Merge commit 'v2.6.28-rc1' into sched/urgent

This commit is contained in:
Ingo Molnar 2008-10-24 12:48:46 +02:00
commit 8c82a17e9c
3411 changed files with 325467 additions and 53644 deletions

View file

@ -66,6 +66,7 @@ Kenneth W Chen <kenneth.w.chen@intel.com>
Koushik <raghavendra.koushik@neterion.com>
Leonid I Ananiev <leonid.i.ananiev@intel.com>
Linas Vepstas <linas@austin.ibm.com>
Mark Brown <broonie@sirena.org.uk>
Matthieu CASTET <castet.matthieu@free.fr>
Michael Buesch <mb@bu3sch.de>
Michael Buesch <mbuesch@freenet.de>

23
CREDITS
View file

@ -598,6 +598,11 @@ S: Tamsui town, Taipei county,
S: Taiwan 251
S: Republic of China
N: Reinette Chatre
E: reinette.chatre@intel.com
D: WiMedia Link Protocol implementation
D: UWB stack bits and pieces
N: Michael Elizabeth Chastain
E: mec@shout.net
D: Configure, Menuconfig, xconfig
@ -1653,14 +1658,14 @@ S: Chapel Hill, North Carolina 27514-4818
S: USA
N: Dave Jones
E: davej@codemonkey.org.uk
E: davej@redhat.com
W: http://www.codemonkey.org.uk
D: x86 errata/setup maintenance.
D: AGPGART driver.
D: Assorted VIA x86 support.
D: 2.5 AGPGART overhaul.
D: CPUFREQ maintenance.
D: Backport/Forwardport merge monkey.
D: Various Janitor work.
S: United Kingdom
D: Fedora kernel maintainence.
D: Misc/Other.
S: 314 Littleton Rd, Westford, MA 01886, USA
N: Martin Josfsson
E: gandalf@wlug.westbo.se
@ -2695,6 +2700,12 @@ S: Demonstratsii 8-382
S: Tula 300000
S: Russia
N: Inaky Perez-Gonzalez
E: inaky.perez-gonzalez@intel.com
D: UWB stack, HWA-RC driver and HWA-HC drivers
D: Wireless USB additions to the USB stack
D: WiMedia Link Protocol bits and pieces
N: Gordon Peters
E: GordPeters@smarttech.com
D: Isochronous receive for IEEE 1394 driver (OHCI module).

View file

@ -0,0 +1,62 @@
What: /sys/bus/usb/drivers/usbtmc/devices/*/interface_capabilities
What: /sys/bus/usb/drivers/usbtmc/devices/*/device_capabilities
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
These files show the various USB TMC capabilities as described
by the device itself. The full description of the bitfields
can be found in the USB TMC documents from the USB-IF entitled
"Universal Serial Bus Test and Measurement Class Specification
(USBTMC) Revision 1.0" section 4.2.1.8.
The files are read only.
What: /sys/bus/usb/drivers/usbtmc/devices/*/usb488_interface_capabilities
What: /sys/bus/usb/drivers/usbtmc/devices/*/usb488_device_capabilities
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
These files show the various USB TMC capabilities as described
by the device itself. The full description of the bitfields
can be found in the USB TMC documents from the USB-IF entitled
"Universal Serial Bus Test and Measurement Class, Subclass
USB488 Specification (USBTMC-USB488) Revision 1.0" section
4.2.2.
The files are read only.
What: /sys/bus/usb/drivers/usbtmc/devices/*/TermChar
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
This file is the TermChar value to be sent to the USB TMC
device as described by the document, "Universal Serial Bus Test
and Measurement Class Specification
(USBTMC) Revision 1.0" as published by the USB-IF.
Note that the TermCharEnabled file determines if this value is
sent to the device or not.
What: /sys/bus/usb/drivers/usbtmc/devices/*/TermCharEnabled
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
This file determines if the TermChar is to be sent to the
device on every transaction or not. For more details about
this, please see the document, "Universal Serial Bus Test and
Measurement Class Specification (USBTMC) Revision 1.0" as
published by the USB-IF.
What: /sys/bus/usb/drivers/usbtmc/devices/*/auto_abort
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
This file determines if the the transaction of the USB TMC
device is to be automatically aborted if there is any error.
For more details about this, please see the document,
"Universal Serial Bus Test and Measurement Class Specification
(USBTMC) Revision 1.0" as published by the USB-IF.

View file

@ -0,0 +1,28 @@
What: /sys/bus/umc/
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
The Wireless Host Controller Interface (WHCI)
specification describes a PCI-based device with
multiple capabilities; the UWB Multi-interface
Controller (UMC).
The umc bus presents each of the individual
capabilties as a device.
What: /sys/bus/umc/devices/.../capability_id
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
The ID of this capability, with 0 being the radio
controller capability.
What: /sys/bus/umc/devices/.../version
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
The specification version this capability's hardware
interface complies with.

View file

@ -85,3 +85,62 @@ Description:
Users:
PowerTOP <power@bughost.org>
http://www.lesswatts.org/projects/powertop/
What: /sys/bus/usb/device/<busnum>-<devnum>...:<config num>-<interface num>/supports_autosuspend
Date: January 2008
KernelVersion: 2.6.27
Contact: Sarah Sharp <sarah.a.sharp@intel.com>
Description:
When read, this file returns 1 if the interface driver
for this interface supports autosuspend. It also
returns 1 if no driver has claimed this interface, as an
unclaimed interface will not stop the device from being
autosuspended if all other interface drivers are idle.
The file returns 0 if autosuspend support has not been
added to the driver.
Users:
USB PM tool
git://git.moblin.org/users/sarah/usb-pm-tool/
What: /sys/bus/usb/device/.../authorized
Date: July 2008
KernelVersion: 2.6.26
Contact: David Vrabel <david.vrabel@csr.com>
Description:
Authorized devices are available for use by device
drivers, non-authorized one are not. By default, wired
USB devices are authorized.
Certified Wireless USB devices are not authorized
initially and should be (by writing 1) after the
device has been authenticated.
What: /sys/bus/usb/device/.../wusb_cdid
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
For Certified Wireless USB devices only.
A devices's CDID, as 16 space-separated hex octets.
What: /sys/bus/usb/device/.../wusb_ck
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
For Certified Wireless USB devices only.
Write the device's connection key (CK) to start the
authentication of the device. The CK is 16
space-separated hex octets.
What: /sys/bus/usb/device/.../wusb_disconnect
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
For Certified Wireless USB devices only.
Write a 1 to force the device to disconnect
(equivalent to unplugging a wired USB device).

View file

@ -0,0 +1,43 @@
Where: /sys/bus/usb/.../powered
Date: August 2008
Kernel Version: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls whether the device's display will powered.
A value of 0 is off and a non-zero value is on.
Where: /sys/bus/usb/.../mode_msb
Where: /sys/bus/usb/.../mode_lsb
Date: August 2008
Kernel Version: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls the devices display mode.
For a 6 character display the values are
MSB 0x06; LSB 0x3F, and
for an 8 character display the values are
MSB 0x08; LSB 0xFF.
Where: /sys/bus/usb/.../textmode
Date: August 2008
Kernel Version: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls the way the device interprets its text buffer.
raw: each character controls its segment manually
hex: each character is between 0-15
ascii: each character is between '0'-'9' and 'A'-'F'.
Where: /sys/bus/usb/.../text
Date: August 2008
Kernel Version: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: The text (or data) for the device to display
Where: /sys/bus/usb/.../decimals
Date: August 2008
Kernel Version: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls the decimal places on the device.
To set the nth decimal place, give this field
the value of 10 ** n. Assume this field has
the value k and has 1 or more decimal places set,
to set the mth place (where m is not already set),
change this fields value to k + 10 ** m.

View file

@ -0,0 +1,25 @@
What: /sys/class/usb_host/usb_hostN/wusb_chid
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
Write the CHID (16 space-separated hex octets) for this host controller.
This starts the host controller, allowing it to accept connection from
WUSB devices.
Set an all zero CHID to stop the host controller.
What: /sys/class/usb_host/usb_hostN/wusb_trust_timeout
Date: July 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
Devices that haven't sent a WUSB packet to the host
within 'wusb_trust_timeout' ms are considered to have
disconnected and are removed. The default value of
4000 ms is the value required by the WUSB
specification.
Since this relates to security (specifically, the
lifetime of PTKs and GTKs) it should not be changed
from the default.

View file

@ -0,0 +1,144 @@
What: /sys/class/uwb_rc
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
Interfaces for WiMedia Ultra Wideband Common Radio
Platform (UWB) radio controllers.
Familiarity with the ECMA-368 'High Rate Ultra
Wideband MAC and PHY Specification' is assumed.
What: /sys/class/uwb_rc/beacon_timeout_ms
Date: July 2008
KernelVersion: 2.6.27
Description:
If no beacons are received from a device for at least
this time, the device will be considered to have gone
and it will be removed. The default is 3 superframes
(~197 ms) as required by the specification.
What: /sys/class/uwb_rc/uwbN/
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
An individual UWB radio controller.
What: /sys/class/uwb_rc/uwbN/beacon
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
Write:
<channel> [<bpst offset>]
to start beaconing on a specific channel, or stop
beaconing if <channel> is -1. Valid channels depends
on the radio controller's supported band groups.
<bpst offset> may be used to try and join a specific
beacon group if more than one was found during a scan.
What: /sys/class/uwb_rc/uwbN/scan
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
Write:
<channel> <type> [<bpst offset>]
to start (or stop) scanning on a channel. <type> is one of:
0 - scan
1 - scan outside BP
2 - scan while inactive
3 - scanning disabled
4 - scan (with start time of <bpst offset>)
What: /sys/class/uwb_rc/uwbN/mac_address
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
The EUI-48, in colon-separated hex octets, for this
radio controller. A write will change the radio
controller's EUI-48 but only do so while the device is
not beaconing or scanning.
What: /sys/class/uwb_rc/uwbN/wusbhc
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
A symlink to the device (if any) of the WUSB Host
Controller PAL using this radio controller.
What: /sys/class/uwb_rc/uwbN/<EUI-48>/
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
A neighbour UWB device that has either been detected
as part of a scan or is a member of the radio
controllers beacon group.
What: /sys/class/uwb_rc/uwbN/<EUI-48>/BPST
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
The time (using the radio controllers internal 1 ms
interval superframe timer) of the last beacon from
this device was received.
What: /sys/class/uwb_rc/uwbN/<EUI-48>/DevAddr
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
The current DevAddr of this device in colon separated
hex octets.
What: /sys/class/uwb_rc/uwbN/<EUI-48>/EUI_48
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
The EUI-48 of this device in colon separated hex
octets.
What: /sys/class/uwb_rc/uwbN/<EUI-48>/BPST
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
What: /sys/class/uwb_rc/uwbN/<EUI-48>/IEs
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
The latest IEs included in this device's beacon, in
space separated hex octets with one IE per line.
What: /sys/class/uwb_rc/uwbN/<EUI-48>/LQE
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
Link Quality Estimate - the Signal to Noise Ratio
(SNR) of all packets received from this device in dB.
This gives an estimate on a suitable PHY rate. Refer
to [ECMA-368] section 13.3 for more details.
What: /sys/class/uwb_rc/uwbN/<EUI-48>/RSSI
Date: July 2008
KernelVersion: 2.6.27
Contact: linux-usb@vger.kernel.org
Description:
Received Signal Strength Indication - the strength of
the received signal in dB. LQE is a more useful
measure of the radio link quality.

View file

@ -0,0 +1,100 @@
What: /sys/bus/usb/drivers/wusb_cbaf/.../wusb_*
Date: August 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
Various files for managing Cable Based Association of
(wireless) USB devices.
The sequence of operations should be:
1. Device is plugged in.
2. The connection manager (CM) sees a device with CBA capability.
(the wusb_chid etc. files in /sys/devices/blah/OURDEVICE).
3. The CM writes the host name, supported band groups,
and the CHID (host ID) into the wusb_host_name,
wusb_host_band_groups and wusb_chid files. These
get sent to the device and the CDID (if any) for
this host is requested.
4. The CM can verify that the device's supported band
groups (wusb_device_band_groups) are compatible
with the host.
5. The CM reads the wusb_cdid file.
6. The CM looks it up its database.
- If it has a matching CHID,CDID entry, the device
has been authorized before and nothing further
needs to be done.
- If the CDID is zero (or the CM doesn't find a
matching CDID in its database), the device is
assumed to be not known. The CM may associate
the host with device by: writing a randomly
generated CDID to wusb_cdid and then a random CK
to wusb_ck (this uploads the new CC to the
device).
CMD may choose to prompt the user before
associating with a new device.
7. Device is unplugged.
References:
[WUSB-AM] Association Models Supplement to the
Certified Wireless Universal Serial Bus
Specification, version 1.0.
What: /sys/bus/usb/drivers/wusb_cbaf/.../wusb_chid
Date: August 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
The CHID of the host formatted as 16 space-separated
hex octets.
Writes fetches device's supported band groups and the
the CDID for any existing association with this host.
What: /sys/bus/usb/drivers/wusb_cbaf/.../wusb_host_name
Date: August 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
A friendly name for the host as a UTF-8 encoded string.
What: /sys/bus/usb/drivers/wusb_cbaf/.../wusb_host_band_groups
Date: August 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
The band groups supported by the host, in the format
defined in [WUSB-AM].
What: /sys/bus/usb/drivers/wusb_cbaf/.../wusb_device_band_groups
Date: August 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
The band groups supported by the device, in the format
defined in [WUSB-AM].
What: /sys/bus/usb/drivers/wusb_cbaf/.../wusb_cdid
Date: August 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
The device's CDID formatted as 16 space-separated hex
octets.
What: /sys/bus/usb/drivers/wusb_cbaf/.../wusb_ck
Date: August 2008
KernelVersion: 2.6.27
Contact: David Vrabel <david.vrabel@csr.com>
Description:
Write 16 space-separated random, hex octets to
associate with the device.

View file

@ -557,6 +557,9 @@ Near-term plans include converting all of them, except for "gadgetfs".
</para>
!Edrivers/usb/gadget/f_acm.c
!Edrivers/usb/gadget/f_ecm.c
!Edrivers/usb/gadget/f_subset.c
!Edrivers/usb/gadget/f_obex.c
!Edrivers/usb/gadget/f_serial.c
</sect1>

View file

@ -1105,7 +1105,7 @@ static struct block_device_operations opt_fops = {
</listitem>
<listitem>
<para>
Function names as strings (__FUNCTION__).
Function names as strings (__func__).
</para>
</listitem>
<listitem>

View file

@ -236,10 +236,8 @@ software system can set different pages for controlling accesses to the
MSI-X structure. The implementation of MSI support requires the PCI
subsystem, not a device driver, to maintain full control of the MSI-X
table/MSI-X PBA (Pending Bit Array) and MMIO address space of the MSI-X
table/MSI-X PBA. A device driver is prohibited from requesting the MMIO
address space of the MSI-X table/MSI-X PBA. Otherwise, the PCI subsystem
will fail enabling MSI-X on its hardware device when it calls the function
pci_enable_msix().
table/MSI-X PBA. A device driver should not access the MMIO address
space of the MSI-X table/MSI-X PBA.
5.3.2 API pci_enable_msix

View file

@ -163,6 +163,10 @@ need pass only as many optional fields as necessary:
o class and classmask fields default to 0
o driver_data defaults to 0UL.
Note that driver_data must match the value used by any of the pci_device_id
entries defined in the driver. This makes the driver_data field mandatory
if all the pci_device_id entries have a non-zero driver_data value.
Once added, the driver probe routine will be invoked for any unclaimed
PCI devices listed in its (newly updated) pci_ids list.

View file

@ -203,22 +203,17 @@ to mmio_enabled.
3.3 helper functions
3.3.1 int pci_find_aer_capability(struct pci_dev *dev);
pci_find_aer_capability locates the PCI Express AER capability
in the device configuration space. If the device doesn't support
PCI-Express AER, the function returns 0.
3.3.2 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
3.3.1 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
pci_enable_pcie_error_reporting enables the device to send error
messages to root port when an error is detected. Note that devices
don't enable the error reporting by default, so device drivers need
call this function to enable it.
3.3.3 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
3.3.2 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
pci_disable_pcie_error_reporting disables the device to send error
messages to root port when an error is detected.
3.3.4 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
3.3.3 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
pci_cleanup_aer_uncorrect_error_status cleanups the uncorrectable
error status register.

View file

@ -0,0 +1,99 @@
The cgroup freezer is useful to batch job management system which start
and stop sets of tasks in order to schedule the resources of a machine
according to the desires of a system administrator. This sort of program
is often used on HPC clusters to schedule access to the cluster as a
whole. The cgroup freezer uses cgroups to describe the set of tasks to
be started/stopped by the batch job management system. It also provides
a means to start and stop the tasks composing the job.
The cgroup freezer will also be useful for checkpointing running groups
of tasks. The freezer allows the checkpoint code to obtain a consistent
image of the tasks by attempting to force the tasks in a cgroup into a
quiescent state. Once the tasks are quiescent another task can
walk /proc or invoke a kernel interface to gather information about the
quiesced tasks. Checkpointed tasks can be restarted later should a
recoverable error occur. This also allows the checkpointed tasks to be
migrated between nodes in a cluster by copying the gathered information
to another node and restarting the tasks there.
Sequences of SIGSTOP and SIGCONT are not always sufficient for stopping
and resuming tasks in userspace. Both of these signals are observable
from within the tasks we wish to freeze. While SIGSTOP cannot be caught,
blocked, or ignored it can be seen by waiting or ptracing parent tasks.
SIGCONT is especially unsuitable since it can be caught by the task. Any
programs designed to watch for SIGSTOP and SIGCONT could be broken by
attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
demonstrate this problem using nested bash shells:
$ echo $$
16644
$ bash
$ echo $$
16690
From a second, unrelated bash shell:
$ kill -SIGSTOP 16690
$ kill -SIGCONT 16990
<at this point 16990 exits and causes 16644 to exit too>
This happens because bash can observe both signals and choose how it
responds to them.
Another example of a program which catches and responds to these
signals is gdb. In fact any program designed to use ptrace is likely to
have a problem with this method of stopping and resuming tasks.
In contrast, the cgroup freezer uses the kernel freezer code to
prevent the freeze/unfreeze cycle from becoming visible to the tasks
being frozen. This allows the bash example above and gdb to run as
expected.
The freezer subsystem in the container filesystem defines a file named
freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the
cgroup. Subsequently writing "THAWED" will unfreeze the tasks in the cgroup.
Reading will return the current state.
* Examples of usage :
# mkdir /containers/freezer
# mount -t cgroup -ofreezer freezer /containers
# mkdir /containers/0
# echo $some_pid > /containers/0/tasks
to get status of the freezer subsystem :
# cat /containers/0/freezer.state
THAWED
to freeze all tasks in the container :
# echo FROZEN > /containers/0/freezer.state
# cat /containers/0/freezer.state
FREEZING
# cat /containers/0/freezer.state
FROZEN
to unfreeze all tasks in the container :
# echo THAWED > /containers/0/freezer.state
# cat /containers/0/freezer.state
THAWED
This is the basic mechanism which should do the right thing for user space task
in a simple scenario.
It's important to note that freezing can be incomplete. In that case we return
EBUSY. This means that some tasks in the cgroup are busy doing something that
prevents us from completely freezing the cgroup at this time. After EBUSY,
the cgroup will remain partially frozen -- reflected by freezer.state reporting
"FREEZING" when read. The state will remain "FREEZING" until one of these
things happens:
1) Userspace cancels the freezing operation by writing "THAWED" to
the freezer.state file
2) Userspace retries the freezing operation by writing "FROZEN" to
the freezer.state file (writing "FREEZING" is not legal
and returns EIO)
3) The tasks that blocked the cgroup from entering the "FROZEN"
state disappear from the cgroup's set of tasks.

