/
static int host_control_smi(void)
{
struct apm_cmd *apm_cmd;
u8 *data;
unsigned long flags;
u32 num_ticks;
s8 cmd_status;
u8 index;
apm_cmd = (struct apm_cmd *)smi_data_buf;
apm_cmd->status = ESM_STATUS_CMD_UNSUCCESSFUL;
switch (host_control_smi_type) {
case HC_SMITYPE_TYPE1:
spin_lock_irqsave(&rtc_lock, flags);
/* write SMI data buffer physical address */
data = (u8 *)&smi_data_buf_phys_addr;
for (index = PE1300_CMOS_CMD_STRUCT_PTR;
index < (PE1300_CMOS_CMD_STRUCT_PTR + 4);
index++, data++) {
outb(index,
(CMOS_BASE_PORT + CMOS_PAGE2_INDEX_PORT_PIIX4));
outb(*data,
(CMOS_BASE_PORT + CMOS_PAGE2_DATA_PORT_PIIX4));
}
/* first set status to -1 as called by spec */
cmd_status = ESM_STATUS_CMD_UNSUCCESSFUL;
outb((u8) cmd_status, PCAT_APM_STATUS_PORT);
/* generate SMM call */
outb(ESM_APM_CMD, PCAT_APM_CONTROL_PORT);
spin_unlock_irqrestore(&rtc_lock, flags);
/* wait a few to see if it executed */
num_ticks = TIMEOUT_USEC_SHORT_SEMA_BLOCKING;
while ((cmd_status = inb(PCAT_APM_STATUS_PORT))
== ESM_STATUS_CMD_UNSUCCESSFUL) {
num_ticks--;
if (num_ticks == EXPIRED_TIMER)
return -ETIME;
}
break;
case HC_SMITYPE_TYPE2:
case HC_SMITYPE_TYPE3:
spin_lock_irqsave(&rtc_lock, flags);
/* write SMI data buffer physical address */
data = (u8 *)&smi_data_buf_phys_addr;
for (index = PE1400_CMOS_CMD_STRUCT_PTR;
index < (PE1400_CMOS_CMD_STRUCT_PTR + 4);
index++, data++) {
outb(index, (CMOS_BASE_PORT + CMOS_PAGE1_INDEX_PORT));
outb(*data, (CMOS_BASE_PORT + CMOS_PAGE1_DATA_PORT));
}
/* generate SMM call */
if (host_control_smi_type == HC_SMITYPE_TYPE3)
outb(ESM_APM_CMD, PCAT_APM_CONTROL_PORT);
else
outb(ESM_APM_CMD, PE1400_APM_CONTROL_PORT);
/* restore RTC index pointer since it was written to above */
CMOS_READ(RTC_REG_C);
spin_unlock_irqrestore(&rtc_lock, flags);
/* read control port back to serialize write */
cmd_status = inb(PE1400_APM_CONTROL_PORT);
/* wait a few to see if it executed */
num_ticks = TIMEOUT_USEC_SHORT_SEMA_BLOCKING;
while (apm_cmd->status == ESM_STATUS_CMD_UNSUCCESSFUL) {
num_ticks--;
if (num_ticks == EXPIRED_TIMER)
return -ETIME;
}
break;
default:
dev_dbg(&dcdbas_pdev->dev, "%s: invalid SMI type %u\n",
__FUNCTION__, host_control_smi_type);
return -ENOSYS;
}
return 0;
}
/**
* dcdbas_host_control: initiate host control
*
* This function is called by the driver after the system has
* finished shutting down if the user application specified a
* host control action to perform on shutdown. It is safe to
* use smi_data_buf at this point because the system has finished
* shutting down and no userspace apps are running.
