mirror of
https://github.com/adulau/aha.git
synced 2024-12-27 19:26:25 +00:00
[IA64] Add Documentation/ia64/mca.txt
Add Documentation/ia64/mca.txt, an ad-hoc collection of notes on IA64 MCA and INIT processing. Signed-off-by: Keith Owens <kaos@sgi.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
This commit is contained in:
parent
24b8e0cc09
commit
8ee9e23d41
1 changed files with 194 additions and 0 deletions
194
Documentation/ia64/mca.txt
Normal file
194
Documentation/ia64/mca.txt
Normal file
|
@ -0,0 +1,194 @@
|
|||
An ad-hoc collection of notes on IA64 MCA and INIT processing. Feel
|
||||
free to update it with notes about any area that is not clear.
|
||||
|
||||
---
|
||||
|
||||
MCA/INIT are completely asynchronous. They can occur at any time, when
|
||||
the OS is in any state. Including when one of the cpus is already
|
||||
holding a spinlock. Trying to get any lock from MCA/INIT state is
|
||||
asking for deadlock. Also the state of structures that are protected
|
||||
by locks is indeterminate, including linked lists.
|
||||
|
||||
---
|
||||
|
||||
The complicated ia64 MCA process. All of this is mandated by Intel's
|
||||
specification for ia64 SAL, error recovery and and unwind, it is not as
|
||||
if we have a choice here.
|
||||
|
||||
* MCA occurs on one cpu, usually due to a double bit memory error.
|
||||
This is the monarch cpu.
|
||||
|
||||
* SAL sends an MCA rendezvous interrupt (which is a normal interrupt)
|
||||
to all the other cpus, the slaves.
|
||||
|
||||
* Slave cpus that receive the MCA interrupt call down into SAL, they
|
||||
end up spinning disabled while the MCA is being serviced.
|
||||
|
||||
* If any slave cpu was already spinning disabled when the MCA occurred
|
||||
then it cannot service the MCA interrupt. SAL waits ~20 seconds then
|
||||
sends an unmaskable INIT event to the slave cpus that have not
|
||||
already rendezvoused.
|
||||
|
||||
* Because MCA/INIT can be delivered at any time, including when the cpu
|
||||
is down in PAL in physical mode, the registers at the time of the
|
||||
event are _completely_ undefined. In particular the MCA/INIT
|
||||
handlers cannot rely on the thread pointer, PAL physical mode can
|
||||
(and does) modify TP. It is allowed to do that as long as it resets
|
||||
TP on return. However MCA/INIT events expose us to these PAL
|
||||
internal TP changes. Hence curr_task().
|
||||
|
||||
* If an MCA/INIT event occurs while the kernel was running (not user
|
||||
space) and the kernel has called PAL then the MCA/INIT handler cannot
|
||||
assume that the kernel stack is in a fit state to be used. Mainly
|
||||
because PAL may or may not maintain the stack pointer internally.
|
||||
Because the MCA/INIT handlers cannot trust the kernel stack, they
|
||||
have to use their own, per-cpu stacks. The MCA/INIT stacks are
|
||||
preformatted with just enough task state to let the relevant handlers
|
||||
do their job.
|
||||
|
||||
* Unlike most other architectures, the ia64 struct task is embedded in
|
||||
the kernel stack[1]. So switching to a new kernel stack means that
|
||||
we switch to a new task as well. Because various bits of the kernel
|
||||
assume that current points into the struct task, switching to a new
|
||||
stack also means a new value for current.
|
||||
|
||||
* Once all slaves have rendezvoused and are spinning disabled, the
|
||||
monarch is entered. The monarch now tries to diagnose the problem
|
||||
and decide if it can recover or not.
|
||||
|
||||
* Part of the monarch's job is to look at the state of all the other
|
||||
tasks. The only way to do that on ia64 is to call the unwinder,
|
||||
as mandated by Intel.
|
||||
|
||||
* The starting point for the unwind depends on whether a task is
|
||||
running or not. That is, whether it is on a cpu or is blocked. The
|
||||
monarch has to determine whether or not a task is on a cpu before it
|
||||
knows how to start unwinding it. The tasks that received an MCA or
|
||||
INIT event are no longer running, they have been converted to blocked
|
||||
tasks. But (and its a big but), the cpus that received the MCA
|
||||
rendezvous interrupt are still running on their normal kernel stacks!
|
||||
|
||||
* To distinguish between these two cases, the monarch must know which
|
||||
tasks are on a cpu and which are not. Hence each slave cpu that
|
||||
switches to an MCA/INIT stack, registers its new stack using
|
||||
set_curr_task(), so the monarch can tell that the _original_ task is
|
||||
no longer running on that cpu. That gives us a decent chance of
|
||||
getting a valid backtrace of the _original_ task.
|
||||
|
||||
* MCA/INIT can be nested, to a depth of 2 on any cpu. In the case of a
|
||||
nested error, we want diagnostics on the MCA/INIT handler that
|
||||
failed, not on the task that was originally running. Again this
|
||||
requires set_curr_task() so the MCA/INIT handlers can register their
|
||||
own stack as running on that cpu. Then a recursive error gets a
|
||||
trace of the failing handler's "task".
|
||||
|
||||
[1] My (Keith Owens) original design called for ia64 to separate its
|
||||
struct task and the kernel stacks. Then the MCA/INIT data would be
|
||||
chained stacks like i386 interrupt stacks. But that required
|
||||
radical surgery on the rest of ia64, plus extra hard wired TLB
|
||||
entries with its associated performance degradation. David
|
||||
Mosberger vetoed that approach. Which meant that separate kernel
|
||||
stacks meant separate "tasks" for the MCA/INIT handlers.