View file

@ -112,14 +112,22 @@ the per cgroup LRU.
2.2.1 Accounting details
All mapped pages (RSS) and unmapped user pages (Page Cache) are accounted.
RSS pages are accounted at the time of page_add_*_rmap() unless they've already
been accounted for earlier. A file page will be accounted for as Page Cache;
it's mapped into the page tables of a process, duplicate accounting is carefully
avoided. Page Cache pages are accounted at the time of add_to_page_cache().
The corresponding routines that remove a page from the page tables or removes
a page from Page Cache is used to decrement the accounting counters of the
cgroup.
All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
(some pages which never be reclaimable and will not be on global LRU
are not accounted. we just accounts pages under usual vm management.)
RSS pages are accounted at page_fault unless they've already been accounted
for earlier. A file page will be accounted for as Page Cache when it's
inserted into inode (radix-tree). While it's mapped into the page tables of
processes, duplicate accounting is carefully avoided.
A RSS page is unaccounted when it's fully unmapped. A PageCache page is
unaccounted when it's removed from radix-tree.
At page migration, accounting information is kept.
Note: we just account pages-on-lru because our purpose is to control amount
of used pages. not-on-lru pages are tend to be out-of-control from vm view.
2.3 Shared Page Accounting

View file

@ -48,7 +48,7 @@ hooks, beyond what is already present, required to manage dynamic
job placement on large systems.
Cpusets use the generic cgroup subsystem described in
Documentation/cgroup.txt.
Documentation/cgroups/cgroups.txt.
Requests by a task, using the sched_setaffinity(2) system call to
include CPUs in its CPU affinity mask, and using the mbind(2) and

View file

@ -2571,6 +2571,9 @@ Your cooperation is appreciated.
160 = /dev/usb/legousbtower0 1st USB Legotower device
...
175 = /dev/usb/legousbtower15 16th USB Legotower device
176 = /dev/usb/usbtmc1 First USB TMC device
...
192 = /dev/usb/usbtmc16 16th USB TMC device
240 = /dev/usb/dabusb0 First daubusb device
...
243 = /dev/usb/dabusb3 Fourth dabusb device

View file

@ -359,3 +359,11 @@ Why: The 2.6 kernel supports direct writing to ide CD drives, which
eliminates the need for ide-scsi. The new method is more
efficient in every way.
Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
---------------------------
What: i2c_attach_client(), i2c_detach_client(), i2c_driver->detach_client()
When: 2.6.29 (ideally) or 2.6.30 (more likely)
Why: Deprecated by the new (standard) device driver binding model. Use
i2c_driver->probe() and ->remove() instead.
Who: Jean Delvare <khali@linux-fr.org>

View file

@ -96,6 +96,11 @@ errors=remount-ro(*) Remount the filesystem read-only on an error.
errors=continue Keep going on a filesystem error.
errors=panic Panic and halt the machine if an error occurs.
data_err=ignore(*) Just print an error message if an error occurs
in a file data buffer in ordered mode.
data_err=abort Abort the journal if an error occurs in a file
data buffer in ordered mode.
grpid Give objects the same group ID as their creator.
bsdgroups

View file

@ -2,19 +2,24 @@
Ext4 Filesystem
===============
This is a development version of the ext4 filesystem, an advanced level
of the ext3 filesystem which incorporates scalability and reliability
enhancements for supporting large filesystems (64 bit) in keeping with
increasing disk capacities and state-of-the-art feature requirements.
Ext4 is an an advanced level of the ext3 filesystem which incorporates
scalability and reliability enhancements for supporting large filesystems
(64 bit) in keeping with increasing disk capacities and state-of-the-art
feature requirements.
Mailing list: linux-ext4@vger.kernel.org
Mailing list: linux-ext4@vger.kernel.org
Web site: http://ext4.wiki.kernel.org
1. Quick usage instructions:
===========================
Note: More extensive information for getting started with ext4 can be
found at the ext4 wiki site at the URL:
http://ext4.wiki.kernel.org/index.php/Ext4_Howto
- Compile and install the latest version of e2fsprogs (as of this
writing version 1.41) from:
writing version 1.41.3) from:
http://sourceforge.net/project/showfiles.php?group_id=2406
@ -36,11 +41,9 @@ Mailing list: linux-ext4@vger.kernel.org
# mke2fs -t ext4 /dev/hda1
Or configure an existing ext3 filesystem to support extents and set
the test_fs flag to indicate that it's ok for an in-development
filesystem to touch this filesystem:
Or to configure an existing ext3 filesystem to support extents:
# tune2fs -O extents -E test_fs /dev/hda1
# tune2fs -O extents /dev/hda1
If the filesystem was created with 128 byte inodes, it can be
converted to use 256 byte for greater efficiency via:
@ -104,8 +107,8 @@ exist yet so I'm not sure they're in the near-term roadmap.
The big performance win will come with mballoc, delalloc and flex_bg
grouping of bitmaps and inode tables. Some test results available here:
- http://www.bullopensource.org/ext4/20080530/ffsb-write-2.6.26-rc2.html
- http://www.bullopensource.org/ext4/20080530/ffsb-readwrite-2.6.26-rc2.html
- http://www.bullopensource.org/ext4/20080818-ffsb/ffsb-write-2.6.27-rc1.html
- http://www.bullopensource.org/ext4/20080818-ffsb/ffsb-readwrite-2.6.27-rc1.html
3. Options
==========
@ -214,9 +217,6 @@ noreservation
bsddf (*) Make 'df' act like BSD.
minixdf Make 'df' act like Minix.
check=none Don't do extra checking of bitmaps on mount.
nocheck
debug Extra debugging information is sent to syslog.
errors=remount-ro(*) Remount the filesystem read-only on an error.
@ -253,8 +253,6 @@ nobh (a) cache disk block mapping information
"nobh" option tries to avoid associating buffer
heads (supported only for "writeback" mode).
mballoc (*) Use the multiple block allocator for block allocation
nomballoc disabled multiple block allocator for block allocation.
stripe=n Number of filesystem blocks that mballoc will try
to use for allocation size and alignment. For RAID5/6
systems this should be the number of data

View file

@ -1384,15 +1384,18 @@ causes the kernel to prefer to reclaim dentries and inodes.
dirty_background_ratio
----------------------
Contains, as a percentage of total system memory, the number of pages at which
the pdflush background writeback daemon will start writing out dirty data.
Contains, as a percentage of the dirtyable system memory (free pages + mapped
pages + file cache, not including locked pages and HugePages), the number of
pages at which the pdflush background writeback daemon will start writing out
dirty data.
dirty_ratio
-----------------
Contains, as a percentage of total system memory, the number of pages at which
a process which is generating disk writes will itself start writing out dirty
data.
Contains, as a percentage of the dirtyable system memory (free pages + mapped
pages + file cache, not including locked pages and HugePages), the number of
pages at which a process which is generating disk writes will itself start
writing out dirty data.
dirty_writeback_centisecs
-------------------------
@ -2412,24 +2415,29 @@ will be dumped when the <pid> process is dumped. coredump_filter is a bitmask
of memory types. If a bit of the bitmask is set, memory segments of the
corresponding memory type are dumped, otherwise they are not dumped.
The following 4 memory types are supported:
The following 7 memory types are supported:
- (bit 0) anonymous private memory
- (bit 1) anonymous shared memory
- (bit 2) file-backed private memory
- (bit 3) file-backed shared memory
- (bit 4) ELF header pages in file-backed private memory areas (it is
effective only if the bit 2 is cleared)
- (bit 5) hugetlb private memory
- (bit 6) hugetlb shared memory
Note that MMIO pages such as frame buffer are never dumped and vDSO pages
are always dumped regardless of the bitmask status.
Default value of coredump_filter is 0x3; this means all anonymous memory
segments are dumped.
Note bit 0-4 doesn't effect any hugetlb memory. hugetlb memory are only
effected by bit 5-6.
Default value of coredump_filter is 0x23; this means all anonymous memory
segments and hugetlb private memory are dumped.
If you don't want to dump all shared memory segments attached to pid 1234,
write 1 to the process's proc file.
write 0x21 to the process's proc file.
$ echo 0x1 > /proc/1234/coredump_filter
$ echo 0x21 > /proc/1234/coredump_filter
When a new process is created, the process inherits the bitmask status from its
parent. It is useful to set up coredump_filter before the program runs.

View file

@ -86,6 +86,15 @@ norm_unmount (*) commit on unmount; the journal is committed
fast_unmount do not commit on unmount; this option makes
unmount faster, but the next mount slower
because of the need to replay the journal.
bulk_read read more in one go to take advantage of flash
media that read faster sequentially
no_bulk_read (*) do not bulk-read
no_chk_data_crc skip checking of CRCs on data nodes in order to
improve read performance. Use this option only
if the flash media is highly reliable. The effect
of this option is that corruption of the contents
of a file can go unnoticed.
chk_data_crc (*) do not skip checking CRCs on data nodes
Quick usage instructions

View file

@ -0,0 +1,76 @@
Kernel driver adt7470
=====================
Supported chips:
* Analog Devices ADT7470
Prefix: 'adt7470'
Addresses scanned: I2C 0x2C, 0x2E, 0x2F
Datasheet: Publicly available at the Analog Devices website
Author: Darrick J. Wong
Description
-----------
This driver implements support for the Analog Devices ADT7470 chip. There may
be other chips that implement this interface.
The ADT7470 uses the 2-wire interface compatible with the SMBus 2.0
specification. Using an analog to digital converter it measures up to ten (10)
external temperatures. It has four (4) 16-bit counters for measuring fan speed.
There are four (4) PWM outputs that can be used to control fan speed.
A sophisticated control system for the PWM outputs is designed into the ADT7470
that allows fan speed to be adjusted automatically based on any of the ten
temperature sensors. Each PWM output is individually adjustable and
programmable. Once configured, the ADT7470 will adjust the PWM outputs in
response to the measured temperatures with further host intervention. This
feature can also be disabled for manual control of the PWM's.
Each of the measured inputs (temperature, fan speed) has corresponding high/low
limit values. The ADT7470 will signal an ALARM if any measured value exceeds
either limit.
The ADT7470 DOES NOT sample all inputs continuously. A single pin on the
ADT7470 is connected to a multitude of thermal diodes, but the chip must be
instructed explicitly to read the multitude of diodes. If you want to use
automatic fan control mode, you must manually read any of the temperature
sensors or the fan control algorithm will not run. The chip WILL NOT DO THIS
AUTOMATICALLY; this must be done from userspace. This may be a bug in the chip
design, given that many other AD chips take care of this. The driver will not
read the registers more often than once every 5 seconds. Further,
configuration data is only read once per minute.
Special Features
----------------
The ADT7470 has a 8-bit ADC and is capable of measuring temperatures with 1
degC resolution.
The Analog Devices datasheet is very detailed and describes a procedure for
determining an optimal configuration for the automatic PWM control.
Configuration Notes
-------------------
Besides standard interfaces driver adds the following:
* PWM Control
* pwm#_auto_point1_pwm and pwm#_auto_point1_temp and
* pwm#_auto_point2_pwm and pwm#_auto_point2_temp -
point1: Set the pwm speed at a lower temperature bound.
point2: Set the pwm speed at a higher temperature bound.
The ADT7470 will scale the pwm between the lower and higher pwm speed when
the temperature is between the two temperature boundaries. PWM values range
from 0 (off) to 255 (full speed). Fan speed will be set to maximum when the
temperature sensor associated with the PWM control exceeds
pwm#_auto_point2_temp.
Notes
-----
As stated above, the temperature inputs must be read periodically from
userspace in order for the automatic pwm algorithm to run.

View file

@ -136,10 +136,10 @@ once-only alarms.
The IT87xx only updates its values each 1.5 seconds; reading it more often
will do no harm, but will return 'old' values.
To change sensor N to a thermistor, 'echo 2 > tempN_type' where N is 1, 2,
To change sensor N to a thermistor, 'echo 4 > tempN_type' where N is 1, 2,
or 3. To change sensor N to a thermal diode, 'echo 3 > tempN_type'.
Give 0 for unused sensor. Any other value is invalid. To configure this at
startup, consult lm_sensors's /etc/sensors.conf. (2 = thermistor;
startup, consult lm_sensors's /etc/sensors.conf. (4 = thermistor;
3 = thermal diode)

View file

@ -163,16 +163,6 @@ configured individually according to the following options.
* pwm#_auto_pwm_min - this specifies the PWM value for temp#_auto_temp_off
temperature. (PWM value from 0 to 255)
* pwm#_auto_pwm_freq - select base frequency of PWM output. You can select
in range of 10.0 to 94.0 Hz in .1 Hz units.
(Values 100 to 940).
The pwm#_auto_pwm_freq can be set to one of the following 8 values. Setting the
frequency to a value not on this list, will result in the next higher frequency
being selected. The actual device frequency may vary slightly from this
specification as designed by the manufacturer. Consult the datasheet for more
details. (PWM Frequency values: 100, 150, 230, 300, 380, 470, 620, 940)
* pwm#_auto_pwm_minctl - this flags selects for temp#_auto_temp_off temperature
the bahaviour of fans. Write 1 to let fans spinning at
pwm#_auto_pwm_min or write 0 to let them off.

View file

@ -65,11 +65,10 @@ The LM87 has four pins which can serve one of two possible functions,
depending on the hardware configuration.
Some functions share pins, so not all functions are available at the same
time. Which are depends on the hardware setup. This driver assumes that
the BIOS configured the chip correctly. In that respect, it differs from
the original driver (from lm_sensors for Linux 2.4), which would force the
LM87 to an arbitrary, compile-time chosen mode, regardless of the actual
chipset wiring.
time. Which are depends on the hardware setup. This driver normally
assumes that firmware configured the chip correctly. Where this is not
the case, platform code must set the I2C client's platform_data to point
to a u8 value to be written to the channel register.
For reference, here is the list of exclusive functions:
- in0+in5 (default) or temp3

View file

@ -11,7 +11,7 @@ Supported chips:
Prefix: 'lm99'
Addresses scanned: I2C 0x4c and 0x4d
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/pf/LM/LM89.html
http://www.national.com/mpf/LM/LM89.html
* National Semiconductor LM99
Prefix: 'lm99'
Addresses scanned: I2C 0x4c and 0x4d
@ -21,18 +21,32 @@ Supported chips:
Prefix: 'lm86'
Addresses scanned: I2C 0x4c
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/pf/LM/LM86.html
http://www.national.com/mpf/LM/LM86.html
* Analog Devices ADM1032
Prefix: 'adm1032'
Addresses scanned: I2C 0x4c and 0x4d
Datasheet: Publicly available at the Analog Devices website
http://www.analog.com/en/prod/0,2877,ADM1032,00.html
Datasheet: Publicly available at the ON Semiconductor website
http://www.onsemi.com/PowerSolutions/product.do?id=ADM1032
* Analog Devices ADT7461
Prefix: 'adt7461'
Addresses scanned: I2C 0x4c and 0x4d
Datasheet: Publicly available at the Analog Devices website
http://www.analog.com/en/prod/0,2877,ADT7461,00.html
Note: Only if in ADM1032 compatibility mode
Datasheet: Publicly available at the ON Semiconductor website
http://www.onsemi.com/PowerSolutions/product.do?id=ADT7461
* Maxim MAX6646
Prefix: 'max6646'
Addresses scanned: I2C 0x4d
Datasheet: Publicly available at the Maxim website
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
* Maxim MAX6647
Prefix: 'max6646'
Addresses scanned: I2C 0x4e
Datasheet: Publicly available at the Maxim website
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
* Maxim MAX6649
Prefix: 'max6646'
Addresses scanned: I2C 0x4c
Datasheet: Publicly available at the Maxim website
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
* Maxim MAX6657
Prefix: 'max6657'
Addresses scanned: I2C 0x4c
@ -70,25 +84,21 @@ Description
The LM90 is a digital temperature sensor. It senses its own temperature as
well as the temperature of up to one external diode. It is compatible
with many other devices such as the LM86, the LM89, the LM99, the ADM1032,
the MAX6657, MAX6658, MAX6659, MAX6680 and the MAX6681 all of which are
supported by this driver.
with many other devices, many of which are supported by this driver.
Note that there is no easy way to differentiate between the MAX6657,
MAX6658 and MAX6659 variants. The extra address and features of the
MAX6659 are not supported by this driver. The MAX6680 and MAX6681 only
differ in their pinout, therefore they obviously can't (and don't need to)
be distinguished. Additionally, the ADT7461 is supported if found in
ADM1032 compatibility mode.
be distinguished.
The specificity of this family of chipsets over the ADM1021/LM84
family is that it features critical limits with hysteresis, and an
increased resolution of the remote temperature measurement.
The different chipsets of the family are not strictly identical, although
very similar. This driver doesn't handle any specific feature for now,
with the exception of SMBus PEC. For reference, here comes a non-exhaustive
list of specific features:
very similar. For reference, here comes a non-exhaustive list of specific
features:
LM90:
* Filter and alert configuration register at 0xBF.
@ -114,9 +124,11 @@ ADT7461:
* Lower resolution for remote temperature
MAX6657 and MAX6658:
* Better local resolution
* Remote sensor type selection
MAX6659:
* Better local resolution
* Selectable address
* Second critical temperature limit
* Remote sensor type selection
@ -127,7 +139,8 @@ MAX6680 and MAX6681:
All temperature values are given in degrees Celsius. Resolution
is 1.0 degree for the local temperature, 0.125 degree for the remote
temperature.
temperature, except for the MAX6657, MAX6658 and MAX6659 which have a
resolution of 0.125 degree for both temperatures.
Each sensor has its own high and low limits, plus a critical limit.
Additionally, there is a relative hysteresis value common to both critical

View file

@ -5,12 +5,7 @@ Supported chips:
* National Semiconductor PC87360, PC87363, PC87364, PC87365 and PC87366
Prefixes: 'pc87360', 'pc87363', 'pc87364', 'pc87365', 'pc87366'
Addresses scanned: none, address read from Super I/O config space
Datasheets:
http://www.national.com/pf/PC/PC87360.html
http://www.national.com/pf/PC/PC87363.html
http://www.national.com/pf/PC/PC87364.html
http://www.national.com/pf/PC/PC87365.html
http://www.national.com/pf/PC/PC87366.html
Datasheets: No longer available
Authors: Jean Delvare <khali@linux-fr.org>

View file

@ -5,7 +5,7 @@ Supported chips:
* National Semiconductor PC87427
Prefix: 'pc87427'
Addresses scanned: none, address read from Super I/O config space
Datasheet: http://www.winbond.com.tw/E-WINBONDHTM/partner/apc_007.html
Datasheet: No longer available
Author: Jean Delvare <khali@linux-fr.org>

View file

@ -353,7 +353,7 @@ in6=255
# PWM
Additional info about PWM on the AS99127F (may apply to other Asus
* Additional info about PWM on the AS99127F (may apply to other Asus
chips as well) by Jean Delvare as of 2004-04-09:
AS99127F revision 2 seems to have two PWM registers at 0x59 and 0x5A,
@ -396,7 +396,7 @@ Please contact us if you can figure out how it is supposed to work. As
long as we don't know more, the w83781d driver doesn't handle PWM on
AS99127F chips at all.
Additional info about PWM on the AS99127F rev.1 by Hector Martin:
* Additional info about PWM on the AS99127F rev.1 by Hector Martin:
I've been fiddling around with the (in)famous 0x59 register and
found out the following values do work as a form of coarse pwm:
@ -418,3 +418,36 @@ change.
My mobo is an ASUS A7V266-E. This behavior is similar to what I got
with speedfan under Windows, where 0-15% would be off, 15-2x% (can't
remember the exact value) would be 70% and higher would be full on.
* Additional info about PWM on the AS99127F rev.1 from lm-sensors
ticket #2350:
I conducted some experiment on Asus P3B-F motherboard with AS99127F
(Ver. 1).
I confirm that 0x59 register control the CPU_Fan Header on this
motherboard, and 0x5a register control PWR_Fan.
In order to reduce the dependency of specific fan, the measurement is
conducted with a digital scope without fan connected. I found out that
P3B-F actually output variable DC voltage on fan header center pin,
looks like PWM is filtered on this motherboard.
Here are some of measurements:
0x80 20 mV
0x81 20 mV
0x82 232 mV
0x83 1.2 V
0x84 2.31 V
0x85 3.44 V
0x86 4.62 V
0x87 5.81 V
0x88 7.01 V
9x89 8.22 V
0x8a 9.42 V
0x8b 10.6 V
0x8c 11.9 V
0x8d 12.4 V
0x8e 12.4 V
0x8f 12.4 V

View file

@ -58,29 +58,35 @@ internal state that allows no clean access (Bank with ID register is not
currently selected). If you know the address of the chip, use a 'force'
parameter; this will put it into a more well-behaved state first.
The driver implements three temperature sensors, five fan rotation speed
sensors, and ten voltage sensors.
The driver implements three temperature sensors, ten voltage sensors,
five fan rotation speed sensors and manual PWM control of each fan.
Temperatures are measured in degrees Celsius and measurement resolution is 1
degC for temp1 and 0.5 degC for temp2 and temp3. An alarm is triggered when
the temperature gets higher than the Overtemperature Shutdown value; it stays
on until the temperature falls below the Hysteresis value.
Voltage sensors (also known as IN sensors) report their values in millivolts.
An alarm is triggered if the voltage has crossed a programmable minimum
or maximum limit.
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
triggered if the rotation speed has dropped below a programmable limit. Fan
readings can be divided by a programmable divider (1, 2, 4, 8, 16,
32, 64 or 128 for all fans) to give the readings more range or accuracy.
Voltage sensors (also known as IN sensors) report their values in millivolts.
An alarm is triggered if the voltage has crossed a programmable minimum
or maximum limit.
Each fan controlled is controlled by PWM. The PWM duty cycle can be read and
set for each fan separately. Valid values range from 0 (stop) to 255 (full).
PWM 1-3 support Thermal Cruise mode, in which the PWMs are automatically
regulated to keep respectively temp 1-3 at a certain target temperature.
See below for the description of the sysfs-interface.
The w83791d has a global bit used to enable beeping from the speaker when an
alarm is triggered as well as a bitmask to enable or disable the beep for
specific alarms. You need both the global beep enable bit and the
corresponding beep bit to be on for a triggered alarm to sound a beep.
The sysfs interface to the gloabal enable is via the sysfs beep_enable file.
The sysfs interface to the global enable is via the sysfs beep_enable file.
This file is used for both legacy and new code.
The sysfs interface to the beep bitmask has migrated from the original legacy
@ -105,6 +111,27 @@ going forward.
The driver reads the hardware chip values at most once every three seconds.
User mode code requesting values more often will receive cached values.
/sys files
----------
The sysfs-interface is documented in the 'sysfs-interface' file. Only
chip-specific options are documented here.
pwm[1-3]_enable - this file controls mode of fan/temperature control for
fan 1-3. Fan/PWM 4-5 only support manual mode.
* 1 Manual mode
* 2 Thermal Cruise mode
* 3 Fan Speed Cruise mode (no further support)
temp[1-3]_target - defines the target temperature for Thermal Cruise mode.
Unit: millidegree Celsius
RW
temp[1-3]_tolerance - temperature tolerance for Thermal Cruise mode.
Specifies an interval around the target temperature
in which the fan speed is not changed.
Unit: millidegree Celsius
RW
Alarms bitmap vs. beep_mask bitmask
------------------------------------
For legacy code using the alarms and beep_mask files:
@ -132,7 +159,3 @@ tart2 : alarms: 0x020000 beep_mask: 0x080000 <== mismatch
tart3 : alarms: 0x040000 beep_mask: 0x100000 <== mismatch
case_open : alarms: 0x001000 beep_mask: 0x001000
global_enable: alarms: -------- beep_mask: 0x800000 (modified via beep_enable)
W83791D TODO:
---------------
Provide a patch for smart-fan control (still need appropriate motherboard/fans)

View file

@ -13,8 +13,9 @@ Supported adapters:
* Intel 631xESB/632xESB (ESB2)
* Intel 82801H (ICH8)
* Intel 82801I (ICH9)
* Intel Tolapai
* Intel ICH10
* Intel EP80579 (Tolapai)
* Intel 82801JI (ICH10)
* Intel PCH
Datasheets: Publicly available at the Intel website
Authors:
@ -32,7 +33,7 @@ Description
-----------
The ICH (properly known as the 82801AA), ICH0 (82801AB), ICH2 (82801BA),
ICH3 (82801CA/CAM) and later devices are Intel chips that are a part of
ICH3 (82801CA/CAM) and later devices (PCH) are Intel chips that are a part of
Intel's '810' chipset for Celeron-based PCs, '810E' chipset for
Pentium-based PCs, '815E' chipset, and others.