*/
static void dcdbas_host_control(void)
{
struct apm_cmd *apm_cmd;
u8 action;
if (host_control_action == HC_ACTION_NONE)
return;
action = host_control_action;
host_control_action = HC_ACTION_NONE;
if (!smi_data_buf) {
dev_dbg(&dcdbas_pdev->dev, "%s: no SMI buffer\n", __FUNCTION__);
return;
}
if (smi_data_buf_size < sizeof(struct apm_cmd)) {
dev_dbg(&dcdbas_pdev->dev, "%s: SMI buffer too small\n",
__FUNCTION__);
return;
}
apm_cmd = (struct apm_cmd *)smi_data_buf;
/* power off takes precedence */
if (action & HC_ACTION_HOST_CONTROL_POWEROFF) {
apm_cmd->command = ESM_APM_POWER_CYCLE;
apm_cmd->reserved = 0;
*((s16 *)&apm_cmd->parameters.shortreq.parm[0]) = (s16) 0;
host_control_smi();
} else if (action & HC_ACTION_HOST_CONTROL_POWERCYCLE) {
apm_cmd->command = ESM_APM_POWER_CYCLE;
apm_cmd->reserved = 0;
*((s16 *)&apm_cmd->parameters.shortreq.parm[0]) = (s16) 20;
host_control_smi();
}
}
/**
* dcdbas_reboot_notify: handle reboot notification for host control
*/
static int dcdbas_reboot_notify(struct notifier_block *nb, unsigned long code,
void *unused)
{
static unsigned int notify_cnt = 0;
switch (code) {
case SYS_DOWN:
case SYS_HALT:
case SYS_POWER_OFF:
if (host_control_on_shutdown) {
/* firmware is going to perform host control action */
if (++notify_cnt == 2) {
printk(KERN_WARNING
"Please wait for shutdown "
"action to complete...\n");
dcdbas_host_control();
}
/*
* register again and initiate the host control
* action on the second notification to allow
* everyone that registered to be notified
*/
register_reboot_notifier(nb);
}
break;
}
return NOTIFY_DONE;
}
static struct notifier_block dcdbas_reboot_nb = {
.notifier_call = dcdbas_reboot_notify,
.next = NULL,
.priority = 0
};
static DCDBAS_BIN_ATTR_RW(smi_data);
static struct bin_attribute *dcdbas_bin_attrs[] = {
&bin_attr_smi_data,
NULL
};
static DCDBAS_DEV_ATTR_RW(smi_data_buf_size);
static DCDBAS_DEV_ATTR_RO(smi_data_buf_phys_addr);
static DCDBAS_DEV_ATTR_WO(smi_request);
static DCDBAS_DEV_ATTR_RW(host_control_action);
static DCDBAS_DEV_ATTR_RW(host_control_smi_type);
static DCDBAS_DEV_ATTR_RW(host_control_on_shutdown);
static struct device_attribute *dcdbas_dev_attrs[] = {
&dev_attr_smi_data_buf_size,
&dev_attr_smi_data_buf_phys_addr,
&dev_attr_smi_request,
&dev_attr_host_control_action,
&dev_attr_host_control_smi_type,
&dev_attr_host_control_on_shutdown,
NULL
};
/**
* dcdbas_init: initialize driver
*/
static int __init dcdbas_init(void)
{
int i;
host_control_action = HC_ACTION_NONE;
host_control_smi_type = HC_SMITYPE_NONE;
dcdbas_pdev = platform_device_register_simple(DRIVER_NAME, -1, NULL, 0);
if (IS_ERR(dcdbas_pdev))
return PTR_ERR(dcdbas_pdev);
/*
* BIOS SMI calls require buffer addresses be in 32-bit address space.
* This is done by setting the DMA mask below.