|
||||
|
||||
---
|
||||
|
||||
INIT is less complicated than MCA. Pressing the nmi button or using
|
||||
the equivalent command on the management console sends INIT to all
|
||||
cpus. SAL picks one one of the cpus as the monarch and the rest are
|
||||
slaves. All the OS INIT handlers are entered at approximately the same
|
||||
time. The OS monarch prints the state of all tasks and returns, after
|
||||
which the slaves return and the system resumes.
|
||||
|
||||
At least that is what is supposed to happen. Alas there are broken
|
||||
versions of SAL out there. Some drive all the cpus as monarchs. Some
|
||||
drive them all as slaves. Some drive one cpu as monarch, wait for that
|
||||
cpu to return from the OS then drive the rest as slaves. Some versions
|
||||
of SAL cannot even cope with returning from the OS, they spin inside
|
||||
SAL on resume. The OS INIT code has workarounds for some of these
|
||||
broken SAL symptoms, but some simply cannot be fixed from the OS side.
|
||||
|
||||
---
|
||||
|
||||
The scheduler hooks used by ia64 (curr_task, set_curr_task) are layer
|
||||
violations. Unfortunately MCA/INIT start off as massive layer
|
||||
violations (can occur at _any_ time) and they build from there.
|
||||
|
||||
At least ia64 makes an attempt at recovering from hardware errors, but
|
||||
it is a difficult problem because of the asynchronous nature of these
|
||||
errors. When processing an unmaskable interrupt we sometimes need
|
||||
special code to cope with our inability to take any locks.
|
||||
|
||||
---
|
||||
|
||||
How is ia64 MCA/INIT different from x86 NMI?
|
||||
|
||||
* x86 NMI typically gets delivered to one cpu. MCA/INIT gets sent to
|
||||
all cpus.
|
||||
|
||||
* x86 NMI cannot be nested. MCA/INIT can be nested, to a depth of 2
|
||||
per cpu.
|
||||
|
||||
* x86 has a separate struct task which points to one of multiple kernel
|
||||
stacks. ia64 has the struct task embedded in the single kernel
|
||||
stack, so switching stack means switching task.
|
||||
|
||||
* x86 does not call the BIOS so the NMI handler does not have to worry
|
||||
about any registers having changed. MCA/INIT can occur while the cpu
|
||||
is in PAL in physical mode, with undefined registers and an undefined
|
||||
kernel stack.
|
||||
|
||||
* i386 backtrace is not very sensitive to whether a process is running
|
||||
or not. ia64 unwind is very, very sensitive to whether a process is
|
||||
running or not.
|
||||
|
||||
---
|
||||
|
||||
What happens when MCA/INIT is delivered what a cpu is running user
|
||||
space code?
|
||||
|
||||
The user mode registers are stored in the RSE area of the MCA/INIT on
|
||||
entry to the OS and are restored from there on return to SAL, so user
|
||||
mode registers are preserved across a recoverable MCA/INIT. Since the
|
||||
OS has no idea what unwind data is available for the user space stack,
|
||||
MCA/INIT never tries to backtrace user space. Which means that the OS
|
||||
does not bother making the user space process look like a blocked task,
|
||||
i.e. the OS does not copy pt_regs and switch_stack to the user space
|
||||
stack. Also the OS has no idea how big the user space RSE and memory
|
||||
stacks are, which makes it too risky to copy the saved state to a user
|
||||
mode stack.
|
||||
|
||||
---
|
||||
|
||||
How do we get a backtrace on the tasks that were running when MCA/INIT
|
||||
was delivered?
|
||||
|
||||
mca.c:::ia64_mca_modify_original_stack(). That identifies and
|
||||
verifies the original kernel stack, copies the dirty registers from
|
||||
the MCA/INIT stack's RSE to the original stack's RSE, copies the
|
||||
skeleton struct pt_regs and switch_stack to the original stack, fills
|
||||
in the skeleton structures from the PAL minstate area and updates the
|
||||
original stack's thread.ksp. That makes the original stack look
|
||||
exactly like any other blocked task, i.e. it now appears to be
|
||||
sleeping. To get a backtrace, just start with thread.ksp for the
|
||||
original task and unwind like any other sleeping task.
|
||||
|
||||
---
|
||||
|
||||
How do we identify the tasks that were running when MCA/INIT was
|
||||
delivered?
|
||||
|
||||
If the previous task has been verified and converted to a blocked
|
||||
state, then sos->prev_task on the MCA/INIT stack is updated to point to
|
||||
the previous task. You can look at that field in dumps or debuggers.
|
||||
To help distinguish between the handler and the original tasks,
|
||||
handlers have _TIF_MCA_INIT set in thread_info.flags.
|
||||
|
||||
The sos data is always in the MCA/INIT handler stack, at offset
|
||||
MCA_SOS_OFFSET. You can get that value from mca_asm.h or calculate it
|
||||
as KERNEL_STACK_SIZE - sizeof(struct pt_regs) - sizeof(struct
|
||||
ia64_sal_os_state), with 16 byte alignment for all structures.
|
||||
|
||||
Also the comm field of the MCA/INIT task is modified to include the pid
|
||||
of the original task, for humans to use. For example, a comm field of
|
||||
'MCA 12159' means that pid 12159 was running when the MCA was
|
||||
delivered.
|
Loading…
Reference in a new issue