View file

@ -1,160 +0,0 @@
Revision 7, 2007-04-19
Jean Delvare <khali@linux-fr.org>
Greg KH <greg@kroah.com>
This is a guide on how to convert I2C chip drivers from Linux 2.4 to
Linux 2.6. I have been using existing drivers (lm75, lm78) as examples.
Then I converted a driver myself (lm83) and updated this document.
Note that this guide is strongly oriented towards hardware monitoring
drivers. Many points are still valid for other type of drivers, but
others may be irrelevant.
There are two sets of points below. The first set concerns technical
changes. The second set concerns coding policy. Both are mandatory.
Although reading this guide will help you porting drivers, I suggest
you keep an eye on an already ported driver while porting your own
driver. This will help you a lot understanding what this guide
exactly means. Choose the chip driver that is the more similar to
yours for best results.
Technical changes:
* [Driver type] Any driver that was relying on i2c-isa has to be
converted to a proper isa, platform or pci driver. This is not
covered by this guide.
* [Includes] Get rid of "version.h" and <linux/i2c-proc.h>.
Includes typically look like that:
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h> /* for hardware monitoring drivers */
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h> /* if you need VRM support */
#include <linux/err.h> /* for class registration */
Please respect this inclusion order. Some extra headers may be
required for a given driver (e.g. "lm75.h").
* [Addresses] SENSORS_I2C_END becomes I2C_CLIENT_END, ISA addresses
are no more handled by the i2c core. Address ranges are no more
supported either, define each individual address separately.
SENSORS_INSMOD_<n> becomes I2C_CLIENT_INSMOD_<n>.
* [Client data] Get rid of sysctl_id. Try using standard names for
register values (for example, temp_os becomes temp_max). You're
still relatively free here, but you *have* to follow the standard
names for sysfs files (see the Sysctl section below).
* [Function prototypes] The detect functions loses its flags
parameter. Sysctl (e.g. lm75_temp) and miscellaneous functions
are off the list of prototypes. This usually leaves five
prototypes:
static int lm75_attach_adapter(struct i2c_adapter *adapter);
static int lm75_detect(struct i2c_adapter *adapter, int address,
int kind);
static void lm75_init_client(struct i2c_client *client);
static int lm75_detach_client(struct i2c_client *client);
static struct lm75_data lm75_update_device(struct device *dev);
* [Sysctl] All sysctl stuff is of course gone (defines, ctl_table
and functions). Instead, you have to define show and set functions for
each sysfs file. Only define set for writable values. Take a look at an
existing 2.6 driver for details (it87 for example). Don't forget
to define the attributes for each file (this is that step that
links callback functions). Use the file names specified in
Documentation/hwmon/sysfs-interface for the individual files. Also
convert the units these files read and write to the specified ones.
If you need to add a new type of file, please discuss it on the
sensors mailing list <lm-sensors@lm-sensors.org> by providing a
patch to the Documentation/hwmon/sysfs-interface file.
* [Attach] The attach function should make sure that the adapter's
class has I2C_CLASS_HWMON (or whatever class is suitable for your
driver), using the following construct:
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
Call i2c_probe() instead of i2c_detect().
* [Detect] As mentioned earlier, the flags parameter is gone.
The type_name and client_name strings are replaced by a single
name string, which will be filled with a lowercase, short string.
The labels used for error paths are reduced to the number needed.
It is advised that the labels are given descriptive names such as
exit and exit_free. Don't forget to properly set err before
jumping to error labels. By the way, labels should be left-aligned.
Use kzalloc instead of kmalloc.
Use i2c_set_clientdata to set the client data (as opposed to
a direct access to client->data).
Use strlcpy instead of strcpy or snprintf to copy the client name.
Replace the sysctl directory registration by calls to
device_create_file. Move the driver initialization before any
sysfs file creation.
Register the client with the hwmon class (using hwmon_device_register)
if applicable.
Drop client->id.
Drop any 24RF08 corruption prevention you find, as this is now done
at the i2c-core level, and doing it twice voids it.
Don't add I2C_CLIENT_ALLOW_USE to client->flags, it's the default now.
* [Init] Limits must not be set by the driver (can be done later in
user-space). Chip should not be reset default (although a module
parameter may be used to force it), and initialization should be
limited to the strictly necessary steps.
* [Detach] Remove the call to i2c_deregister_entry. Do not log an
error message if i2c_detach_client fails, as i2c-core will now do
it for you.
Unregister from the hwmon class if applicable.
* [Update] The function prototype changed, it is now
passed a device structure, which you have to convert to a client
using to_i2c_client(dev). The update function should return a
pointer to the client data.
Don't access client->data directly, use i2c_get_clientdata(client)
instead.
Use time_after() instead of direct jiffies comparison.
* [Interface] Make sure there is a MODULE_LICENSE() line, at the bottom
of the file (after MODULE_AUTHOR() and MODULE_DESCRIPTION(), in this
order).
* [Driver] The flags field of the i2c_driver structure is gone.
I2C_DF_NOTIFY is now the default behavior.
The i2c_driver structure has a driver member, which is itself a
structure, those name member should be initialized to a driver name
string. i2c_driver itself has no name member anymore.
* [Driver model] Instead of shutdown or reboot notifiers, provide a
shutdown() method in your driver.
* [Power management] Use the driver model suspend() and resume()
callbacks instead of the obsolete pm_register() calls.
Coding policy:
* [Copyright] Use (C), not (c), for copyright.
* [Debug/log] Get rid of #ifdef DEBUG/#endif constructs whenever you
can. Calls to printk for debugging purposes are replaced by calls to
dev_dbg where possible, else to pr_debug. Here is an example of how
to call it (taken from lm75_detect):
dev_dbg(&client->dev, "Starting lm75 update\n");
Replace other printk calls with the dev_info, dev_err or dev_warn
function, as appropriate.
* [Constants] Constants defines (registers, conversions) should be
aligned. This greatly improves readability.
Alignments are achieved by the means of tabs, not spaces. Remember
that tabs are set to 8 in the Linux kernel code.
* [Layout] Avoid extra empty lines between comments and what they
comment. Respect the coding style (see Documentation/CodingStyle),
in particular when it comes to placing curly braces.
* [Comments] Make sure that no comment refers to a file that isn't
part of the Linux source tree (typically doc/chips/<chip name>),
and that remaining comments still match the code. Merging comment
lines when possible is encouraged.

View file

@ -10,23 +10,21 @@ General remarks
===============
Try to keep the kernel namespace as clean as possible. The best way to
do this is to use a unique prefix for all global symbols. This is
do this is to use a unique prefix for all global symbols. This is
especially important for exported symbols, but it is a good idea to do
it for non-exported symbols too. We will use the prefix `foo_' in this
tutorial, and `FOO_' for preprocessor variables.
tutorial.
The driver structure
====================
Usually, you will implement a single driver structure, and instantiate
all clients from it. Remember, a driver structure contains general access
all clients from it. Remember, a driver structure contains general access
routines, and should be zero-initialized except for fields with data you
provide. A client structure holds device-specific information like the
driver model device node, and its I2C address.
/* iff driver uses driver model ("new style") binding model: */
static struct i2c_device_id foo_idtable[] = {
{ "foo", my_id_for_foo },
{ "bar", my_id_for_bar },
@ -40,7 +38,6 @@ static struct i2c_driver foo_driver = {
.name = "foo",
},
/* iff driver uses driver model ("new style") binding model: */
.id_table = foo_ids,
.probe = foo_probe,
.remove = foo_remove,
@ -49,24 +46,19 @@ static struct i2c_driver foo_driver = {
.detect = foo_detect,
.address_data = &addr_data,
/* else, driver uses "legacy" binding model: */
.attach_adapter = foo_attach_adapter,
.detach_client = foo_detach_client,
/* these may be used regardless of the driver binding model */
.shutdown = foo_shutdown, /* optional */
.suspend = foo_suspend, /* optional */
.resume = foo_resume, /* optional */
.command = foo_command, /* optional */
.command = foo_command, /* optional, deprecated */
}
The name field is the driver name, and must not contain spaces. It
should match the module name (if the driver can be compiled as a module),
although you can use MODULE_ALIAS (passing "foo" in this example) to add
another name for the module. If the driver name doesn't match the module
name, the module won't be automatically loaded (hotplug/coldplug).
All other fields are for call-back functions which will be explained
All other fields are for call-back functions which will be explained
below.
@ -74,34 +66,13 @@ Extra client data
=================
Each client structure has a special `data' field that can point to any
structure at all. You should use this to keep device-specific data,
especially in drivers that handle multiple I2C or SMBUS devices. You
do not always need this, but especially for `sensors' drivers, it can
be very useful.
structure at all. You should use this to keep device-specific data.
/* store the value */
void i2c_set_clientdata(struct i2c_client *client, void *data);
/* retrieve the value */
void *i2c_get_clientdata(struct i2c_client *client);
An example structure is below.
struct foo_data {
struct i2c_client client;
enum chips type; /* To keep the chips type for `sensors' drivers. */
/* Because the i2c bus is slow, it is often useful to cache the read
information of a chip for some time (for example, 1 or 2 seconds).
It depends of course on the device whether this is really worthwhile
or even sensible. */
struct mutex update_lock; /* When we are reading lots of information,
another process should not update the
below information */
char valid; /* != 0 if the following fields are valid. */
unsigned long last_updated; /* In jiffies */
/* Add the read information here too */
};
void *i2c_get_clientdata(const struct i2c_client *client);
Accessing the client
@ -109,11 +80,9 @@ Accessing the client
Let's say we have a valid client structure. At some time, we will need
to gather information from the client, or write new information to the
client. How we will export this information to user-space is less
important at this moment (perhaps we do not need to do this at all for
some obscure clients). But we need generic reading and writing routines.
client.
I have found it useful to define foo_read and foo_write function for this.
I have found it useful to define foo_read and foo_write functions for this.
For some cases, it will be easier to call the i2c functions directly,
but many chips have some kind of register-value idea that can easily
be encapsulated.
@ -121,33 +90,33 @@ be encapsulated.
The below functions are simple examples, and should not be copied
literally.
int foo_read_value(struct i2c_client *client, u8 reg)
{
if (reg < 0x10) /* byte-sized register */
return i2c_smbus_read_byte_data(client,reg);
else /* word-sized register */
return i2c_smbus_read_word_data(client,reg);
}
int foo_read_value(struct i2c_client *client, u8 reg)
{
if (reg < 0x10) /* byte-sized register */
return i2c_smbus_read_byte_data(client, reg);
else /* word-sized register */
return i2c_smbus_read_word_data(client, reg);
}
int foo_write_value(struct i2c_client *client, u8 reg, u16 value)
{
if (reg == 0x10) /* Impossible to write - driver error! */ {
return -1;
else if (reg < 0x10) /* byte-sized register */
return i2c_smbus_write_byte_data(client,reg,value);
else /* word-sized register */
return i2c_smbus_write_word_data(client,reg,value);
}
int foo_write_value(struct i2c_client *client, u8 reg, u16 value)
{
if (reg == 0x10) /* Impossible to write - driver error! */
return -EINVAL;
else if (reg < 0x10) /* byte-sized register */
return i2c_smbus_write_byte_data(client, reg, value);
else /* word-sized register */
return i2c_smbus_write_word_data(client, reg, value);
}
Probing and attaching
=====================
The Linux I2C stack was originally written to support access to hardware
monitoring chips on PC motherboards, and thus it embeds some assumptions
that are more appropriate to SMBus (and PCs) than to I2C. One of these
assumptions is that most adapters and devices drivers support the SMBUS_QUICK
protocol to probe device presence. Another is that devices and their drivers
monitoring chips on PC motherboards, and thus used to embed some assumptions
that were more appropriate to SMBus (and PCs) than to I2C. One of these
assumptions was that most adapters and devices drivers support the SMBUS_QUICK
protocol to probe device presence. Another was that devices and their drivers
can be sufficiently configured using only such probe primitives.
As Linux and its I2C stack became more widely used in embedded systems
@ -164,6 +133,9 @@ since the "legacy" model requires drivers to create "i2c_client" device
objects after SMBus style probing, while the Linux driver model expects
drivers to be given such device objects in their probe() routines.
The legacy model is deprecated now and will soon be removed, so we no
longer document it here.
Standard Driver Model Binding ("New Style")
-------------------------------------------
@ -193,8 +165,8 @@ matches the device's name. It is passed the entry that was matched so
the driver knows which one in the table matched.
Device Creation (Standard driver model)
---------------------------------------
Device Creation
---------------
If you know for a fact that an I2C device is connected to a given I2C bus,
you can instantiate that device by simply filling an i2c_board_info
@ -221,8 +193,8 @@ in the I2C bus driver. You may want to save the returned i2c_client
reference for later use.
Device Detection (Standard driver model)
----------------------------------------
Device Detection
----------------
Sometimes you do not know in advance which I2C devices are connected to
a given I2C bus. This is for example the case of hardware monitoring
@ -246,8 +218,8 @@ otherwise misdetections are likely to occur and things can get wrong
quickly.
Device Deletion (Standard driver model)
---------------------------------------
Device Deletion
---------------
Each I2C device which has been created using i2c_new_device() or
i2c_new_probed_device() can be unregistered by calling
@ -256,264 +228,37 @@ called automatically before the underlying I2C bus itself is removed, as a
device can't survive its parent in the device driver model.
Legacy Driver Binding Model
---------------------------
Initializing the driver
=======================
Most i2c devices can be present on several i2c addresses; for some this
is determined in hardware (by soldering some chip pins to Vcc or Ground),
for others this can be changed in software (by writing to specific client
registers). Some devices are usually on a specific address, but not always;
and some are even more tricky. So you will probably need to scan several
i2c addresses for your clients, and do some sort of detection to see
whether it is actually a device supported by your driver.
When the kernel is booted, or when your foo driver module is inserted,
you have to do some initializing. Fortunately, just registering the
driver module is usually enough.
To give the user a maximum of possibilities, some default module parameters
are defined to help determine what addresses are scanned. Several macros
are defined in i2c.h to help you support them, as well as a generic
detection algorithm.
static int __init foo_init(void)
{
return i2c_add_driver(&foo_driver);
}
You do not have to use this parameter interface; but don't try to use
function i2c_probe() if you don't.
static void __exit foo_cleanup(void)
{
i2c_del_driver(&foo_driver);
}
/* Substitute your own name and email address */
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>"
MODULE_DESCRIPTION("Driver for Barf Inc. Foo I2C devices");
Probing classes (Legacy model)
------------------------------
/* a few non-GPL license types are also allowed */
MODULE_LICENSE("GPL");
All parameters are given as lists of unsigned 16-bit integers. Lists are
terminated by I2C_CLIENT_END.
The following lists are used internally:
module_init(foo_init);
module_exit(foo_cleanup);
normal_i2c: filled in by the module writer.
A list of I2C addresses which should normally be examined.
probe: insmod parameter.
A list of pairs. The first value is a bus number (-1 for any I2C bus),
the second is the address. These addresses are also probed, as if they
were in the 'normal' list.
ignore: insmod parameter.
A list of pairs. The first value is a bus number (-1 for any I2C bus),
the second is the I2C address. These addresses are never probed.
This parameter overrules the 'normal_i2c' list only.
force: insmod parameter.
A list of pairs. The first value is a bus number (-1 for any I2C bus),
the second is the I2C address. A device is blindly assumed to be on
the given address, no probing is done.
Additionally, kind-specific force lists may optionally be defined if
the driver supports several chip kinds. They are grouped in a
NULL-terminated list of pointers named forces, those first element if the
generic force list mentioned above. Each additional list correspond to an
insmod parameter of the form force_<kind>.
Fortunately, as a module writer, you just have to define the `normal_i2c'
parameter. The complete declaration could look like this:
/* Scan 0x4c to 0x4f */
static const unsigned short normal_i2c[] = { 0x4c, 0x4d, 0x4e, 0x4f,
I2C_CLIENT_END };
/* Magic definition of all other variables and things */
I2C_CLIENT_INSMOD;
/* Or, if your driver supports, say, 2 kind of devices: */
I2C_CLIENT_INSMOD_2(foo, bar);
If you use the multi-kind form, an enum will be defined for you:
enum chips { any_chip, foo, bar, ... }
You can then (and certainly should) use it in the driver code.
Note that you *have* to call the defined variable `normal_i2c',
without any prefix!
Attaching to an adapter (Legacy model)
--------------------------------------
Whenever a new adapter is inserted, or for all adapters if the driver is
being registered, the callback attach_adapter() is called. Now is the
time to determine what devices are present on the adapter, and to register
a client for each of them.
The attach_adapter callback is really easy: we just call the generic
detection function. This function will scan the bus for us, using the
information as defined in the lists explained above. If a device is
detected at a specific address, another callback is called.
int foo_attach_adapter(struct i2c_adapter *adapter)
{
return i2c_probe(adapter,&addr_data,&foo_detect_client);
}
Remember, structure `addr_data' is defined by the macros explained above,
so you do not have to define it yourself.
The i2c_probe function will call the foo_detect_client
function only for those i2c addresses that actually have a device on
them (unless a `force' parameter was used). In addition, addresses that
are already in use (by some other registered client) are skipped.
The detect client function (Legacy model)
-----------------------------------------
The detect client function is called by i2c_probe. The `kind' parameter
contains -1 for a probed detection, 0 for a forced detection, or a positive
number for a forced detection with a chip type forced.
Returning an error different from -ENODEV in a detect function will cause
the detection to stop: other addresses and adapters won't be scanned.
This should only be done on fatal or internal errors, such as a memory
shortage or i2c_attach_client failing.
For now, you can ignore the `flags' parameter. It is there for future use.
int foo_detect_client(struct i2c_adapter *adapter, int address,
int kind)
{
int err = 0;
int i;
struct i2c_client *client;
struct foo_data *data;
const char *name = "";
/* Let's see whether this adapter can support what we need.
Please substitute the things you need here! */
if (!i2c_check_functionality(adapter,I2C_FUNC_SMBUS_WORD_DATA |
I2C_FUNC_SMBUS_WRITE_BYTE))
goto ERROR0;
/* OK. For now, we presume we have a valid client. We now create the
client structure, even though we cannot fill it completely yet.
But it allows us to access several i2c functions safely */
if (!(data = kzalloc(sizeof(struct foo_data), GFP_KERNEL))) {
err = -ENOMEM;
goto ERROR0;
}
client = &data->client;
i2c_set_clientdata(client, data);
client->addr = address;
client->adapter = adapter;
client->driver = &foo_driver;
/* Now, we do the remaining detection. If no `force' parameter is used. */
/* First, the generic detection (if any), that is skipped if any force
parameter was used. */
if (kind < 0) {
/* The below is of course bogus */
if (foo_read(client, FOO_REG_GENERIC) != FOO_GENERIC_VALUE)
goto ERROR1;
}
/* Next, specific detection. This is especially important for `sensors'
devices. */
/* Determine the chip type. Not needed if a `force_CHIPTYPE' parameter
was used. */
if (kind <= 0) {
i = foo_read(client, FOO_REG_CHIPTYPE);
if (i == FOO_TYPE_1)
kind = chip1; /* As defined in the enum */
else if (i == FOO_TYPE_2)
kind = chip2;
else {
printk("foo: Ignoring 'force' parameter for unknown chip at "
"adapter %d, address 0x%02x\n",i2c_adapter_id(adapter),address);
goto ERROR1;
}
}
/* Now set the type and chip names */
if (kind == chip1) {
name = "chip1";
} else if (kind == chip2) {
name = "chip2";
}
/* Fill in the remaining client fields. */
strlcpy(client->name, name, I2C_NAME_SIZE);
data->type = kind;
mutex_init(&data->update_lock); /* Only if you use this field */
/* Any other initializations in data must be done here too. */
/* This function can write default values to the client registers, if
needed. */
foo_init_client(client);
/* Tell the i2c layer a new client has arrived */
if ((err = i2c_attach_client(client)))
goto ERROR1;
return 0;
/* OK, this is not exactly good programming practice, usually. But it is
very code-efficient in this case. */
ERROR1:
kfree(data);
ERROR0:
return err;
}
Removing the client (Legacy model)
==================================
The detach_client call back function is called when a client should be
removed. It may actually fail, but only when panicking. This code is
much simpler than the attachment code, fortunately!
int foo_detach_client(struct i2c_client *client)
{
int err;
/* Try to detach the client from i2c space */
if ((err = i2c_detach_client(client)))
return err;
kfree(i2c_get_clientdata(client));
return 0;
}
Initializing the module or kernel
=================================
When the kernel is booted, or when your foo driver module is inserted,
you have to do some initializing. Fortunately, just attaching (registering)
the driver module is usually enough.
static int __init foo_init(void)
{
int res;
if ((res = i2c_add_driver(&foo_driver))) {
printk("foo: Driver registration failed, module not inserted.\n");
return res;
}
return 0;
}
static void __exit foo_cleanup(void)
{
i2c_del_driver(&foo_driver);
}
/* Substitute your own name and email address */
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>"
MODULE_DESCRIPTION("Driver for Barf Inc. Foo I2C devices");
/* a few non-GPL license types are also allowed */
MODULE_LICENSE("GPL");
module_init(foo_init);
module_exit(foo_cleanup);
Note that some functions are marked by `__init', and some data structures
by `__initdata'. These functions and structures can be removed after
kernel booting (or module loading) is completed.
Note that some functions are marked by `__init'. These functions can
be removed after kernel booting (or module loading) is completed.
Likewise, functions marked by `__exit' are dropped by the compiler when
the code is built into the kernel, as they would never be called.
Power Management
@ -548,33 +293,35 @@ Command function
A generic ioctl-like function call back is supported. You will seldom
need this, and its use is deprecated anyway, so newer design should not
use it. Set it to NULL.
use it.
Sending and receiving
=====================
If you want to communicate with your device, there are several functions
to do this. You can find all of them in i2c.h.
to do this. You can find all of them in <linux/i2c.h>.
If you can choose between plain i2c communication and SMBus level
communication, please use the last. All adapters understand SMBus level
commands, but only some of them understand plain i2c!
If you can choose between plain I2C communication and SMBus level
communication, please use the latter. All adapters understand SMBus level
commands, but only some of them understand plain I2C!
Plain i2c communication
Plain I2C communication
-----------------------
extern int i2c_master_send(struct i2c_client *,const char* ,int);
extern int i2c_master_recv(struct i2c_client *,char* ,int);
int i2c_master_send(struct i2c_client *client, const char *buf,
int count);
int i2c_master_recv(struct i2c_client *client, char *buf, int count);
These routines read and write some bytes from/to a client. The client
contains the i2c address, so you do not have to include it. The second
parameter contains the bytes the read/write, the third the length of the
buffer. Returned is the actual number of bytes read/written.
extern int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,
int num);
parameter contains the bytes to read/write, the third the number of bytes
to read/write (must be less than the length of the buffer.) Returned is
the actual number of bytes read/written.
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,
int num);
This sends a series of messages. Each message can be a read or write,
and they can be mixed in any way. The transactions are combined: no
@ -583,49 +330,45 @@ for each message the client address, the number of bytes of the message
and the message data itself.
You can read the file `i2c-protocol' for more information about the
actual i2c protocol.
actual I2C protocol.
SMBus communication
-------------------
extern s32 i2c_smbus_xfer (struct i2c_adapter * adapter, u16 addr,
unsigned short flags,
char read_write, u8 command, int size,
union i2c_smbus_data * data);
s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char read_write, u8 command,
int size, union i2c_smbus_data *data);
This is the generic SMBus function. All functions below are implemented
in terms of it. Never use this function directly!
This is the generic SMBus function. All functions below are implemented
in terms of it. Never use this function directly!
extern s32 i2c_smbus_read_byte(struct i2c_client * client);
extern s32 i2c_smbus_write_byte(struct i2c_client * client, u8 value);
extern s32 i2c_smbus_read_byte_data(struct i2c_client * client, u8 command);
extern s32 i2c_smbus_write_byte_data(struct i2c_client * client,
u8 command, u8 value);
extern s32 i2c_smbus_read_word_data(struct i2c_client * client, u8 command);
extern s32 i2c_smbus_write_word_data(struct i2c_client * client,
u8 command, u16 value);
extern s32 i2c_smbus_process_call(struct i2c_client *client,
u8 command, u16 value);
extern s32 i2c_smbus_read_block_data(struct i2c_client * client,
u8 command, u8 *values);
extern s32 i2c_smbus_write_block_data(struct i2c_client * client,
u8 command, u8 length,
u8 *values);
extern s32 i2c_smbus_read_i2c_block_data(struct i2c_client * client,
u8 command, u8 length, u8 *values);
extern s32 i2c_smbus_write_i2c_block_data(struct i2c_client * client,
u8 command, u8 length,
u8 *values);
s32 i2c_smbus_read_byte(struct i2c_client *client);
s32 i2c_smbus_write_byte(struct i2c_client *client, u8 value);
s32 i2c_smbus_read_byte_data(struct i2c_client *client, u8 command);
s32 i2c_smbus_write_byte_data(struct i2c_client *client,
u8 command, u8 value);
s32 i2c_smbus_read_word_data(struct i2c_client *client, u8 command);
s32 i2c_smbus_write_word_data(struct i2c_client *client,
u8 command, u16 value);
s32 i2c_smbus_process_call(struct i2c_client *client,
u8 command, u16 value);
s32 i2c_smbus_read_block_data(struct i2c_client *client,
u8 command, u8 *values);
s32 i2c_smbus_write_block_data(struct i2c_client *client,
u8 command, u8 length, const u8 *values);
s32 i2c_smbus_read_i2c_block_data(struct i2c_client *client,
u8 command, u8 length, u8 *values);
s32 i2c_smbus_write_i2c_block_data(struct i2c_client *client,
u8 command, u8 length,
const u8 *values);
These ones were removed from i2c-core because they had no users, but could
be added back later if needed:
extern s32 i2c_smbus_write_quick(struct i2c_client * client, u8 value);
extern s32 i2c_smbus_block_process_call(struct i2c_client *client,
u8 command, u8 length,
u8 *values)
s32 i2c_smbus_write_quick(struct i2c_client *client, u8 value);
s32 i2c_smbus_block_process_call(struct i2c_client *client,
u8 command, u8 length, u8 *values);
All these transactions return a negative errno value on failure. The 'write'
transactions return 0 on success; the 'read' transactions return the read
@ -642,7 +385,5 @@ General purpose routines
Below all general purpose routines are listed, that were not mentioned
before.
/* This call returns a unique low identifier for each registered adapter.
*/
extern int i2c_adapter_id(struct i2c_adapter *adap);
/* Return the adapter number for a specific adapter */
int i2c_adapter_id(struct i2c_adapter *adap);