*/
dcdbas_pdev->dev.coherent_dma_mask = DMA_32BIT_MASK;
dcdbas_pdev->dev.dma_mask = &dcdbas_pdev->dev.coherent_dma_mask;
register_reboot_notifier(&dcdbas_reboot_nb);
for (i = 0; dcdbas_bin_attrs[i]; i++)
sysfs_create_bin_file(&dcdbas_pdev->dev.kobj,
dcdbas_bin_attrs[i]);
for (i = 0; dcdbas_dev_attrs[i]; i++)
device_create_file(&dcdbas_pdev->dev, dcdbas_dev_attrs[i]);
dev_info(&dcdbas_pdev->dev, "%s (version %s)\n",
DRIVER_DESCRIPTION, DRIVER_VERSION);
return 0;
}
/**
* dcdbas_exit: perform driver cleanup
*/
static void __exit dcdbas_exit(void)
{
platform_device_unregister(dcdbas_pdev);
unregister_reboot_notifier(&dcdbas_reboot_nb);
smi_data_buf_free();
}
module_init(dcdbas_init);
module_exit(dcdbas_exit);
MODULE_DESCRIPTION(DRIVER_DESCRIPTION " (version " DRIVER_VERSION ")");
MODULE_VERSION(DRIVER_VERSION);
MODULE_AUTHOR("Dell Inc.");
MODULE_LICENSE("GPL");

107
drivers/firmware/dcdbas.h Normal file
View file

@ -0,0 +1,107 @@
/*
* dcdbas.h: Definitions for Dell Systems Management Base driver
*
* Copyright (C) 1995-2005 Dell Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License v2.0 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _DCDBAS_H_
#define _DCDBAS_H_
#include <linux/device.h>
#include <linux/input.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#define MAX_SMI_DATA_BUF_SIZE (256 * 1024)
#define HC_ACTION_NONE (0)
#define HC_ACTION_HOST_CONTROL_POWEROFF BIT(1)
#define HC_ACTION_HOST_CONTROL_POWERCYCLE BIT(2)
#define HC_SMITYPE_NONE (0)
#define HC_SMITYPE_TYPE1 (1)
#define HC_SMITYPE_TYPE2 (2)
#define HC_SMITYPE_TYPE3 (3)
#define ESM_APM_CMD (0x0A0)
#define ESM_APM_POWER_CYCLE (0x10)
#define ESM_STATUS_CMD_UNSUCCESSFUL (-1)
#define CMOS_BASE_PORT (0x070)
#define CMOS_PAGE1_INDEX_PORT (0)
#define CMOS_PAGE1_DATA_PORT (1)
#define CMOS_PAGE2_INDEX_PORT_PIIX4 (2)
#define CMOS_PAGE2_DATA_PORT_PIIX4 (3)
#define PE1400_APM_CONTROL_PORT (0x0B0)
#define PCAT_APM_CONTROL_PORT (0x0B2)
#define PCAT_APM_STATUS_PORT (0x0B3)
#define PE1300_CMOS_CMD_STRUCT_PTR (0x38)
#define PE1400_CMOS_CMD_STRUCT_PTR (0x70)
#define MAX_SYSMGMT_SHORTCMD_PARMBUF_LEN (14)
#define MAX_SYSMGMT_LONGCMD_SGENTRY_NUM (16)
#define TIMEOUT_USEC_SHORT_SEMA_BLOCKING (10000)
#define EXPIRED_TIMER (0)
#define SMI_CMD_MAGIC (0x534D4931)
#define DCDBAS_DEV_ATTR_RW(_name) \
DEVICE_ATTR(_name,0600,_name##_show,_name##_store);
#define DCDBAS_DEV_ATTR_RO(_name) \
DEVICE_ATTR(_name,0400,_name##_show,NULL);
#define DCDBAS_DEV_ATTR_WO(_name) \
DEVICE_ATTR(_name,0200,NULL,_name##_store);
#define DCDBAS_BIN_ATTR_RW(_name) \
struct bin_attribute bin_attr_##_name = { \
.attr = { .name = __stringify(_name), \
.mode = 0600, \
.owner = THIS_MODULE }, \
.read = _name##_read, \
.write = _name##_write, \
}
struct smi_cmd {
__u32 magic;
__u32 ebx;
__u32 ecx;
__u16 command_address;
__u8 command_code;
__u8 reserved;
__u8 command_buffer[1];
} __attribute__ ((packed));
struct apm_cmd {
__u8 command;
__s8 status;
__u16 reserved;
union {
struct {
__u8 parm[MAX_SYSMGMT_SHORTCMD_PARMBUF_LEN];
} __attribute__ ((packed)) shortreq;
struct {
__u16 num_sg_entries;
struct {
__u32 size;
__u64 addr;
} __attribute__ ((packed))
sglist[MAX_SYSMGMT_LONGCMD_SGENTRY_NUM];
} __attribute__ ((packed)) longreq;
} __attribute__ ((packed)) parameters;
} __attribute__ ((packed));
#endif /* _DCDBAS_H_ */