183
Documentation/ia64/xen.txt Normal file
View file

@ -0,0 +1,183 @@
Recipe for getting/building/running Xen/ia64 with pv_ops
--------------------------------------------------------
This recipe describes how to get xen-ia64 source and build it,
and run domU with pv_ops.
============
Requirements
============
- python
- mercurial
it (aka "hg") is an open-source source code
management software. See the below.
http://www.selenic.com/mercurial/wiki/
- git
- bridge-utils
=================================
Getting and Building Xen and Dom0
=================================
My environment is;
Machine : Tiger4
Domain0 OS : RHEL5
DomainU OS : RHEL5
1. Download source
# hg clone http://xenbits.xensource.com/ext/ia64/xen-unstable.hg
# cd xen-unstable.hg
# hg clone http://xenbits.xensource.com/ext/ia64/linux-2.6.18-xen.hg
2. # make world
3. # make install-tools
4. copy kernels and xen
# cp xen/xen.gz /boot/efi/efi/redhat/
# cp build-linux-2.6.18-xen_ia64/vmlinux.gz \
/boot/efi/efi/redhat/vmlinuz-2.6.18.8-xen
5. make initrd for Dom0/DomU
# make -C linux-2.6.18-xen.hg ARCH=ia64 modules_install \
O=$(/bin/pwd)/build-linux-2.6.18-xen_ia64
# mkinitrd -f /boot/efi/efi/redhat/initrd-2.6.18.8-xen.img \
2.6.18.8-xen --builtin mptspi --builtin mptbase \
--builtin mptscsih --builtin uhci-hcd --builtin ohci-hcd \
--builtin ehci-hcd
================================
Making a disk image for guest OS
================================
1. make file
# dd if=/dev/zero of=/root/rhel5.img bs=1M seek=4096 count=0
# mke2fs -F -j /root/rhel5.img
# mount -o loop /root/rhel5.img /mnt
# cp -ax /{dev,var,etc,usr,bin,sbin,lib} /mnt
# mkdir /mnt/{root,proc,sys,home,tmp}
Note: You may miss some device files. If so, please create them
with mknod. Or you can use tar instead of cp.
2. modify DomU's fstab
# vi /mnt/etc/fstab
/dev/xvda1 / ext3 defaults 1 1
none /dev/pts devpts gid=5,mode=620 0 0
none /dev/shm tmpfs defaults 0 0
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0
3. modify inittab
set runlevel to 3 to avoid X trying to start
# vi /mnt/etc/inittab
id:3:initdefault:
Start a getty on the hvc0 console
X0:2345:respawn:/sbin/mingetty hvc0
tty1-6 mingetty can be commented out
4. add hvc0 into /etc/securetty
# vi /mnt/etc/securetty (add hvc0)
5. umount
# umount /mnt
FYI, virt-manager can also make a disk image for guest OS.
It's GUI tools and easy to make it.
==================
Boot Xen & Domain0
==================
1. replace elilo
elilo of RHEL5 can boot Xen and Dom0.
If you use old elilo (e.g RHEL4), please download from the below
http://elilo.sourceforge.net/cgi-bin/blosxom
and copy into /boot/efi/efi/redhat/
# cp elilo-3.6-ia64.efi /boot/efi/efi/redhat/elilo.efi
2. modify elilo.conf (like the below)
# vi /boot/efi/efi/redhat/elilo.conf
prompt
timeout=20
default=xen
relocatable
image=vmlinuz-2.6.18.8-xen
label=xen
vmm=xen.gz
initrd=initrd-2.6.18.8-xen.img
read-only
append=" -- rhgb root=/dev/sda2"
The append options before "--" are for xen hypervisor,
the options after "--" are for dom0.
FYI, your machine may need console options like
"com1=19200,8n1 console=vga,com1". For example,
append="com1=19200,8n1 console=vga,com1 -- rhgb console=tty0 \
console=ttyS0 root=/dev/sda2"
=====================================
Getting and Building domU with pv_ops
=====================================
1. get pv_ops tree
# git clone http://people.valinux.co.jp/~yamahata/xen-ia64/linux-2.6-xen-ia64.git/
2. git branch (if necessary)
# cd linux-2.6-xen-ia64/
# git checkout -b your_branch origin/xen-ia64-domu-minimal-2008may19
(Note: The current branch is xen-ia64-domu-minimal-2008may19.
But you would find the new branch. You can see with
"git branch -r" to get the branch lists.
http://people.valinux.co.jp/~yamahata/xen-ia64/for_eagl/linux-2.6-ia64-pv-ops.git/
is also available. The tree is based on
git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6 test)
3. copy .config for pv_ops of domU
# cp arch/ia64/configs/xen_domu_wip_defconfig .config
4. make kernel with pv_ops
# make oldconfig
# make
5. install the kernel and initrd
# cp vmlinux.gz /boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU
# make modules_install
# mkinitrd -f /boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img \
2.6.26-rc3xen-ia64-08941-g1b12161 --builtin mptspi \
--builtin mptbase --builtin mptscsih --builtin uhci-hcd \
--builtin ohci-hcd --builtin ehci-hcd
========================
Boot DomainU with pv_ops
========================
1. make config of DomU
# vi /etc/xen/rhel5
kernel = "/boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU"
ramdisk = "/boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img"
vcpus = 1
memory = 512
name = "rhel5"
disk = [ 'file:/root/rhel5.img,xvda1,w' ]
root = "/dev/xvda1 ro"
extra= "rhgb console=hvc0"
2. After boot xen and dom0, start xend
# /etc/init.d/xend start
( In the debugging case, # XEND_DEBUG=1 xend trace_start )
3. start domU
# xm create -c rhel5
=========
Reference
=========
- Wiki of Xen/IA64 upstream merge
http://wiki.xensource.com/xenwiki/XenIA64/UpstreamMerge
Written by Akio Takebe <takebe_akio@jp.fujitsu.com> on 28 May 2008

View file

@ -92,6 +92,7 @@ Code Seq# Include File Comments
'J' 00-1F drivers/scsi/gdth_ioctl.h
'K' all linux/kd.h
'L' 00-1F linux/loop.h
'L' 20-2F driver/usb/misc/vstusb.h
'L' E0-FF linux/ppdd.h encrypted disk device driver
<http://linux01.gwdg.de/~alatham/ppdd.html>
'M' all linux/soundcard.h
@ -110,6 +111,8 @@ Code Seq# Include File Comments
'W' 00-1F linux/wanrouter.h conflict!
'X' all linux/xfs_fs.h
'Y' all linux/cyclades.h
'[' 00-07 linux/usb/usbtmc.h USB Test and Measurement Devices
<mailto:gregkh@suse.de>
'a' all ATM on linux
<http://lrcwww.epfl.ch/linux-atm/magic.html>
'b' 00-FF bit3 vme host bridge

View file

@ -109,7 +109,8 @@ There are two possible methods of using Kdump.
2) Or use the system kernel binary itself as dump-capture kernel and there is
no need to build a separate dump-capture kernel. This is possible
only with the architecutres which support a relocatable kernel. As
of today, i386, x86_64 and ia64 architectures support relocatable kernel.
of today, i386, x86_64, ppc64 and ia64 architectures support relocatable
kernel.
Building a relocatable kernel is advantageous from the point of view that
one does not have to build a second kernel for capturing the dump. But
@ -207,8 +208,15 @@ Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
Dump-capture kernel config options (Arch Dependent, ppc64)
----------------------------------------------------------
* Make and install the kernel and its modules. DO NOT add this kernel
to the boot loader configuration files.
1) Enable "Build a kdump crash kernel" support under "Kernel" options:
CONFIG_CRASH_DUMP=y
2) Enable "Build a relocatable kernel" support
CONFIG_RELOCATABLE=y
Make and install the kernel and its modules.
Dump-capture kernel config options (Arch Dependent, ia64)
----------------------------------------------------------

View file

@ -101,6 +101,7 @@ parameter is applicable:
X86-64 X86-64 architecture is enabled.
More X86-64 boot options can be found in
Documentation/x86_64/boot-options.txt .
X86 Either 32bit or 64bit x86 (same as X86-32+X86-64)
In addition, the following text indicates that the option:
@ -217,20 +218,47 @@ and is between 256 and 4096 characters. It is defined in the file
acpi.debug_level= [HW,ACPI]
Format: <int>
Each bit of the <int> indicates an ACPI debug level,
1: enable, 0: disable. It is useful for boot time
debugging. After system has booted up, it can be set
via /sys/module/acpi/parameters/debug_level.
CONFIG_ACPI_DEBUG must be enabled for this to produce any output.
Available bits (add the numbers together) to enable different
debug output levels of the ACPI subsystem:
0x01 error 0x02 warn 0x04 init 0x08 debug object
0x10 info 0x20 init names 0x40 parse 0x80 load
0x100 dispatch 0x200 execute 0x400 names 0x800 operation region
0x1000 bfield 0x2000 tables 0x4000 values 0x8000 objects
0x10000 resources 0x20000 user requests 0x40000 package.
The number can be in decimal or prefixed with 0x in hex.
Warning: Many of these options can produce a lot of
output and make your system unusable. Be very careful.
which corresponds to the level in an ACPI_DEBUG_PRINT
statement. After system has booted up, this mask
can be set via /sys/module/acpi/parameters/debug_level.
CONFIG_ACPI_DEBUG must be enabled for this to produce
any output. The number can be in decimal or prefixed
with 0x in hex. Some of these options produce so much
output that the system is unusable.
The following global components are defined by the
ACPI CA:
0x01 error
0x02 warn
0x04 init
0x08 debug object
0x10 info
0x20 init names
0x40 parse
0x80 load
0x100 dispatch
0x200 execute
0x400 names
0x800 operation region
0x1000 bfield
0x2000 tables
0x4000 values
0x8000 objects
0x10000 resources
0x20000 user requests
0x40000 package
The number can be in decimal or prefixed with 0x in hex.
Warning: Many of these options can produce a lot of
output and make your system unusable. Be very careful.
acpi.power_nocheck= [HW,ACPI]
Format: 1/0 enable/disable the check of power state.
On some bogus BIOS the _PSC object/_STA object of
power resource can't return the correct device power
state. In such case it is unneccessary to check its
power state again in power transition.
1 : disable the power state check
acpi_pm_good [X86-32,X86-64]
Override the pmtimer bug detection: force the kernel
@ -690,7 +718,7 @@ and is between 256 and 4096 characters. It is defined in the file
See Documentation/block/as-iosched.txt and
Documentation/block/deadline-iosched.txt for details.
elfcorehdr= [X86-32, X86_64]
elfcorehdr= [IA64,PPC,SH,X86-32,X86_64]
Specifies physical address of start of kernel core
image elf header. Generally kexec loader will
pass this option to capture kernel.
@ -796,6 +824,8 @@ and is between 256 and 4096 characters. It is defined in the file
Defaults to the default architecture's huge page size
if not specified.
hlt [BUGS=ARM,SH]
i8042.debug [HW] Toggle i8042 debug mode
i8042.direct [HW] Put keyboard port into non-translated mode
i8042.dumbkbd [HW] Pretend that controller can only read data from
@ -1211,6 +1241,10 @@ and is between 256 and 4096 characters. It is defined in the file
mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel
memory.
memchunk=nn[KMG]
[KNL,SH] Allow user to override the default size for
per-device physically contiguous DMA buffers.
memmap=exactmap [KNL,X86-32,X86_64] Enable setting of an exact
E820 memory map, as specified by the user.
Such memmap=exactmap lines can be constructed based on
@ -1393,6 +1427,8 @@ and is between 256 and 4096 characters. It is defined in the file
nodisconnect [HW,SCSI,M68K] Disables SCSI disconnects.
nodsp [SH] Disable hardware DSP at boot time.
noefi [X86-32,X86-64] Disable EFI runtime services support.
noexec [IA-64]
@ -1409,13 +1445,15 @@ and is between 256 and 4096 characters. It is defined in the file
noexec32=off: disable non-executable mappings
read implies executable mappings
nofpu [SH] Disable hardware FPU at boot time.
nofxsr [BUGS=X86-32] Disables x86 floating point extended
register save and restore. The kernel will only save
legacy floating-point registers on task switch.
noclflush [BUGS=X86] Don't use the CLFLUSH instruction
nohlt [BUGS=ARM]
nohlt [BUGS=ARM,SH]
no-hlt [BUGS=X86-32] Tells the kernel that the hlt
instruction doesn't work correctly and not to
@ -1578,7 +1616,7 @@ and is between 256 and 4096 characters. It is defined in the file
See also Documentation/paride.txt.
pci=option[,option...] [PCI] various PCI subsystem options:
off [X86-32] don't probe for the PCI bus
off [X86] don't probe for the PCI bus
bios [X86-32] force use of PCI BIOS, don't access
the hardware directly. Use this if your machine
has a non-standard PCI host bridge.
@ -1586,9 +1624,9 @@ and is between 256 and 4096 characters. It is defined in the file
hardware access methods are allowed. Use this
if you experience crashes upon bootup and you
suspect they are caused by the BIOS.
conf1 [X86-32] Force use of PCI Configuration
conf1 [X86] Force use of PCI Configuration
Mechanism 1.
conf2 [X86-32] Force use of PCI Configuration
conf2 [X86] Force use of PCI Configuration
Mechanism 2.
noaer [PCIE] If the PCIEAER kernel config parameter is
enabled, this kernel boot option can be used to
@ -1608,37 +1646,37 @@ and is between 256 and 4096 characters. It is defined in the file
this option if the kernel is unable to allocate
IRQs or discover secondary PCI buses on your
motherboard.
rom [X86-32] Assign address space to expansion ROMs.
rom [X86] Assign address space to expansion ROMs.
Use with caution as certain devices share
address decoders between ROMs and other
resources.
norom [X86-32,X86_64] Do not assign address space to
norom [X86] Do not assign address space to
expansion ROMs that do not already have
BIOS assigned address ranges.
irqmask=0xMMMM [X86-32] Set a bit mask of IRQs allowed to be
irqmask=0xMMMM [X86] Set a bit mask of IRQs allowed to be
assigned automatically to PCI devices. You can
make the kernel exclude IRQs of your ISA cards
this way.
pirqaddr=0xAAAAA [X86-32] Specify the physical address
pirqaddr=0xAAAAA [X86] Specify the physical address
of the PIRQ table (normally generated
by the BIOS) if it is outside the
F0000h-100000h range.
lastbus=N [X86-32] Scan all buses thru bus #N. Can be
lastbus=N [X86] Scan all buses thru bus #N. Can be
useful if the kernel is unable to find your
secondary buses and you want to tell it
explicitly which ones they are.
assign-busses [X86-32] Always assign all PCI bus
assign-busses [X86] Always assign all PCI bus
numbers ourselves, overriding
whatever the firmware may have done.
usepirqmask [X86-32] Honor the possible IRQ mask stored
usepirqmask [X86] Honor the possible IRQ mask stored
in the BIOS $PIR table. This is needed on
some systems with broken BIOSes, notably
some HP Pavilion N5400 and Omnibook XE3
notebooks. This will have no effect if ACPI
IRQ routing is enabled.
noacpi [X86-32] Do not use ACPI for IRQ routing
noacpi [X86] Do not use ACPI for IRQ routing
or for PCI scanning.
use_crs [X86-32] Use _CRS for PCI resource
use_crs [X86] Use _CRS for PCI resource
allocation.
routeirq Do IRQ routing for all PCI devices.
This is normally done in pci_enable_device(),
@ -1667,6 +1705,12 @@ and is between 256 and 4096 characters. It is defined in the file
reserved for the CardBus bridge's memory
window. The default value is 64 megabytes.
pcie_aspm= [PCIE] Forcibly enable or disable PCIe Active State Power
Management.
off Disable ASPM.
force Enable ASPM even on devices that claim not to support it.
WARNING: Forcing ASPM on may cause system lockups.
pcmv= [HW,PCMCIA] BadgePAD 4
pd. [PARIDE]
@ -1694,6 +1738,10 @@ and is between 256 and 4096 characters. It is defined in the file
Override pmtimer IOPort with a hex value.
e.g. pmtmr=0x508
pnp.debug [PNP]
Enable PNP debug messages. This depends on the
CONFIG_PNP_DEBUG_MESSAGES option.
pnpacpi= [ACPI]
{ off }
@ -2191,7 +2239,7 @@ and is between 256 and 4096 characters. It is defined in the file
thermal.crt= [HW,ACPI]
-1: disable all critical trip points in all thermal zones
<degrees C>: lower all critical trip points
<degrees C>: override all critical trip points
thermal.nocrt= [HW,ACPI]
Set to disable actions on ACPI thermal zone
@ -2253,6 +2301,25 @@ and is between 256 and 4096 characters. It is defined in the file
autosuspended. Devices for which the delay is set
to a negative value won't be autosuspended at all.
usbcore.usbfs_snoop=
[USB] Set to log all usbfs traffic (default 0 = off).
usbcore.blinkenlights=
[USB] Set to cycle leds on hubs (default 0 = off).
usbcore.old_scheme_first=
[USB] Start with the old device initialization
scheme (default 0 = off).
usbcore.use_both_schemes=
[USB] Try the other device initialization scheme
if the first one fails (default 1 = enabled).
usbcore.initial_descriptor_timeout=
[USB] Specifies timeout for the initial 64-byte
USB_REQ_GET_DESCRIPTOR request in milliseconds
(default 5000 = 5.0 seconds).
usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.

View file

@ -1,7 +1,7 @@
Acer Laptop WMI Extras Driver
http://code.google.com/p/aceracpi
Version 0.1
9th February 2008
Version 0.2
18th August 2008
Copyright 2007-2008 Carlos Corbacho <carlos@strangeworlds.co.uk>
@ -87,17 +87,7 @@ acer-wmi come with built-in wireless. However, should you feel so inclined to
ever wish to remove the card, or swap it out at some point, please get in touch
with me, as we may well be able to gain some data on wireless card detection.
To read the status of the wireless radio (0=off, 1=on):
cat /sys/devices/platform/acer-wmi/wireless
To enable the wireless radio:
echo 1 > /sys/devices/platform/acer-wmi/wireless
To disable the wireless radio:
echo 0 > /sys/devices/platform/acer-wmi/wireless
To set the state of the wireless radio when loading acer-wmi, pass:
wireless=X (where X is 0 or 1)
The wireless radio is exposed through rfkill.
Bluetooth
*********
@ -117,17 +107,7 @@ For the adventurously minded - if you want to buy an internal bluetooth
module off the internet that is compatible with your laptop and fit it, then
it will work just fine with acer-wmi.
To read the status of the bluetooth module (0=off, 1=on):
cat /sys/devices/platform/acer-wmi/wireless
To enable the bluetooth module:
echo 1 > /sys/devices/platform/acer-wmi/bluetooth
To disable the bluetooth module:
echo 0 > /sys/devices/platform/acer-wmi/bluetooth
To set the state of the bluetooth module when loading acer-wmi, pass:
bluetooth=X (where X is 0 or 1)
Bluetooth is exposed through rfkill.
3G
**

View file

@ -50,10 +50,12 @@ Connecting a function (probe) to a marker is done by providing a probe (function
to call) for the specific marker through marker_probe_register() and can be
activated by calling marker_arm(). Marker deactivation can be done by calling
marker_disarm() as many times as marker_arm() has been called. Removing a probe
is done through marker_probe_unregister(); it will disarm the probe and make
sure there is no caller left using the probe when it returns. Probe removal is
preempt-safe because preemption is disabled around the probe call. See the
"Probe example" section below for a sample probe module.
is done through marker_probe_unregister(); it will disarm the probe.
marker_synchronize_unregister() must be called before the end of the module exit
function to make sure there is no caller left using the probe. This, and the
fact that preemption is disabled around the probe call, make sure that probe
removal and module unload are safe. See the "Probe example" section below for a
sample probe module.
The marker mechanism supports inserting multiple instances of the same marker.
Markers can be put in inline functions, inlined static functions, and

View file

@ -0,0 +1,714 @@
Introduction
============
Having looked at the linux mtd/nand driver and more specific at nand_ecc.c
I felt there was room for optimisation. I bashed the code for a few hours
performing tricks like table lookup removing superfluous code etc.
After that the speed was increased by 35-40%.
Still I was not too happy as I felt there was additional room for improvement.
Bad! I was hooked.
I decided to annotate my steps in this file. Perhaps it is useful to someone
or someone learns something from it.
The problem
===========
NAND flash (at least SLC one) typically has sectors of 256 bytes.
However NAND flash is not extremely reliable so some error detection
(and sometimes correction) is needed.
This is done by means of a Hamming code. I'll try to explain it in
laymans terms (and apologies to all the pro's in the field in case I do
not use the right terminology, my coding theory class was almost 30
years ago, and I must admit it was not one of my favourites).
As I said before the ecc calculation is performed on sectors of 256
bytes. This is done by calculating several parity bits over the rows and
columns. The parity used is even parity which means that the parity bit = 1
if the data over which the parity is calculated is 1 and the parity bit = 0
if the data over which the parity is calculated is 0. So the total
number of bits over the data over which the parity is calculated + the
parity bit is even. (see wikipedia if you can't follow this).
Parity is often calculated by means of an exclusive or operation,
sometimes also referred to as xor. In C the operator for xor is ^
Back to ecc.
Let's give a small figure:
byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
....
byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
This figure represents a sector of 256 bytes.
cp is my abbreviaton for column parity, rp for row parity.
Let's start to explain column parity.
cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
cp2 is the parity over bit0, bit1, bit4 and bit5
cp3 is the parity over bit2, bit3, bit6 and bit7.
cp4 is the parity over bit0, bit1, bit2 and bit3.
cp5 is the parity over bit4, bit5, bit6 and bit7.
Note that each of cp0 .. cp5 is exactly one bit.
Row parity actually works almost the same.
rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
(so handle two bytes, then skip 2 bytes).
rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
The story now becomes quite boring. I guess you get the idea.
rp6 covers 8 bytes then skips 8 etc
rp7 skips 8 bytes then covers 8 etc
rp8 covers 16 bytes then skips 16 etc
rp9 skips 16 bytes then covers 16 etc
rp10 covers 32 bytes then skips 32 etc
rp11 skips 32 bytes then covers 32 etc
rp12 covers 64 bytes then skips 64 etc
rp13 skips 64 bytes then covers 64 etc
rp14 covers 128 bytes then skips 128
rp15 skips 128 bytes then covers 128
In the end the parity bits are grouped together in three bytes as
follows:
ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
I detected after writing this that ST application note AN1823
(http://www.st.com/stonline/books/pdf/docs/10123.pdf) gives a much
nicer picture.(but they use line parity as term where I use row parity)
Oh well, I'm graphically challenged, so suffer with me for a moment :-)
And I could not reuse the ST picture anyway for copyright reasons.
Attempt 0
=========
Implementing the parity calculation is pretty simple.
In C pseudocode:
for (i = 0; i < 256; i++)
{
if (i & 0x01)
rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
else
rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
if (i & 0x02)
rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
else
rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
if (i & 0x04)
rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
else
rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
if (i & 0x08)
rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
else
rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
if (i & 0x10)
rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
else
rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
if (i & 0x20)
rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
else
rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
if (i & 0x40)
rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
else
rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
if (i & 0x80)
rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
else
rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
}
Analysis 0
==========
C does have bitwise operators but not really operators to do the above
efficiently (and most hardware has no such instructions either).
Therefore without implementing this it was clear that the code above was
not going to bring me a Nobel prize :-)
Fortunately the exclusive or operation is commutative, so we can combine
the values in any order. So instead of calculating all the bits
individually, let us try to rearrange things.
For the column parity this is easy. We can just xor the bytes and in the
end filter out the relevant bits. This is pretty nice as it will bring
all cp calculation out of the if loop.
Similarly we can first xor the bytes for the various rows.
This leads to:
Attempt 1
=========
const char parity[256] = {
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
};
void ecc1(const unsigned char *buf, unsigned char *code)
{
int i;
const unsigned char *bp = buf;
unsigned char cur;
unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
unsigned char par;
par = 0;
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
for (i = 0; i < 256; i++)
{
cur = *bp++;
par ^= cur;
if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
}
code[0] =
(parity[rp7] << 7) |
(parity[rp6] << 6) |
(parity[rp5] << 5) |
(parity[rp4] << 4) |
(parity[rp3] << 3) |
(parity[rp2] << 2) |
(parity[rp1] << 1) |
(parity[rp0]);
code[1] =
(parity[rp15] << 7) |
(parity[rp14] << 6) |
(parity[rp13] << 5) |
(parity[rp12] << 4) |
(parity[rp11] << 3) |
(parity[rp10] << 2) |
(parity[rp9] << 1) |
(parity[rp8]);
code[2] =
(parity[par & 0xf0] << 7) |
(parity[par & 0x0f] << 6) |
(parity[par & 0xcc] << 5) |
(parity[par & 0x33] << 4) |
(parity[par & 0xaa] << 3) |
(parity[par & 0x55] << 2);
code[0] = ~code[0];
code[1] = ~code[1];
code[2] = ~code[2];
}
Still pretty straightforward. The last three invert statements are there to
give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
all data is 0xff, so the checksum then matches.
I also introduced the parity lookup. I expected this to be the fastest
way to calculate the parity, but I will investigate alternatives later
on.
Analysis 1
==========
The code works, but is not terribly efficient. On my system it took
almost 4 times as much time as the linux driver code. But hey, if it was
*that* easy this would have been done long before.
No pain. no gain.
Fortunately there is plenty of room for improvement.
In step 1 we moved from bit-wise calculation to byte-wise calculation.
However in C we can also use the unsigned long data type and virtually
every modern microprocessor supports 32 bit operations, so why not try
to write our code in such a way that we process data in 32 bit chunks.
Of course this means some modification as the row parity is byte by
byte. A quick analysis:
for the column parity we use the par variable. When extending to 32 bits
we can in the end easily calculate p0 and p1 from it.
(because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
respectively)
also rp2 and rp3 can be easily retrieved from par as rp3 covers the
first two bytes and rp2 the last two bytes.
Note that of course now the loop is executed only 64 times (256/4).
And note that care must taken wrt byte ordering. The way bytes are
ordered in a long is machine dependent, and might affect us.
Anyway, if there is an issue: this code is developed on x86 (to be
precise: a DELL PC with a D920 Intel CPU)
And of course the performance might depend on alignment, but I expect
that the I/O buffers in the nand driver are aligned properly (and
otherwise that should be fixed to get maximum performance).
Let's give it a try...
Attempt 2
=========
extern const char parity[256];
void ecc2(const unsigned char *buf, unsigned char *code)
{
int i;
const unsigned long *bp = (unsigned long *)buf;
unsigned long cur;
unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
unsigned long par;
par = 0;
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
for (i = 0; i < 64; i++)
{
cur = *bp++;
par ^= cur;
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
}
/*
we need to adapt the code generation for the fact that rp vars are now
long; also the column parity calculation needs to be changed.
we'll bring rp4 to 15 back to single byte entities by shifting and
xoring
*/
rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
par ^= (par >> 16);
rp1 = (par >> 8); rp1 &= 0xff;
rp0 = (par & 0xff);
par ^= (par >> 8); par &= 0xff;
code[0] =
(parity[rp7] << 7) |
(parity[rp6] << 6) |
(parity[rp5] << 5) |
(parity[rp4] << 4) |
(parity[rp3] << 3) |
(parity[rp2] << 2) |
(parity[rp1] << 1) |
(parity[rp0]);
code[1] =
(parity[rp15] << 7) |
(parity[rp14] << 6) |
(parity[rp13] << 5) |
(parity[rp12] << 4) |
(parity[rp11] << 3) |
(parity[rp10] << 2) |
(parity[rp9] << 1) |
(parity[rp8]);
code[2] =
(parity[par & 0xf0] << 7) |
(parity[par & 0x0f] << 6) |
(parity[par & 0xcc] << 5) |
(parity[par & 0x33] << 4) |
(parity[par & 0xaa] << 3) |
(parity[par & 0x55] << 2);
code[0] = ~code[0];
code[1] = ~code[1];
code[2] = ~code[2];
}
The parity array is not shown any more. Note also that for these
examples I kinda deviated from my regular programming style by allowing
multiple statements on a line, not using { } in then and else blocks
with only a single statement and by using operators like ^=
Analysis 2
==========
The code (of course) works, and hurray: we are a little bit faster than
the linux driver code (about 15%). But wait, don't cheer too quickly.
THere is more to be gained.
If we look at e.g. rp14 and rp15 we see that we either xor our data with
rp14 or with rp15. However we also have par which goes over all data.
This means there is no need to calculate rp14 as it can be calculated from
rp15 through rp14 = par ^ rp15;
(or if desired we can avoid calculating rp15 and calculate it from
rp14). That is why some places refer to inverse parity.
Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
Effectively this means we can eliminate the else clause from the if
statements. Also we can optimise the calculation in the end a little bit
by going from long to byte first. Actually we can even avoid the table
lookups
Attempt 3
=========
Odd replaced:
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
with
if (i & 0x01) rp5 ^= cur;
if (i & 0x02) rp7 ^= cur;
if (i & 0x04) rp9 ^= cur;
if (i & 0x08) rp11 ^= cur;
if (i & 0x10) rp13 ^= cur;
if (i & 0x20) rp15 ^= cur;
and outside the loop added:
rp4 = par ^ rp5;
rp6 = par ^ rp7;
rp8 = par ^ rp9;
rp10 = par ^ rp11;
rp12 = par ^ rp13;
rp14 = par ^ rp15;
And after that the code takes about 30% more time, although the number of
statements is reduced. This is also reflected in the assembly code.
Analysis 3
==========
Very weird. Guess it has to do with caching or instruction parallellism
or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
observation was that this one is only 30% slower (according to time)
executing the code as my 3Ghz D920 processor.
Well, it was expected not to be easy so maybe instead move to a
different track: let's move back to the code from attempt2 and do some
loop unrolling. This will eliminate a few if statements. I'll try
different amounts of unrolling to see what works best.
Attempt 4
=========
Unrolled the loop 1, 2, 3 and 4 times.
For 4 the code starts with:
for (i = 0; i < 4; i++)
{
cur = *bp++;
par ^= cur;
rp4 ^= cur;
rp6 ^= cur;
rp8 ^= cur;
rp10 ^= cur;
if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
cur = *bp++;
par ^= cur;
rp5 ^= cur;
rp6 ^= cur;
...
Analysis 4
==========
Unrolling once gains about 15%
Unrolling twice keeps the gain at about 15%
Unrolling three times gives a gain of 30% compared to attempt 2.
Unrolling four times gives a marginal improvement compared to unrolling
three times.
I decided to proceed with a four time unrolled loop anyway. It was my gut
feeling that in the next steps I would obtain additional gain from it.
The next step was triggered by the fact that par contains the xor of all
bytes and rp4 and rp5 each contain the xor of half of the bytes.
So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
eliminate rp5 (or rp4, but I already foresaw another optimisation).
The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
Attempt 5
=========
Effectively so all odd digit rp assignments in the loop were removed.
This included the else clause of the if statements.
Of course after the loop we need to correct things by adding code like:
rp5 = par ^ rp4;
Also the initial assignments (rp5 = 0; etc) could be removed.
Along the line I also removed the initialisation of rp0/1/2/3.
Analysis 5
==========
Measurements showed this was a good move. The run-time roughly halved
compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
of the processor time compared to the current code in the linux kernel.
However, still I thought there was more. I didn't like all the if
statements. Why not keep a running parity and only keep the last if
statement. Time for yet another version!
Attempt 6
=========
THe code within the for loop was changed to:
for (i = 0; i < 4; i++)
{
cur = *bp++; tmppar = cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
cur = *bp++; tmppar ^= cur; rp8 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur;
par ^= tmppar;
if ((i & 0x1) == 0) rp12 ^= tmppar;
if ((i & 0x2) == 0) rp14 ^= tmppar;
}
As you can see tmppar is used to accumulate the parity within a for
iteration. In the last 3 statements is is added to par and, if needed,
to rp12 and rp14.
While making the changes I also found that I could exploit that tmppar
contains the running parity for this iteration. So instead of having:
rp4 ^= cur; rp6 = cur;
I removed the rp6 = cur; statement and did rp6 ^= tmppar; on next
statement. A similar change was done for rp8 and rp10
Analysis 6
==========
Measuring this code again showed big gain. When executing the original
linux code 1 million times, this took about 1 second on my system.
(using time to measure the performance). After this iteration I was back
to 0.075 sec. Actually I had to decide to start measuring over 10
million interations in order not to loose too much accuracy. This one
definitely seemed to be the jackpot!
There is a little bit more room for improvement though. There are three
places with statements:
rp4 ^= cur; rp6 ^= cur;
It seems more efficient to also maintain a variable rp4_6 in the while
loop; This eliminates 3 statements per loop. Of course after the loop we
need to correct by adding:
rp4 ^= rp4_6;
rp6 ^= rp4_6
Furthermore there are 4 sequential assingments to rp8. This can be
encoded slightly more efficient by saving tmppar before those 4 lines
and later do rp8 = rp8 ^ tmppar ^ notrp8;
(where notrp8 is the value of rp8 before those 4 lines).
Again a use of the commutative property of xor.
Time for a new test!
Attempt 7
=========
The new code now looks like:
for (i = 0; i < 4; i++)
{
cur = *bp++; tmppar = cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
notrp8 = tmppar;
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur;
rp8 = rp8 ^ tmppar ^ notrp8;
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur;
par ^= tmppar;
if ((i & 0x1) == 0) rp12 ^= tmppar;
if ((i & 0x2) == 0) rp14 ^= tmppar;
}
rp4 ^= rp4_6;
rp6 ^= rp4_6;
Not a big change, but every penny counts :-)
Analysis 7
==========
Acutally this made things worse. Not very much, but I don't want to move
into the wrong direction. Maybe something to investigate later. Could
have to do with caching again.
Guess that is what there is to win within the loop. Maybe unrolling one
more time will help. I'll keep the optimisations from 7 for now.
Attempt 8
=========
Unrolled the loop one more time.
Analysis 8
==========
This makes things worse. Let's stick with attempt 6 and continue from there.
Although it seems that the code within the loop cannot be optimised
further there is still room to optimize the generation of the ecc codes.
We can simply calcualate the total parity. If this is 0 then rp4 = rp5
etc. If the parity is 1, then rp4 = !rp5;
But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
in the result byte and then do something like
code[0] |= (code[0] << 1);
Lets test this.
Attempt 9
=========
Changed the code but again this slightly degrades performance. Tried all
kind of other things, like having dedicated parity arrays to avoid the
shift after parity[rp7] << 7; No gain.
Change the lookup using the parity array by using shift operators (e.g.
replace parity[rp7] << 7 with:
rp7 ^= (rp7 << 4);
rp7 ^= (rp7 << 2);
rp7 ^= (rp7 << 1);
rp7 &= 0x80;
No gain.
The only marginal change was inverting the parity bits, so we can remove
the last three invert statements.
Ah well, pity this does not deliver more. Then again 10 million
iterations using the linux driver code takes between 13 and 13.5
seconds, whereas my code now takes about 0.73 seconds for those 10
million iterations. So basically I've improved the performance by a
factor 18 on my system. Not that bad. Of course on different hardware
you will get different results. No warranties!
But of course there is no such thing as a free lunch. The codesize almost
tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
Correcting errors
=================
For correcting errors I again used the ST application note as a starter,
but I also peeked at the existing code.
The algorithm itself is pretty straightforward. Just xor the given and
the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
are 1 we have one correctable bit error. If there is 1 bit 1, we have an
error in the given ecc code.
It proved to be fastest to do some table lookups. Performance gain
introduced by this is about a factor 2 on my system when a repair had to
be done, and 1% or so if no repair had to be done.
Code size increased from 330 bytes to 686 bytes for this function.
(gcc 4.2, -O3)
Conclusion
==========
The gain when calculating the ecc is tremendous. Om my development hardware
a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
embedded system with a MIPS core a factor 7 was obtained.
On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
5 (big endian mode, gcc 4.1.2, -O3)
For correction not much gain could be obtained (as bitflips are rare). Then
again there are also much less cycles spent there.
It seems there is not much more gain possible in this, at least when
programmed in C. Of course it might be possible to squeeze something more
out of it with an assembler program, but due to pipeline behaviour etc
this is very tricky (at least for intel hw).
Author: Frans Meulenbroeks
Copyright (C) 2008 Koninklijke Philips Electronics NV.

View file

@ -1917,6 +1917,8 @@ platforms are moved over to use the flattened-device-tree model.
inverse clock polarity (CPOL) mode
- spi-cpha - (optional) Empty property indicating device requires
shifted clock phase (CPHA) mode
- spi-cs-high - (optional) Empty property indicating device requires
chip select active high
SPI example for an MPC5200 SPI bus:
spi@f00 {

View file

@ -2,13 +2,13 @@
Required properties:
- device_type : Should be "board-control"
- compatible : Should be "fsl,<board>-bcsr"
- reg : Offset and length of the register set for the device
Example:
bcsr@f8000000 {
device_type = "board-control";
compatible = "fsl,mpc8360mds-bcsr";
reg = <f8000000 8000>;
};

View file

@ -369,4 +369,5 @@ can be ORed together:
2 - A module was force loaded by insmod -f.
Set by modutils >= 2.4.9 and module-init-tools.
4 - Unsafe SMP processors: SMP with CPUs not designed for SMP.
64 - A module from drivers/staging was loaded.

View file

@ -95,7 +95,9 @@ On all - write a character to /proc/sysrq-trigger. e.g.:
'p' - Will dump the current registers and flags to your console.
'q' - Will dump a list of all running timers.
'q' - Will dump per CPU lists of all armed hrtimers (but NOT regular
timer_list timers) and detailed information about all
clockevent devices.
'r' - Turns off keyboard raw mode and sets it to XLATE.

View file

@ -0,0 +1,101 @@
Using the Linux Kernel Tracepoints
Mathieu Desnoyers
This document introduces Linux Kernel Tracepoints and their use. It provides
examples of how to insert tracepoints in the kernel and connect probe functions
to them and provides some examples of probe functions.
* Purpose of tracepoints
A tracepoint placed in code provides a hook to call a function (probe) that you
can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or
"off" (no probe is attached). When a tracepoint is "off" it has no effect,
except for adding a tiny time penalty (checking a condition for a branch) and
space penalty (adding a few bytes for the function call at the end of the
instrumented function and adds a data structure in a separate section). When a
tracepoint is "on", the function you provide is called each time the tracepoint
is executed, in the execution context of the caller. When the function provided
ends its execution, it returns to the caller (continuing from the tracepoint
site).
You can put tracepoints at important locations in the code. They are
lightweight hooks that can pass an arbitrary number of parameters,
which prototypes are described in a tracepoint declaration placed in a header
file.
They can be used for tracing and performance accounting.
* Usage
Two elements are required for tracepoints :
- A tracepoint definition, placed in a header file.
- The tracepoint statement, in C code.
In order to use tracepoints, you should include linux/tracepoint.h.
In include/trace/subsys.h :
#include <linux/tracepoint.h>
DEFINE_TRACE(subsys_eventname,
TPPTOTO(int firstarg, struct task_struct *p),
TPARGS(firstarg, p));
In subsys/file.c (where the tracing statement must be added) :
#include <trace/subsys.h>
void somefct(void)
{
...
trace_subsys_eventname(arg, task);
...
}
Where :
- subsys_eventname is an identifier unique to your event
- subsys is the name of your subsystem.
- eventname is the name of the event to trace.
- TPPTOTO(int firstarg, struct task_struct *p) is the prototype of the function
called by this tracepoint.
- TPARGS(firstarg, p) are the parameters names, same as found in the prototype.
Connecting a function (probe) to a tracepoint is done by providing a probe
(function to call) for the specific tracepoint through
register_trace_subsys_eventname(). Removing a probe is done through
unregister_trace_subsys_eventname(); it will remove the probe sure there is no
caller left using the probe when it returns. Probe removal is preempt-safe
because preemption is disabled around the probe call. See the "Probe example"
section below for a sample probe module.
The tracepoint mechanism supports inserting multiple instances of the same
tracepoint, but a single definition must be made of a given tracepoint name over
all the kernel to make sure no type conflict will occur. Name mangling of the
tracepoints is done using the prototypes to make sure typing is correct.
Verification of probe type correctness is done at the registration site by the
compiler. Tracepoints can be put in inline functions, inlined static functions,
and unrolled loops as well as regular functions.
The naming scheme "subsys_event" is suggested here as a convention intended
to limit collisions. Tracepoint names are global to the kernel: they are
considered as being the same whether they are in the core kernel image or in
modules.
* Probe / tracepoint example
See the example provided in samples/tracepoints/src
Compile them with your kernel.
Run, as root :
modprobe tracepoint-example (insmod order is not important)
modprobe tracepoint-probe-example
cat /proc/tracepoint-example (returns an expected error)
rmmod tracepoint-example tracepoint-probe-example
dmesg

View file

@ -36,7 +36,7 @@ $ mount -t debugfs debugfs /debug
$ echo mmiotrace > /debug/tracing/current_tracer
$ cat /debug/tracing/trace_pipe > mydump.txt &
Start X or whatever.
$ echo "X is up" > /debug/tracing/marker
$ echo "X is up" > /debug/tracing/trace_marker
$ echo none > /debug/tracing/current_tracer
Check for lost events.
@ -59,9 +59,8 @@ The 'cat' process should stay running (sleeping) in the background.
Load the driver you want to trace and use it. Mmiotrace will only catch MMIO
accesses to areas that are ioremapped while mmiotrace is active.
[Unimplemented feature:]
During tracing you can place comments (markers) into the trace by
$ echo "X is up" > /debug/tracing/marker
$ echo "X is up" > /debug/tracing/trace_marker
This makes it easier to see which part of the (huge) trace corresponds to
which action. It is recommended to place descriptive markers about what you
do.

View file

@ -0,0 +1,448 @@
Linux UWB + Wireless USB + WiNET
(C) 2005-2006 Intel Corporation
Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License version
2 as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
Please visit http://bughost.org/thewiki/Design-overview.txt-1.8 for
updated content.
* Design-overview.txt-1.8
This code implements a Ultra Wide Band stack for Linux, as well as
drivers for the the USB based UWB radio controllers defined in the
Wireless USB 1.0 specification (including Wireless USB host controller
and an Intel WiNET controller).
1. Introduction
1. HWA: Host Wire adapters, your Wireless USB dongle
2. DWA: Device Wired Adaptor, a Wireless USB hub for wired
devices
3. WHCI: Wireless Host Controller Interface, the PCI WUSB host
adapter
2. The UWB stack
1. Devices and hosts: the basic structure
2. Host Controller life cycle
3. On the air: beacons and enumerating the radio neighborhood
4. Device lists
5. Bandwidth allocation
3. Wireless USB Host Controller drivers
4. Glossary
Introduction
UWB is a wide-band communication protocol that is to serve also as the
low-level protocol for others (much like TCP sits on IP). Currently
these others are Wireless USB and TCP/IP, but seems Bluetooth and
Firewire/1394 are coming along.
UWB uses a band from roughly 3 to 10 GHz, transmitting at a max of
~-41dB (or 0.074 uW/MHz--geography specific data is still being
negotiated w/ regulators, so watch for changes). That band is divided in
a bunch of ~1.5 GHz wide channels (or band groups) composed of three
subbands/subchannels (528 MHz each). Each channel is independent of each
other, so you could consider them different "busses". Initially this
driver considers them all a single one.
Radio time is divided in 65536 us long /superframes/, each one divided
in 256 256us long /MASs/ (Media Allocation Slots), which are the basic
time/media allocation units for transferring data. At the beginning of
each superframe there is a Beacon Period (BP), where every device
transmit its beacon on a single MAS. The length of the BP depends on how
many devices are present and the length of their beacons.
Devices have a MAC (fixed, 48 bit address) and a device (changeable, 16
bit address) and send periodic beacons to advertise themselves and pass
info on what they are and do. They advertise their capabilities and a
bunch of other stuff.
The different logical parts of this driver are:
*
*UWB*: the Ultra-Wide-Band stack -- manages the radio and
associated spectrum to allow for devices sharing it. Allows to
control bandwidth assingment, beaconing, scanning, etc
*
*WUSB*: the layer that sits on top of UWB to provide Wireless USB.
The Wireless USB spec defines means to control a UWB radio and to
do the actual WUSB.
HWA: Host Wire adapters, your Wireless USB dongle
WUSB also defines a device called a Host Wire Adaptor (HWA), which in
mere terms is a USB dongle that enables your PC to have UWB and Wireless
USB. The Wireless USB Host Controller in a HWA looks to the host like a
[Wireless] USB controller connected via USB (!)
The HWA itself is broken in two or three main interfaces:
*
*RC*: Radio control -- this implements an interface to the
Ultra-Wide-Band radio controller. The driver for this implements a
USB-based UWB Radio Controller to the UWB stack.
*
*HC*: the wireless USB host controller. It looks like a USB host
whose root port is the radio and the WUSB devices connect to it.
To the system it looks like a separate USB host. The driver (will)
implement a USB host controller (similar to UHCI, OHCI or EHCI)
for which the root hub is the radio...To reiterate: it is a USB
controller that is connected via USB instead of PCI.
*
*WINET*: some HW provide a WiNET interface (IP over UWB). This
package provides a driver for it (it looks like a network
interface, winetX). The driver detects when there is a link up for
their type and kick into gear.
DWA: Device Wired Adaptor, a Wireless USB hub for wired devices
These are the complement to HWAs. They are a USB host for connecting
wired devices, but it is connected to your PC connected via Wireless
USB. To the system it looks like yet another USB host. To the untrained
eye, it looks like a hub that connects upstream wirelessly.
We still offer no support for this; however, it should share a lot of
code with the HWA-RC driver; there is a bunch of factorization work that
has been done to support that in upcoming releases.
WHCI: Wireless Host Controller Interface, the PCI WUSB host adapter
This is your usual PCI device that implements WHCI. Similar in concept
to EHCI, it allows your wireless USB devices (including DWAs) to connect
to your host via a PCI interface. As in the case of the HWA, it has a
Radio Control interface and the WUSB Host Controller interface per se.
There is still no driver support for this, but will be in upcoming
releases.
The UWB stack
The main mission of the UWB stack is to keep a tally of which devices
are in radio proximity to allow drivers to connect to them. As well, it
provides an API for controlling the local radio controllers (RCs from
now on), such as to start/stop beaconing, scan, allocate bandwidth, etc.
Devices and hosts: the basic structure
The main building block here is the UWB device (struct uwb_dev). For
each device that pops up in radio presence (ie: the UWB host receives a
beacon from it) you get a struct uwb_dev that will show up in
/sys/class/uwb and in /sys/bus/uwb/devices.
For each RC that is detected, a new struct uwb_rc is created. In turn, a
RC is also a device, so they also show in /sys/class/uwb and
/sys/bus/uwb/devices, but at the same time, only radio controllers show
up in /sys/class/uwb_rc.
*
[*] The reason for RCs being also devices is that not only we can
see them while enumerating the system device tree, but also on the
radio (their beacons and stuff), so the handling has to be
likewise to that of a device.
Each RC driver is implemented by a separate driver that plugs into the
interface that the UWB stack provides through a struct uwb_rc_ops. The
spec creators have been nice enough to make the message format the same
for HWA and WHCI RCs, so the driver is really a very thin transport that
moves the requests from the UWB API to the device [/uwb_rc_ops->cmd()/]
and sends the replies and notifications back to the API
[/uwb_rc_neh_grok()/]. Notifications are handled to the UWB daemon, that
is chartered, among other things, to keep the tab of how the UWB radio
neighborhood looks, creating and destroying devices as they show up or
dissapear.
Command execution is very simple: a command block is sent and a event
block or reply is expected back. For sending/receiving command/events, a
handle called /neh/ (Notification/Event Handle) is opened with
/uwb_rc_neh_open()/.
The HWA-RC (USB dongle) driver (drivers/uwb/hwa-rc.c) does this job for
the USB connected HWA. Eventually, drivers/whci-rc.c will do the same
for the PCI connected WHCI controller.
Host Controller life cycle
So let's say we connect a dongle to the system: it is detected and
firmware uploaded if needed [for Intel's i1480
/drivers/uwb/ptc/usb.c:ptc_usb_probe()/] and then it is reenumerated.
Now we have a real HWA device connected and
/drivers/uwb/hwa-rc.c:hwarc_probe()/ picks it up, that will set up the
Wire-Adaptor environment and then suck it into the UWB stack's vision of
the world [/drivers/uwb/lc-rc.c:uwb_rc_add()/].
*
[*] The stack should put a new RC to scan for devices
[/uwb_rc_scan()/] so it finds what's available around and tries to
connect to them, but this is policy stuff and should be driven
from user space. As of now, the operator is expected to do it
manually; see the release notes for documentation on the procedure.
When a dongle is disconnected, /drivers/uwb/hwa-rc.c:hwarc_disconnect()/
takes time of tearing everything down safely (or not...).
On the air: beacons and enumerating the radio neighborhood
So assuming we have devices and we have agreed for a channel to connect
on (let's say 9), we put the new RC to beacon:
*
$ echo 9 0 > /sys/class/uwb_rc/uwb0/beacon
Now it is visible. If there were other devices in the same radio channel
and beacon group (that's what the zero is for), the dongle's radio
control interface will send beacon notifications on its
notification/event endpoint (NEEP). The beacon notifications are part of
the event stream that is funneled into the API with
/drivers/uwb/neh.c:uwb_rc_neh_grok()/ and delivered to the UWBD, the UWB
daemon through a notification list.
UWBD wakes up and scans the event list; finds a beacon and adds it to
the BEACON CACHE (/uwb_beca/). If he receives a number of beacons from
the same device, he considers it to be 'onair' and creates a new device
[/drivers/uwb/lc-dev.c:uwbd_dev_onair()/]. Similarly, when no beacons
are received in some time, the device is considered gone and wiped out
[uwbd calls periodically /uwb/beacon.c:uwb_beca_purge()/ that will purge
the beacon cache of dead devices].
Device lists
All UWB devices are kept in the list of the struct bus_type uwb_bus.
Bandwidth allocation
The UWB stack maintains a local copy of DRP availability through
processing of incoming *DRP Availability Change* notifications. This
local copy is currently used to present the current bandwidth
availability to the user through the sysfs file
/sys/class/uwb_rc/uwbx/bw_avail. In the future the bandwidth
availability information will be used by the bandwidth reservation
routines.
The bandwidth reservation routines are in progress and are thus not
present in the current release. When completed they will enable a user
to initiate DRP reservation requests through interaction with sysfs. DRP
reservation requests from remote UWB devices will also be handled. The
bandwidth management done by the UWB stack will include callbacks to the
higher layers will enable the higher layers to use the reservations upon
completion. [Note: The bandwidth reservation work is in progress and
subject to change.]
Wireless USB Host Controller drivers
*WARNING* This section needs a lot of work!
As explained above, there are three different types of HCs in the WUSB
world: HWA-HC, DWA-HC and WHCI-HC.
HWA-HC and DWA-HC share that they are Wire-Adapters (USB or WUSB
connected controllers), and their transfer management system is almost
identical. So is their notification delivery system.
HWA-HC and WHCI-HC share that they are both WUSB host controllers, so
they have to deal with WUSB device life cycle and maintenance, wireless
root-hub
HWA exposes a Host Controller interface (HWA-HC 0xe0/02/02). This has
three endpoints (Notifications, Data Transfer In and Data Transfer
Out--known as NEP, DTI and DTO in the code).
We reserve UWB bandwidth for our Wireless USB Cluster, create a Cluster
ID and tell the HC to use all that. Then we start it. This means the HC
starts sending MMCs.
*
The MMCs are blocks of data defined somewhere in the WUSB1.0 spec
that define a stream in the UWB channel time allocated for sending
WUSB IEs (host to device commands/notifications) and Device
Notifications (device initiated to host). Each host defines a
unique Wireless USB cluster through MMCs. Devices can connect to a
single cluster at the time. The IEs are Information Elements, and
among them are the bandwidth allocations that tell each device
when can they transmit or receive.
Now it all depends on external stimuli.
*New device connection*
A new device pops up, it scans the radio looking for MMCs that give out
the existence of Wireless USB channels. Once one (or more) are found,
selects which one to connect to. Sends a /DN_Connect/ (device
notification connect) during the DNTS (Device Notification Time
Slot--announced in the MMCs
HC picks the /DN_Connect/ out (nep module sends to notif.c for delivery
into /devconnect/). This process starts the authentication process for
the device. First we allocate a /fake port/ and assign an
unauthenticated address (128 to 255--what we really do is
0x80 | fake_port_idx). We fiddle with the fake port status and /khubd/
sees a new connection, so he moves on to enable the fake port with a reset.
So now we are in the reset path -- we know we have a non-yet enumerated
device with an unauthorized address; we ask user space to authenticate
(FIXME: not yet done, similar to bluetooth pairing), then we do the key
exchange (FIXME: not yet done) and issue a /set address 0/ to bring the
device to the default state. Device is authenticated.
From here, the USB stack takes control through the usb_hcd ops. khubd
has seen the port status changes, as we have been toggling them. It will
start enumerating and doing transfers through usb_hcd->urb_enqueue() to
read descriptors and move our data.
*Device life cycle and keep alives*
Everytime there is a succesful transfer to/from a device, we update a
per-device activity timestamp. If not, every now and then we check and
if the activity timestamp gets old, we ping the device by sending it a
Keep Alive IE; it responds with a /DN_Alive/ pong during the DNTS (this
arrives to us as a notification through
devconnect.c:wusb_handle_dn_alive(). If a device times out, we
disconnect it from the system (cleaning up internal information and
toggling the bits in the fake hub port, which kicks khubd into removing
the rest of the stuff).
This is done through devconnect:__wusb_check_devs(), which will scan the
device list looking for whom needs refreshing.
If the device wants to disconnect, it will either die (ugly) or send a
/DN_Disconnect/ that will prompt a disconnection from the system.
*Sending and receiving data*
Data is sent and received through /Remote Pipes/ (rpipes). An rpipe is
/aimed/ at an endpoint in a WUSB device. This is the same for HWAs and
DWAs.
Each HC has a number of rpipes and buffers that can be assigned to them;
when doing a data transfer (xfer), first the rpipe has to be aimed and
prepared (buffers assigned), then we can start queueing requests for
data in or out.
Data buffers have to be segmented out before sending--so we send first a
header (segment request) and then if there is any data, a data buffer
immediately after to the DTI interface (yep, even the request). If our
buffer is bigger than the max segment size, then we just do multiple
requests.
[This sucks, because doing USB scatter gatter in Linux is resource
intensive, if any...not that the current approach is not. It just has to
be cleaned up a lot :)].
If reading, we don't send data buffers, just the segment headers saying
we want to read segments.
When the xfer is executed, we receive a notification that says data is
ready in the DTI endpoint (handled through
xfer.c:wa_handle_notif_xfer()). In there we read from the DTI endpoint a
descriptor that gives us the status of the transfer, its identification
(given when we issued it) and the segment number. If it was a data read,
we issue another URB to read into the destination buffer the chunk of
data coming out of the remote endpoint. Done, wait for the next guy. The
callbacks for the URBs issued from here are the ones that will declare
the xfer complete at some point and call it's callback.
Seems simple, but the implementation is not trivial.
*
*WARNING* Old!!
The main xfer descriptor, wa_xfer (equivalent to a URB) contains an
array of segments, tallys on segments and buffers and callback
information. Buried in there is a lot of URBs for executing the segments
and buffer transfers.
For OUT xfers, there is an array of segments, one URB for each, another
one of buffer URB. When submitting, we submit URBs for segment request
1, buffer 1, segment 2, buffer 2...etc. Then we wait on the DTI for xfer
result data; when all the segments are complete, we call the callback to
finalize the transfer.
For IN xfers, we only issue URBs for the segments we want to read and
then wait for the xfer result data.
*URB mapping into xfers*
This is done by hwahc_op_urb_[en|de]queue(). In enqueue() we aim an
rpipe to the endpoint where we have to transmit, create a transfer
context (wa_xfer) and submit it. When the xfer is done, our callback is
called and we assign the status bits and release the xfer resources.
In dequeue() we are basically cancelling/aborting the transfer. We issue
a xfer abort request to the HC, cancell all the URBs we had submitted
and not yet done and when all that is done, the xfer callback will be
called--this will call the URB callback.
Glossary
*DWA* -- Device Wire Adapter
USB host, wired for downstream devices, upstream connects wirelessly
with Wireless USB.
*EVENT* -- Response to a command on the NEEP
*HWA* -- Host Wire Adapter / USB dongle for UWB and Wireless USB
*NEH* -- Notification/Event Handle
Handle/file descriptor for receiving notifications or events. The WA
code requires you to get one of this to listen for notifications or
events on the NEEP.
*NEEP* -- Notification/Event EndPoint
Stuff related to the management of the first endpoint of a HWA USB
dongle that is used to deliver an stream of events and notifications to
the host.
*NOTIFICATION* -- Message coming in the NEEP as response to something.
*RC* -- Radio Control
Design-overview.txt-1.8 (last edited 2006-11-04 12:22:24 by
InakyPerezGonzalez)

View file

@ -52,6 +52,11 @@ Therefore no guarantee is made that the URBs have been unlinked when
the call returns. They may be unlinked later but will be unlinked in
finite time.
usb_scuttle_anchored_urbs()
---------------------------
All URBs of an anchor are unanchored en masse.
usb_wait_anchor_empty_timeout()
-------------------------------
@ -59,4 +64,16 @@ This function waits for all URBs associated with an anchor to finish
or a timeout, whichever comes first. Its return value will tell you
whether the timeout was reached.
usb_anchor_empty()
------------------
Returns true if no URBs are associated with an anchor. Locking
is the caller's responsibility.
usb_get_from_anchor()
---------------------
Returns the oldest anchored URB of an anchor. The URB is unanchored
and returned with a reference. As you may mix URBs to several
destinations in one anchor you have no guarantee the chronologically
first submitted URB is returned.

View file

@ -0,0 +1,46 @@
USB 7-Segment Numeric Display
Manufactured by Delcom Engineering
Device Information
------------------
USB VENDOR_ID 0x0fc5
USB PRODUCT_ID 0x1227
Both the 6 character and 8 character displays have PRODUCT_ID,
and according to Delcom Engineering no queryable information
can be obtained from the device to tell them apart.
Device Modes
------------
By default, the driver assumes the display is only 6 characters
The mode for 6 characters is:
MSB 0x06; LSB 0x3f
For the 8 character display:
MSB 0x08; LSB 0xff
The device can accept "text" either in raw, hex, or ascii textmode.
raw controls each segment manually,
hex expects a value between 0-15 per character,
ascii expects a value between '0'-'9' and 'A'-'F'.
The default is ascii.
Device Operation
----------------
1. Turn on the device:
echo 1 > /sys/bus/usb/.../powered
2. Set the device's mode:
echo $mode_msb > /sys/bus/usb/.../mode_msb
echo $mode_lsb > /sys/bus/usb/.../mode_lsb
3. Set the textmode:
echo $textmode > /sys/bus/usb/.../textmode
4. set the text (for example):
echo "123ABC" > /sys/bus/usb/.../text (ascii)
echo "A1B2" > /sys/bus/usb/.../text (ascii)
echo -ne "\x01\x02\x03" > /sys/bus/usb/.../text (hex)
5. Set the decimal places.
The device has either 6 or 8 decimal points.
to set the nth decimal place calculate 10 ** n
and echo it in to /sys/bus/usb/.../decimals
To set multiple decimals points sum up each power.
For example, to set the 0th and 3rd decimal place
echo 1001 > /sys/bus/usb/.../decimals

View file

@ -350,12 +350,12 @@ without holding the mutex.
There also are a couple of utility routines drivers can use:
usb_autopm_enable() sets pm_usage_cnt to 1 and then calls
usb_autopm_set_interface(), which will attempt an autoresume.
usb_autopm_disable() sets pm_usage_cnt to 0 and then calls
usb_autopm_enable() sets pm_usage_cnt to 0 and then calls
usb_autopm_set_interface(), which will attempt an autosuspend.
usb_autopm_disable() sets pm_usage_cnt to 1 and then calls
usb_autopm_set_interface(), which will attempt an autoresume.
The conventional usage pattern is that a driver calls
usb_autopm_get_interface() in its open routine and
usb_autopm_put_interface() in its close or release routine. But

139
Documentation/usb/wusb-cbaf Normal file
View file

@ -0,0 +1,139 @@
#! /bin/bash
#
set -e
progname=$(basename $0)
function help
{
cat <<EOF
Usage: $progname COMMAND DEVICEs [ARGS]
Command for manipulating the pairing/authentication credentials of a
Wireless USB device that supports wired-mode Cable-Based-Association.
Works in conjunction with the wusb-cba.ko driver from http://linuxuwb.org.
DEVICE
sysfs path to the device to authenticate; for example, both this
guys are the same:
/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4/1-4.4/1-4.4:1.1
/sys/bus/usb/drivers/wusb-cbaf/1-4.4:1.1
COMMAND/ARGS are
start
Start a WUSB host controller (by setting up a CHID)
set-chid DEVICE HOST-CHID HOST-BANDGROUP HOST-NAME
Sets host information in the device; after this you can call the
get-cdid to see how does this device report itself to us.
get-cdid DEVICE
Get the device ID associated to the HOST-CHDI we sent with
'set-chid'. We might not know about it.
set-cc DEVICE
If we allow the device to connect, set a random new CDID and CK
(connection key). Device saves them for the next time it wants to
connect wireless. We save them for that next time also so we can
authenticate the device (when we see the CDID he uses to id
itself) and the CK to crypto talk to it.
CHID is always 16 hex bytes in 'XX YY ZZ...' form
BANDGROUP is almost always 0001
Examples:
You can default most arguments to '' to get a sane value:
$ $progname set-chid '' '' '' "My host name"
A full sequence:
$ $progname set-chid '' '' '' "My host name"
$ $progname get-cdid ''
$ $progname set-cc ''
EOF
}
# Defaults
# FIXME: CHID should come from a database :), band group from the host
host_CHID="00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff"
host_band_group="0001"
host_name=$(hostname)
devs="$(echo /sys/bus/usb/drivers/wusb-cbaf/[0-9]*)"
hdevs="$(for h in /sys/class/uwb_rc/*/wusbhc; do readlink -f $h; done)"
result=0
case $1 in
start)
for dev in ${2:-$hdevs}
do
uwb_rc=$(readlink -f $dev/uwb_rc)
if cat $uwb_rc/beacon | grep -q -- "-1"
then
echo 13 0 > $uwb_rc/beacon
echo I: started beaconing on ch 13 on $(basename $uwb_rc) >&2
fi
echo $host_CHID > $dev/wusb_chid
echo I: started host $(basename $dev) >&2
done
;;
stop)
for dev in ${2:-$hdevs}
do
echo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 > $dev/wusb_chid
echo I: stopped host $(basename $dev) >&2
uwb_rc=$(readlink -f $dev/uwb_rc)
echo -1 | cat > $uwb_rc/beacon
echo I: stopped beaconing on $(basename $uwb_rc) >&2
done
;;
set-chid)
shift
for dev in ${2:-$devs}; do
echo "${4:-$host_name}" > $dev/wusb_host_name
echo "${3:-$host_band_group}" > $dev/wusb_host_band_groups
echo ${2:-$host_CHID} > $dev/wusb_chid
done
;;
get-cdid)
for dev in ${2:-$devs}
do
cat $dev/wusb_cdid
done
;;
set-cc)
for dev in ${2:-$devs}; do
shift
CDID="$(head --bytes=16 /dev/urandom | od -tx1 -An)"
CK="$(head --bytes=16 /dev/urandom | od -tx1 -An)"
echo "$CDID" > $dev/wusb_cdid
echo "$CK" > $dev/wusb_ck
echo I: CC set >&2
echo "CHID: $(cat $dev/wusb_chid)"
echo "CDID:$CDID"
echo "CK: $CK"
done
;;
help|h|--help|-h)
help
;;
*)
echo "E: Unknown usage" 1>&2
help 1>&2
result=1
esac
exit $result

View file

@ -1,5 +1,5 @@
0 -> Unknown board (au0828)
1 -> Hauppauge HVR950Q (au0828) [2040:7200,2040:7210,2040:7217,2040:721b,2040:721f,2040:7280,0fd9:0008]
1 -> Hauppauge HVR950Q (au0828) [2040:7200,2040:7210,2040:7217,2040:721b,2040:721e,2040:721f,2040:7280,0fd9:0008]
2 -> Hauppauge HVR850 (au0828) [2040:7240]
3 -> DViCO FusionHDTV USB (au0828) [0fe9:d620]
4 -> Hauppauge HVR950Q rev xxF8 (au0828) [2040:7201,2040:7211,2040:7281]

View file

@ -75,3 +75,4 @@ tuner=73 - Samsung TCPG 6121P30A
tuner=75 - Philips TEA5761 FM Radio
tuner=76 - Xceive 5000 tuner
tuner=77 - TCL tuner MF02GIP-5N-E
tuner=78 - Philips FMD1216MEX MK3 Hybrid Tuner

View file

@ -0,0 +1,615 @@
This document describes the Linux memory management "Unevictable LRU"
infrastructure and the use of this infrastructure to manage several types
of "unevictable" pages. The document attempts to provide the overall
rationale behind this mechanism and the rationale for some of the design
decisions that drove the implementation. The latter design rationale is
discussed in the context of an implementation description. Admittedly, one
can obtain the implementation details--the "what does it do?"--by reading the
code. One hopes that the descriptions below add value by provide the answer
to "why does it do that?".
Unevictable LRU Infrastructure:
The Unevictable LRU adds an additional LRU list to track unevictable pages
and to hide these pages from vmscan. This mechanism is based on a patch by
Larry Woodman of Red Hat to address several scalability problems with page
reclaim in Linux. The problems have been observed at customer sites on large
memory x86_64 systems. For example, a non-numal x86_64 platform with 128GB
of main memory will have over 32 million 4k pages in a single zone. When a
large fraction of these pages are not evictable for any reason [see below],
vmscan will spend a lot of time scanning the LRU lists looking for the small
fraction of pages that are evictable. This can result in a situation where
all cpus are spending 100% of their time in vmscan for hours or days on end,
with the system completely unresponsive.
The Unevictable LRU infrastructure addresses the following classes of
unevictable pages:
+ page owned by ramfs
+ page mapped into SHM_LOCKed shared memory regions
+ page mapped into VM_LOCKED [mlock()ed] vmas
The infrastructure might be able to handle other conditions that make pages
unevictable, either by definition or by circumstance, in the future.
The Unevictable LRU List
The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
called the "unevictable" list and an associated page flag, PG_unevictable, to
indicate that the page is being managed on the unevictable list. The
PG_unevictable flag is analogous to, and mutually exclusive with, the PG_active
flag in that it indicates on which LRU list a page resides when PG_lru is set.
The unevictable LRU list is source configurable based on the UNEVICTABLE_LRU
Kconfig option.
The Unevictable LRU infrastructure maintains unevictable pages on an additional
LRU list for a few reasons:
1) We get to "treat unevictable pages just like we treat other pages in the
system, which means we get to use the same code to manipulate them, the
same code to isolate them (for migrate, etc.), the same code to keep track
of the statistics, etc..." [Rik van Riel]
2) We want to be able to migrate unevictable pages between nodes--for memory
defragmentation, workload management and memory hotplug. The linux kernel
can only migrate pages that it can successfully isolate from the lru lists.
If we were to maintain pages elsewise than on an lru-like list, where they
can be found by isolate_lru_page(), we would prevent their migration, unless
we reworked migration code to find the unevictable pages.
The unevictable LRU list does not differentiate between file backed and swap
backed [anon] pages. This differentiation is only important while the pages
are, in fact, evictable.
The unevictable LRU list benefits from the "arrayification" of the per-zone
LRU lists and statistics originally proposed and posted by Christoph Lameter.
The unevictable list does not use the lru pagevec mechanism. Rather,
unevictable pages are placed directly on the page's zone's unevictable
list under the zone lru_lock. The reason for this is to prevent stranding
of pages on the unevictable list when one task has the page isolated from the
lru and other tasks are changing the "evictability" state of the page.
Unevictable LRU and Memory Controller Interaction
The memory controller data structure automatically gets a per zone unevictable
lru list as a result of the "arrayification" of the per-zone LRU lists. The
memory controller tracks the movement of pages to and from the unevictable list.
When a memory control group comes under memory pressure, the controller will
not attempt to reclaim pages on the unevictable list. This has a couple of
effects. Because the pages are "hidden" from reclaim on the unevictable list,
the reclaim process can be more efficient, dealing only with pages that have
a chance of being reclaimed. On the other hand, if too many of the pages
charged to the control group are unevictable, the evictable portion of the
working set of the tasks in the control group may not fit into the available
memory. This can cause the control group to thrash or to oom-kill tasks.
Unevictable LRU: Detecting Unevictable Pages
The function page_evictable(page, vma) in vmscan.c determines whether a
page is evictable or not. For ramfs pages and pages in SHM_LOCKed regions,
page_evictable() tests a new address space flag, AS_UNEVICTABLE, in the page's
address space using a wrapper function. Wrapper functions are used to set,
clear and test the flag to reduce the requirement for #ifdef's throughout the
source code. AS_UNEVICTABLE is set on ramfs inode/mapping when it is created.
This flag remains for the life of the inode.
For shared memory regions, AS_UNEVICTABLE is set when an application
successfully SHM_LOCKs the region and is removed when the region is
SHM_UNLOCKed. Note that shmctl(SHM_LOCK, ...) does not populate the page
tables for the region as does, for example, mlock(). So, we make no special
effort to push any pages in the SHM_LOCKed region to the unevictable list.
Vmscan will do this when/if it encounters the pages during reclaim. On
SHM_UNLOCK, shmctl() scans the pages in the region and "rescues" them from the
unevictable list if no other condition keeps them unevictable. If a SHM_LOCKed
region is destroyed, the pages are also "rescued" from the unevictable list in
the process of freeing them.
page_evictable() detects mlock()ed pages by testing an additional page flag,
PG_mlocked via the PageMlocked() wrapper. If the page is NOT mlocked, and a
non-NULL vma is supplied, page_evictable() will check whether the vma is
VM_LOCKED via is_mlocked_vma(). is_mlocked_vma() will SetPageMlocked() and
update the appropriate statistics if the vma is VM_LOCKED. This method allows
efficient "culling" of pages in the fault path that are being faulted in to
VM_LOCKED vmas.
Unevictable Pages and Vmscan [shrink_*_list()]
If unevictable pages are culled in the fault path, or moved to the unevictable
list at mlock() or mmap() time, vmscan will never encounter the pages until
they have become evictable again, for example, via munlock() and have been
"rescued" from the unevictable list. However, there may be situations where we
decide, for the sake of expediency, to leave a unevictable page on one of the
regular active/inactive LRU lists for vmscan to deal with. Vmscan checks for
such pages in all of the shrink_{active|inactive|page}_list() functions and
will "cull" such pages that it encounters--that is, it diverts those pages to
the unevictable list for the zone being scanned.
There may be situations where a page is mapped into a VM_LOCKED vma, but the
page is not marked as PageMlocked. Such pages will make it all the way to
shrink_page_list() where they will be detected when vmscan walks the reverse
map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK, shrink_page_list()
will cull the page at that point.
Note that for anonymous pages, shrink_page_list() attempts to add the page to
the swap cache before it tries to unmap the page. To avoid this unnecessary
consumption of swap space, shrink_page_list() calls try_to_munlock() to check
whether any VM_LOCKED vmas map the page without attempting to unmap the page.
If try_to_munlock() returns SWAP_MLOCK, shrink_page_list() will cull the page
without consuming swap space. try_to_munlock() will be described below.
To "cull" an unevictable page, vmscan simply puts the page back on the lru
list using putback_lru_page()--the inverse operation to isolate_lru_page()--
after dropping the page lock. Because the condition which makes the page
unevictable may change once the page is unlocked, putback_lru_page() will
recheck the unevictable state of a page that it places on the unevictable lru
list. If the page has become unevictable, putback_lru_page() removes it from
the list and retries, including the page_unevictable() test. Because such a
race is a rare event and movement of pages onto the unevictable list should be
rare, these extra evictabilty checks should not occur in the majority of calls
to putback_lru_page().
Mlocked Page: Prior Work
The "Unevictable Mlocked Pages" infrastructure is based on work originally
posted by Nick Piggin in an RFC patch entitled "mm: mlocked pages off LRU".
Nick posted his patch as an alternative to a patch posted by Christoph
Lameter to achieve the same objective--hiding mlocked pages from vmscan.
In Nick's patch, he used one of the struct page lru list link fields as a count
of VM_LOCKED vmas that map the page. This use of the link field for a count
prevented the management of the pages on an LRU list. Thus, mlocked pages were
not migratable as isolate_lru_page() could not find them and the lru list link
field was not available to the migration subsystem. Nick resolved this by
putting mlocked pages back on the lru list before attempting to isolate them,
thus abandoning the count of VM_LOCKED vmas. When Nick's patch was integrated
with the Unevictable LRU work, the count was replaced by walking the reverse
map to determine whether any VM_LOCKED vmas mapped the page. More on this
below.
Mlocked Pages: Basic Management
Mlocked pages--pages mapped into a VM_LOCKED vma--represent one class of
unevictable pages. When such a page has been "noticed" by the memory
management subsystem, the page is marked with the PG_mlocked [PageMlocked()]
flag. A PageMlocked() page will be placed on the unevictable LRU list when
it is added to the LRU. Pages can be "noticed" by memory management in
several places:
1) in the mlock()/mlockall() system call handlers.
2) in the mmap() system call handler when mmap()ing a region with the
MAP_LOCKED flag, or mmap()ing a region in a task that has called
mlockall() with the MCL_FUTURE flag. Both of these conditions result
in the VM_LOCKED flag being set for the vma.
3) in the fault path, if mlocked pages are "culled" in the fault path,
and when a VM_LOCKED stack segment is expanded.
4) as mentioned above, in vmscan:shrink_page_list() with attempting to
reclaim a page in a VM_LOCKED vma--via try_to_unmap() or try_to_munlock().
Mlocked pages become unlocked and rescued from the unevictable list when:
1) mapped in a range unlocked via the munlock()/munlockall() system calls.
2) munmapped() out of the last VM_LOCKED vma that maps the page, including
unmapping at task exit.
3) when the page is truncated from the last VM_LOCKED vma of an mmap()ed file.
4) before a page is COWed in a VM_LOCKED vma.
Mlocked Pages: mlock()/mlockall() System Call Handling
Both [do_]mlock() and [do_]mlockall() system call handlers call mlock_fixup()
for each vma in the range specified by the call. In the case of mlockall(),
this is the entire active address space of the task. Note that mlock_fixup()
is used for both mlock()ing and munlock()ing a range of memory. A call to
mlock() an already VM_LOCKED vma, or to munlock() a vma that is not VM_LOCKED
is treated as a no-op--mlock_fixup() simply returns.
If the vma passes some filtering described in "Mlocked Pages: Filtering Vmas"
below, mlock_fixup() will attempt to merge the vma with its neighbors or split
off a subset of the vma if the range does not cover the entire vma. Once the
vma has been merged or split or neither, mlock_fixup() will call
__mlock_vma_pages_range() to fault in the pages via get_user_pages() and
to mark the pages as mlocked via mlock_vma_page().
Note that the vma being mlocked might be mapped with PROT_NONE. In this case,
get_user_pages() will be unable to fault in the pages. That's OK. If pages
do end up getting faulted into this VM_LOCKED vma, we'll handle them in the
fault path or in vmscan.
Also note that a page returned by get_user_pages() could be truncated or
migrated out from under us, while we're trying to mlock it. To detect
this, __mlock_vma_pages_range() tests the page_mapping after acquiring
the page lock. If the page is still associated with its mapping, we'll
go ahead and call mlock_vma_page(). If the mapping is gone, we just
unlock the page and move on. Worse case, this results in page mapped
in a VM_LOCKED vma remaining on a normal LRU list without being
PageMlocked(). Again, vmscan will detect and cull such pages.
mlock_vma_page(), called with the page locked [N.B., not "mlocked"], will
TestSetPageMlocked() for each page returned by get_user_pages(). We use
TestSetPageMlocked() because the page might already be mlocked by another
task/vma and we don't want to do extra work. We especially do not want to
count an mlocked page more than once in the statistics. If the page was
already mlocked, mlock_vma_page() is done.
If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the
page from the LRU, as it is likely on the appropriate active or inactive list
at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will
putback the page--putback_lru_page()--which will notice that the page is now
mlocked and divert the page to the zone's unevictable LRU list. If
mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle
it later if/when it attempts to reclaim the page.
Mlocked Pages: Filtering Special Vmas
mlock_fixup() filters several classes of "special" vmas:
1) vmas with VM_IO|VM_PFNMAP set are skipped entirely. The pages behind
these mappings are inherently pinned, so we don't need to mark them as
mlocked. In any case, most of the pages have no struct page in which to
so mark the page. Because of this, get_user_pages() will fail for these
vmas, so there is no sense in attempting to visit them.
2) vmas mapping hugetlbfs page are already effectively pinned into memory.
We don't need nor want to mlock() these pages. However, to preserve the
prior behavior of mlock()--before the unevictable/mlock changes--mlock_fixup()
will call make_pages_present() in the hugetlbfs vma range to allocate the
huge pages and populate the ptes.
3) vmas with VM_DONTEXPAND|VM_RESERVED are generally user space mappings of
kernel pages, such as the vdso page, relay channel pages, etc. These pages
are inherently unevictable and are not managed on the LRU lists.
mlock_fixup() treats these vmas the same as hugetlbfs vmas. It calls
make_pages_present() to populate the ptes.
Note that for all of these special vmas, mlock_fixup() does not set the
VM_LOCKED flag. Therefore, we won't have to deal with them later during
munlock() or munmap()--for example, at task exit. Neither does mlock_fixup()
account these vmas against the task's "locked_vm".
Mlocked Pages: Downgrading the Mmap Semaphore.
mlock_fixup() must be called with the mmap semaphore held for write, because
it may have to merge or split vmas. However, mlocking a large region of
memory can take a long time--especially if vmscan must reclaim pages to
satisfy the regions requirements. Faulting in a large region with the mmap
semaphore held for write can hold off other faults on the address space, in
the case of a multi-threaded task. It can also hold off scans of the task's
address space via /proc. While testing under heavy load, it was observed that
the ps(1) command could be held off for many minutes while a large segment was
mlock()ed down.
To address this issue, and to make the system more responsive during mlock()ing
of large segments, mlock_fixup() downgrades the mmap semaphore to read mode
during the call to __mlock_vma_pages_range(). This works fine. However, the
callers of mlock_fixup() expect the semaphore to be returned in write mode.
So, mlock_fixup() "upgrades" the semphore to write mode. Linux does not
support an atomic upgrade_sem() call, so mlock_fixup() must drop the semaphore
and reacquire it in write mode. In a multi-threaded task, it is possible for
the task memory map to change while the semaphore is dropped. Therefore,
mlock_fixup() looks up the vma at the range start address after reacquiring
the semaphore in write mode and verifies that it still covers the original
range. If not, mlock_fixup() returns an error [-EAGAIN]. All callers of
mlock_fixup() have been changed to deal with this new error condition.
Note: when munlocking a region, all of the pages should already be resident--
unless we have racing threads mlocking() and munlocking() regions. So,
unlocking should not have to wait for page allocations nor faults of any kind.
Therefore mlock_fixup() does not downgrade the semaphore for munlock().
Mlocked Pages: munlock()/munlockall() System Call Handling
The munlock() and munlockall() system calls are handled by the same functions--
do_mlock[all]()--as the mlock() and mlockall() system calls with the unlock
vs lock operation indicated by an argument. So, these system calls are also
handled by mlock_fixup(). Again, if called for an already munlock()ed vma,
mlock_fixup() simply returns. Because of the vma filtering discussed above,
VM_LOCKED will not be set in any "special" vmas. So, these vmas will be
ignored for munlock.
If the vma is VM_LOCKED, mlock_fixup() again attempts to merge or split off
the specified range. The range is then munlocked via the function
__mlock_vma_pages_range()--the same function used to mlock a vma range--
passing a flag to indicate that munlock() is being performed.
Because the vma access protections could have been changed to PROT_NONE after
faulting in and mlocking some pages, get_user_pages() was unreliable for visiting
these pages for munlocking. Because we don't want to leave pages mlocked(),
get_user_pages() was enhanced to accept a flag to ignore the permissions when
fetching the pages--all of which should be resident as a result of previous
mlock()ing.
For munlock(), __mlock_vma_pages_range() unlocks individual pages by calling
munlock_vma_page(). munlock_vma_page() unconditionally clears the PG_mlocked
flag using TestClearPageMlocked(). As with mlock_vma_page(), munlock_vma_page()
use the Test*PageMlocked() function to handle the case where the page might
have already been unlocked by another task. If the page was mlocked,
munlock_vma_page() updates that zone statistics for the number of mlocked
pages. Note, however, that at this point we haven't checked whether the page
is mapped by other VM_LOCKED vmas.
We can't call try_to_munlock(), the function that walks the reverse map to check
for other VM_LOCKED vmas, without first isolating the page from the LRU.
try_to_munlock() is a variant of try_to_unmap() and thus requires that the page
not be on an lru list. [More on these below.] However, the call to
isolate_lru_page() could fail, in which case we couldn't try_to_munlock().
So, we go ahead and clear PG_mlocked up front, as this might be the only chance
we have. If we can successfully isolate the page, we go ahead and
try_to_munlock(), which will restore the PG_mlocked flag and update the zone
page statistics if it finds another vma holding the page mlocked. If we fail
to isolate the page, we'll have left a potentially mlocked page on the LRU.
This is fine, because we'll catch it later when/if vmscan tries to reclaim the
page. This should be relatively rare.
Mlocked Pages: Migrating Them...
A page that is being migrated has been isolated from the lru lists and is
held locked across unmapping of the page, updating the page's mapping
[address_space] entry and copying the contents and state, until the
page table entry has been replaced with an entry that refers to the new
page. Linux supports migration of mlocked pages and other unevictable
pages. This involves simply moving the PageMlocked and PageUnevictable states
from the old page to the new page.
Note that page migration can race with mlocking or munlocking of the same
page. This has been discussed from the mlock/munlock perspective in the
respective sections above. Both processes [migration, m[un]locking], hold
the page locked. This provides the first level of synchronization. Page
migration zeros out the page_mapping of the old page before unlocking it,
so m[un]lock can skip these pages by testing the page mapping under page
lock.
When completing page migration, we place the new and old pages back onto the
lru after dropping the page lock. The "unneeded" page--old page on success,
new page on failure--will be freed when the reference count held by the
migration process is released. To ensure that we don't strand pages on the
unevictable list because of a race between munlock and migration, page
migration uses the putback_lru_page() function to add migrated pages back to
the lru.
Mlocked Pages: mmap(MAP_LOCKED) System Call Handling
In addition the the mlock()/mlockall() system calls, an application can request
that a region of memory be mlocked using the MAP_LOCKED flag with the mmap()
call. Furthermore, any mmap() call or brk() call that expands the heap by a
task that has previously called mlockall() with the MCL_FUTURE flag will result
in the newly mapped memory being mlocked. Before the unevictable/mlock changes,
the kernel simply called make_pages_present() to allocate pages and populate
the page table.
To mlock a range of memory under the unevictable/mlock infrastructure, the
mmap() handler and task address space expansion functions call
mlock_vma_pages_range() specifying the vma and the address range to mlock.
mlock_vma_pages_range() filters vmas like mlock_fixup(), as described above in
"Mlocked Pages: Filtering Vmas". It will clear the VM_LOCKED flag, which will
have already been set by the caller, in filtered vmas. Thus these vma's need
not be visited for munlock when the region is unmapped.
For "normal" vmas, mlock_vma_pages_range() calls __mlock_vma_pages_range() to
fault/allocate the pages and mlock them. Again, like mlock_fixup(),
mlock_vma_pages_range() downgrades the mmap semaphore to read mode before
attempting to fault/allocate and mlock the pages; and "upgrades" the semaphore
back to write mode before returning.
The callers of mlock_vma_pages_range() will have already added the memory
range to be mlocked to the task's "locked_vm". To account for filtered vmas,
mlock_vma_pages_range() returns the number of pages NOT mlocked. All of the
callers then subtract a non-negative return value from the task's locked_vm.
A negative return value represent an error--for example, from get_user_pages()
attempting to fault in a vma with PROT_NONE access. In this case, we leave
the memory range accounted as locked_vm, as the protections could be changed
later and pages allocated into that region.
Mlocked Pages: munmap()/exit()/exec() System Call Handling
When unmapping an mlocked region of memory, whether by an explicit call to
munmap() or via an internal unmap from exit() or exec() processing, we must
munlock the pages if we're removing the last VM_LOCKED vma that maps the pages.
Before the unevictable/mlock changes, mlocking did not mark the pages in any way,
so unmapping them required no processing.
To munlock a range of memory under the unevictable/mlock infrastructure, the
munmap() hander and task address space tear down function call
munlock_vma_pages_all(). The name reflects the observation that one always
specifies the entire vma range when munlock()ing during unmap of a region.
Because of the vma filtering when mlocking() regions, only "normal" vmas that
actually contain mlocked pages will be passed to munlock_vma_pages_all().
munlock_vma_pages_all() clears the VM_LOCKED vma flag and, like mlock_fixup()
for the munlock case, calls __munlock_vma_pages_range() to walk the page table
for the vma's memory range and munlock_vma_page() each resident page mapped by
the vma. This effectively munlocks the page, only if this is the last
VM_LOCKED vma that maps the page.
Mlocked Page: try_to_unmap()
[Note: the code changes represented by this section are really quite small
compared to the text to describe what happening and why, and to discuss the
implications.]
Pages can, of course, be mapped into multiple vmas. Some of these vmas may
have VM_LOCKED flag set. It is possible for a page mapped into one or more
VM_LOCKED vmas not to have the PG_mlocked flag set and therefore reside on one
of the active or inactive LRU lists. This could happen if, for example, a
task in the process of munlock()ing the page could not isolate the page from
the LRU. As a result, vmscan/shrink_page_list() might encounter such a page
as described in "Unevictable Pages and Vmscan [shrink_*_list()]". To
handle this situation, try_to_unmap() has been enhanced to check for VM_LOCKED
vmas while it is walking a page's reverse map.
try_to_unmap() is always called, by either vmscan for reclaim or for page
migration, with the argument page locked and isolated from the LRU. BUG_ON()
assertions enforce this requirement. Separate functions handle anonymous and
mapped file pages, as these types of pages have different reverse map
mechanisms.
try_to_unmap_anon()
To unmap anonymous pages, each vma in the list anchored in the anon_vma must be
visited--at least until a VM_LOCKED vma is encountered. If the page is being
unmapped for migration, VM_LOCKED vmas do not stop the process because mlocked
pages are migratable. However, for reclaim, if the page is mapped into a
VM_LOCKED vma, the scan stops. try_to_unmap() attempts to acquire the mmap
semphore of the mm_struct to which the vma belongs in read mode. If this is
successful, try_to_unmap() will mlock the page via mlock_vma_page()--we
wouldn't have gotten to try_to_unmap() if the page were already mlocked--and
will return SWAP_MLOCK, indicating that the page is unevictable. If the
mmap semaphore cannot be acquired, we are not sure whether the page is really
unevictable or not. In this case, try_to_unmap() will return SWAP_AGAIN.
try_to_unmap_file() -- linear mappings
Unmapping of a mapped file page works the same, except that the scan visits
all vmas that maps the page's index/page offset in the page's mapping's
reverse map priority search tree. It must also visit each vma in the page's
mapping's non-linear list, if the list is non-empty. As for anonymous pages,
on encountering a VM_LOCKED vma for a mapped file page, try_to_unmap() will
attempt to acquire the associated mm_struct's mmap semaphore to mlock the page,
returning SWAP_MLOCK if this is successful, and SWAP_AGAIN, if not.
try_to_unmap_file() -- non-linear mappings
If a page's mapping contains a non-empty non-linear mapping vma list, then
try_to_un{map|lock}() must also visit each vma in that list to determine
whether the page is mapped in a VM_LOCKED vma. Again, the scan must visit
all vmas in the non-linear list to ensure that the pages is not/should not be
mlocked. If a VM_LOCKED vma is found in the list, the scan could terminate.
However, there is no easy way to determine whether the page is actually mapped
in a given vma--either for unmapping or testing whether the VM_LOCKED vma
actually pins the page.
So, try_to_unmap_file() handles non-linear mappings by scanning a certain
number of pages--a "cluster"--in each non-linear vma associated with the page's
mapping, for each file mapped page that vmscan tries to unmap. If this happens
to unmap the page we're trying to unmap, try_to_unmap() will notice this on
return--(page_mapcount(page) == 0)--and return SWAP_SUCCESS. Otherwise, it
will return SWAP_AGAIN, causing vmscan to recirculate this page. We take
advantage of the cluster scan in try_to_unmap_cluster() as follows:
For each non-linear vma, try_to_unmap_cluster() attempts to acquire the mmap
semaphore of the associated mm_struct for read without blocking. If this
attempt is successful and the vma is VM_LOCKED, try_to_unmap_cluster() will
retain the mmap semaphore for the scan; otherwise it drops it here. Then,
for each page in the cluster, if we're holding the mmap semaphore for a locked
vma, try_to_unmap_cluster() calls mlock_vma_page() to mlock the page. This
call is a no-op if the page is already locked, but will mlock any pages in
the non-linear mapping that happen to be unlocked. If one of the pages so
mlocked is the page passed in to try_to_unmap(), try_to_unmap_cluster() will
return SWAP_MLOCK, rather than the default SWAP_AGAIN. This will allow vmscan
to cull the page, rather than recirculating it on the inactive list. Again,
if try_to_unmap_cluster() cannot acquire the vma's mmap sem, it returns
SWAP_AGAIN, indicating that the page is mapped by a VM_LOCKED vma, but
couldn't be mlocked.
Mlocked pages: try_to_munlock() Reverse Map Scan
TODO/FIXME: a better name might be page_mlocked()--analogous to the
page_referenced() reverse map walker--especially if we continue to call this
from shrink_page_list(). See related TODO/FIXME below.
When munlock_vma_page()--see "Mlocked Pages: munlock()/munlockall() System
Call Handling" above--tries to munlock a page, or when shrink_page_list()
encounters an anonymous page that is not yet in the swap cache, they need to
determine whether or not the page is mapped by any VM_LOCKED vma, without
actually attempting to unmap all ptes from the page. For this purpose, the
unevictable/mlock infrastructure introduced a variant of try_to_unmap() called
try_to_munlock().
try_to_munlock() calls the same functions as try_to_unmap() for anonymous and
mapped file pages with an additional argument specifing unlock versus unmap
processing. Again, these functions walk the respective reverse maps looking
for VM_LOCKED vmas. When such a vma is found for anonymous pages and file
pages mapped in linear VMAs, as in the try_to_unmap() case, the functions
attempt to acquire the associated mmap semphore, mlock the page via
mlock_vma_page() and return SWAP_MLOCK. This effectively undoes the
pre-clearing of the page's PG_mlocked done by munlock_vma_page() and informs
shrink_page_list() that the anonymous page should be culled rather than added
to the swap cache in preparation for a try_to_unmap() that will almost
certainly fail.
If try_to_unmap() is unable to acquire a VM_LOCKED vma's associated mmap
semaphore, it will return SWAP_AGAIN. This will allow shrink_page_list()
to recycle the page on the inactive list and hope that it has better luck
with the page next time.
For file pages mapped into non-linear vmas, the try_to_munlock() logic works
slightly differently. On encountering a VM_LOCKED non-linear vma that might
map the page, try_to_munlock() returns SWAP_AGAIN without actually mlocking
the page. munlock_vma_page() will just leave the page unlocked and let
vmscan deal with it--the usual fallback position.
Note that try_to_munlock()'s reverse map walk must visit every vma in a pages'
reverse map to determine that a page is NOT mapped into any VM_LOCKED vma.
However, the scan can terminate when it encounters a VM_LOCKED vma and can
successfully acquire the vma's mmap semphore for read and mlock the page.
Although try_to_munlock() can be called many [very many!] times when
munlock()ing a large region or tearing down a large address space that has been
mlocked via mlockall(), overall this is a fairly rare event. In addition,
although shrink_page_list() calls try_to_munlock() for every anonymous page that
it handles that is not yet in the swap cache, on average anonymous pages will
have very short reverse map lists.
Mlocked Page: Page Reclaim in shrink_*_list()
shrink_active_list() culls any obviously unevictable pages--i.e.,
!page_evictable(page, NULL)--diverting these to the unevictable lru
list. However, shrink_active_list() only sees unevictable pages that
made it onto the active/inactive lru lists. Note that these pages do not
have PageUnevictable set--otherwise, they would be on the unevictable list and
shrink_active_list would never see them.
Some examples of these unevictable pages on the LRU lists are:
1) ramfs pages that have been placed on the lru lists when first allocated.
2) SHM_LOCKed shared memory pages. shmctl(SHM_LOCK) does not attempt to
allocate or fault in the pages in the shared memory region. This happens
when an application accesses the page the first time after SHM_LOCKing
the segment.
3) Mlocked pages that could not be isolated from the lru and moved to the
unevictable list in mlock_vma_page().
3) Pages mapped into multiple VM_LOCKED vmas, but try_to_munlock() couldn't
acquire the vma's mmap semaphore to test the flags and set PageMlocked.
munlock_vma_page() was forced to let the page back on to the normal
LRU list for vmscan to handle.
shrink_inactive_list() also culls any unevictable pages that it finds
on the inactive lists, again diverting them to the appropriate zone's unevictable
lru list. shrink_inactive_list() should only see SHM_LOCKed pages that became
SHM_LOCKed after shrink_active_list() had moved them to the inactive list, or
pages mapped into VM_LOCKED vmas that munlock_vma_page() couldn't isolate from
the lru to recheck via try_to_munlock(). shrink_inactive_list() won't notice
the latter, but will pass on to shrink_page_list().
shrink_page_list() again culls obviously unevictable pages that it could
encounter for similar reason to shrink_inactive_list(). As already discussed,
shrink_page_list() proactively looks for anonymous pages that should have
PG_mlocked set but don't--these would not be detected by page_evictable()--to
avoid adding them to the swap cache unnecessarily. File pages mapped into
VM_LOCKED vmas but without PG_mlocked set will make it all the way to
try_to_unmap(). shrink_page_list() will divert them to the unevictable list when
try_to_unmap() returns SWAP_MLOCK, as discussed above.
TODO/FIXME: If we can enhance the swap cache to reliably remove entries
with page_count(page) > 2, as long as all ptes are mapped to the page and
not the swap entry, we can probably remove the call to try_to_munlock() in
shrink_page_list() and just remove the page from the swap cache when
try_to_unmap() returns SWAP_MLOCK. Currently, remove_exclusive_swap_page()
doesn't seem to allow that.

View file

@ -378,8 +378,9 @@ T: git://git.kernel.org/pub/scm/linux/kernel/git/joro/linux-2.6-iommu.git
S: Supported
AMD MICROCODE UPDATE SUPPORT
P: Peter Oruba
M: peter.oruba@amd.com
P: Andreas Herrmann
M: andeas.herrmann3@amd.com
L: amd64-microcode@amd64.org
S: Supported
AMS (Apple Motion Sensor) DRIVER
@ -1053,6 +1054,12 @@ L: cbe-oss-dev@ozlabs.org
W: http://www.ibm.com/developerworks/power/cell/
S: Supported
CERTIFIED WIRELESS USB (WUSB) SUBSYSTEM:
P: David Vrabel
M: david.vrabel@csr.com
L: linux-usb@vger.kernel.org
S: Supported
CFAG12864B LCD DRIVER
P: Miguel Ojeda Sandonis
M: miguel.ojeda.sandonis@gmail.com
@ -1198,7 +1205,7 @@ S: Maintained
CPU FREQUENCY DRIVERS
P: Dave Jones
M: davej@codemonkey.org.uk
M: davej@redhat.com
L: cpufreq@vger.kernel.org
W: http://www.codemonkey.org.uk/projects/cpufreq/
T: git kernel.org/pub/scm/linux/kernel/git/davej/cpufreq.git
@ -1427,8 +1434,8 @@ M: rdunlap@xenotime.net
S: Maintained
DOCKING STATION DRIVER
P: Kristen Carlson Accardi
M: kristen.c.accardi@intel.com
P: Shaohua Li
M: shaohua.li@intel.com
L: linux-acpi@vger.kernel.org
S: Supported
@ -2103,6 +2110,12 @@ L: linux-ide@vger.kernel.org
L: linux-scsi@vger.kernel.org
S: Orphan
IDLE-I7300
P: Andy Henroid
M: andrew.d.henroid@intel.com
L: linux-pm@lists.linux-foundation.org
S: Supported
IEEE 1394 SUBSYSTEM (drivers/ieee1394)
P: Ben Collins
M: ben.collins@ubuntu.com
@ -2176,6 +2189,13 @@ M: maciej.sosnowski@intel.com
L: linux-kernel@vger.kernel.org
S: Supported
INTEL IOMMU (VT-d)
P: David Woodhouse
M: dwmw2@infradead.org
L: iommu@lists.linux-foundation.org
T: git://git.infradead.org/iommu-2.6.git
S: Supported
INTEL IOP-ADMA DMA DRIVER
P: Dan Williams
M: dan.j.williams@intel.com
@ -2928,9 +2948,9 @@ S: Maintained
NETEFFECT IWARP RNIC DRIVER (IW_NES)
P: Faisal Latif
M: flatif@neteffect.com
M: faisal.latif@intel.com
P: Chien Tung
M: ctung@neteffect.com
M: chien.tin.tung@intel.com
L: general@lists.openfabrics.org
W: http://www.neteffect.com
S: Supported
@ -3173,6 +3193,11 @@ M: olof@lixom.net
L: i2c@lm-sensors.org
S: Maintained
PANASONIC LAPTOP ACPI EXTRAS DRIVER
P: Harald Welte
M: laforge@gnumonks.org
S: Maintained
PANASONIC MN10300/AM33 PORT
P: David Howells
M: dhowells@redhat.com
@ -3244,11 +3269,6 @@ L: linux-pci@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/jbarnes/pci-2.6.git
S: Supported
PCI HOTPLUG CORE
P: Kristen Carlson Accardi
M: kristen.c.accardi@intel.com
S: Supported
PCIE HOTPLUG DRIVER
P: Kristen Carlson Accardi
M: kristen.c.accardi@intel.com
@ -3937,7 +3957,7 @@ M: jbglaw@lug-owl.de
L: linux-kernel@vger.kernel.org
S: Maintained
STABLE BRANCH:
STABLE BRANCH
P: Greg Kroah-Hartman
M: greg@kroah.com
P: Chris Wright
@ -3945,6 +3965,13 @@ M: chrisw@sous-sol.org
L: stable@kernel.org
S: Maintained
STAGING SUBSYSTEM
P: Greg Kroah-Hartman
M: gregkh@suse.de
L: linux-kernel@vger.kernel.org
T: quilt kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/
S: Maintained
STARFIRE/DURALAN NETWORK DRIVER
P: Ion Badulescu
M: ionut@cs.columbia.edu
@ -4184,6 +4211,12 @@ L: sparclinux@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6.git
S: Maintained
ULTRA-WIDEBAND (UWB) SUBSYSTEM:
P: David Vrabel
M: david.vrabel@csr.com
L: linux-usb@vger.kernel.org
S: Supported
UNIFORM CDROM DRIVER
P: Jens Axboe
M: axboe@kernel.dk
@ -4609,6 +4642,11 @@ M: zaga@fly.cc.fer.hr
L: linux-scsi@vger.kernel.org
S: Maintained
WIMEDIA LLC PROTOCOL (WLP) SUBSYSTEM
P: David Vrabel
M: david.vrabel@csr.com
S: Maintained
WISTRON LAPTOP BUTTON DRIVER
P: Miloslav Trmac
M: mitr@volny.cz

View file

@ -1,8 +1,8 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 27
EXTRAVERSION =
NAME = Rotary Wombat
SUBLEVEL = 28
EXTRAVERSION = -rc1
NAME = Killer Bat of Doom
# *DOCUMENTATION*
# To see a list of typical targets execute "make help"
@ -437,7 +437,7 @@ ifeq ($(config-targets),1)
# KBUILD_DEFCONFIG may point out an alternative default configuration
# used for 'make defconfig'
include $(srctree)/arch/$(SRCARCH)/Makefile
export KBUILD_DEFCONFIG
export KBUILD_DEFCONFIG KBUILD_KCONFIG
config %config: scripts_basic outputmakefile FORCE
$(Q)mkdir -p include/linux include/config

View file

@ -70,6 +70,7 @@ config AUTO_IRQ_AFFINITY
default y
source "init/Kconfig"
source "kernel/Kconfig.freezer"
menu "System setup"

View file

@ -74,12 +74,14 @@ register struct thread_info *__current_thread_info __asm__("$8");
#define TIF_UAC_SIGBUS 7
#define TIF_MEMDIE 8
#define TIF_RESTORE_SIGMASK 9 /* restore signal mask in do_signal */
#define TIF_FREEZE 16 /* is freezing for suspend */
#define _TIF_SYSCALL_TRACE (1<<TIF_SYSCALL_TRACE)
#define _TIF_SIGPENDING (1<<TIF_SIGPENDING)
#define _TIF_NEED_RESCHED (1<<TIF_NEED_RESCHED)
#define _TIF_POLLING_NRFLAG (1<<TIF_POLLING_NRFLAG)
#define _TIF_RESTORE_SIGMASK (1<<TIF_RESTORE_SIGMASK)
#define _TIF_FREEZE (1<<TIF_FREEZE)
/* Work to do on interrupt/exception return. */
#define _TIF_WORK_MASK (_TIF_SIGPENDING | _TIF_NEED_RESCHED)

View file

@ -655,7 +655,7 @@ __marvel_rtc_io(u8 b, unsigned long addr, int write)
case 0x71: /* RTC_PORT(1) */
rtc_access.index = index;
rtc_access.data = BCD_TO_BIN(b);
rtc_access.data = bcd2bin(b);
rtc_access.function = 0x48 + !write; /* GET/PUT_TOY */
#ifdef CONFIG_SMP
@ -668,7 +668,7 @@ __marvel_rtc_io(u8 b, unsigned long addr, int write)
#else
__marvel_access_rtc(&rtc_access);
#endif
ret = BIN_TO_BCD(rtc_access.data);
ret = bin2bcd(rtc_access.data);
break;
default:

View file

@ -165,14 +165,11 @@ osf_getdirentries(unsigned int fd, struct osf_dirent __user *dirent,
buf.error = 0;
error = vfs_readdir(file, osf_filldir, &buf);
if (error < 0)
goto out_putf;
error = buf.error;
if (error >= 0)
error = buf.error;
if (count != buf.count)
error = count - buf.count;
out_putf:
fput(file);
out:
return error;
@ -986,10 +983,12 @@ asmlinkage int
osf_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp,
struct timeval32 __user *tvp)
{
s64 timeout = MAX_SCHEDULE_TIMEOUT;
struct timespec end_time, *to = NULL;
if (tvp) {
time_t sec, usec;
to = &end_time;
if (!access_ok(VERIFY_READ, tvp, sizeof(*tvp))
|| __get_user(sec, &tvp->tv_sec)
|| __get_user(usec, &tvp->tv_usec)) {
@ -999,14 +998,13 @@ osf_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp,
if (sec < 0 || usec < 0)
return -EINVAL;
if ((unsigned long) sec < MAX_SELECT_SECONDS) {
timeout = (usec + 1000000/HZ - 1) / (1000000/HZ);
timeout += sec * (unsigned long) HZ;
}
if (poll_select_set_timeout(to, sec, usec * NSEC_PER_USEC))
return -EINVAL;
}
/* OSF does not copy back the remaining time. */
return core_sys_select(n, inp, outp, exp, &timeout);
return core_sys_select(n, inp, outp, exp, to);
}
struct rusage32 {

View file

@ -47,7 +47,7 @@ typedef struct irq_swizzle_struct
static irq_swizzle_t *sable_lynx_irq_swizzle;
static void sable_lynx_init_irq(int nr_irqs);
static void sable_lynx_init_irq(int nr_of_irqs);
#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_SABLE)
@ -530,11 +530,11 @@ sable_lynx_srm_device_interrupt(unsigned long vector)
}
static void __init
sable_lynx_init_irq(int nr_irqs)
sable_lynx_init_irq(int nr_of_irqs)
{
long i;
for (i = 0; i < nr_irqs; ++i) {
for (i = 0; i < nr_of_irqs; ++i) {
irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL;
irq_desc[i].chip = &sable_lynx_irq_type;
}

View file

@ -346,12 +346,12 @@ time_init(void)
year = CMOS_READ(RTC_YEAR);
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
}
/* PC-like is standard; used for year >= 70 */
@ -525,7 +525,7 @@ set_rtc_mmss(unsigned long nowtime)
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(cmos_minutes);
cmos_minutes = bcd2bin(cmos_minutes);
/*
* since we're only adjusting minutes and seconds,
@ -543,8 +543,8 @@ set_rtc_mmss(unsigned long nowtime)
if (abs(real_minutes - cmos_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
real_seconds = bin2bcd(real_seconds);
real_minutes = bin2bcd(real_minutes);
}
CMOS_WRITE(real_seconds,RTC_SECONDS);
CMOS_WRITE(real_minutes,RTC_MINUTES);

View file

@ -106,7 +106,7 @@ op_axp_stop(void)
}
static int
op_axp_create_files(struct super_block * sb, struct dentry * root)
op_axp_create_files(struct super_block *sb, struct dentry *root)
{
int i;

View file

@ -192,6 +192,8 @@ config VECTORS_BASE
source "init/Kconfig"
source "kernel/Kconfig.freezer"
menu "System Type"
choice
@ -354,7 +356,7 @@ config ARCH_IXP4XX
select GENERIC_GPIO
select GENERIC_TIME
select GENERIC_CLOCKEVENTS
select ZONE_DMA if PCI
select DMABOUNCE if PCI
help
Support for Intel's IXP4XX (XScale) family of processors.
@ -538,16 +540,15 @@ config ARCH_OMAP
help
Support for TI's OMAP platform (OMAP1 and OMAP2).
config ARCH_MSM7X00A
bool "Qualcomm MSM7X00A"
config ARCH_MSM
bool "Qualcomm MSM"
select GENERIC_TIME
select GENERIC_CLOCKEVENTS
help
Support for Qualcomm MSM7X00A based systems. This runs on the ARM11
apps processor of the MSM7X00A and depends on a shared memory
Support for Qualcomm MSM7K based systems. This runs on the ARM11
apps processor of the MSM7K and depends on a shared memory
interface to the ARM9 modem processor which runs the baseband stack
and controls some vital subsystems (clock and power control, etc).
<http://www.cdmatech.com/products/msm7200_chipset_solution.jsp>
endchoice
@ -1254,6 +1255,8 @@ source "drivers/hid/Kconfig"
source "drivers/usb/Kconfig"
source "drivers/uwb/Kconfig"
source "drivers/mmc/Kconfig"
source "drivers/memstick/Kconfig"

View file

@ -141,7 +141,7 @@ endif
machine-$(CONFIG_ARCH_MX3) := mx3
machine-$(CONFIG_ARCH_ORION5X) := orion5x
plat-$(CONFIG_PLAT_ORION) := orion
machine-$(CONFIG_ARCH_MSM7X00A) := msm
machine-$(CONFIG_ARCH_MSM) := msm
machine-$(CONFIG_ARCH_LOKI) := loki
machine-$(CONFIG_ARCH_MV78XX0) := mv78xx0

View file

@ -13,10 +13,10 @@ config ICST307
config SA1111
bool
select DMABOUNCE if !ARCH_PXA
select ZONE_DMA if !ARCH_PXA
config DMABOUNCE
bool
select ZONE_DMA
config TIMER_ACORN
bool

View file

@ -581,6 +581,7 @@ sa1111_init_one_child(struct sa1111 *sachip, struct resource *parent,
goto out;
}
#ifdef CONFIG_DMABOUNCE
/*
* If the parent device has a DMA mask associated with it,
* propagate it down to the children.
@ -598,6 +599,7 @@ sa1111_init_one_child(struct sa1111 *sachip, struct resource *parent,
}
}
}
#endif
out:
return ret;
@ -937,7 +939,7 @@ static int sa1111_resume(struct platform_device *dev)
#define sa1111_resume NULL
#endif
static int sa1111_probe(struct platform_device *pdev)
static int __devinit sa1111_probe(struct platform_device *pdev)
{
struct resource *mem;
int irq;

File diff suppressed because it is too large Load diff

View file

@ -133,7 +133,7 @@ CONFIG_DEFAULT_IOSCHED="anticipatory"
# CONFIG_ARCH_LH7A40X is not set
# CONFIG_ARCH_DAVINCI is not set
# CONFIG_ARCH_OMAP is not set
CONFIG_ARCH_MSM7X00A=y
CONFIG_ARCH_MSM=y
#
# Boot options

File diff suppressed because it is too large Load diff

View file

@ -147,6 +147,7 @@ CONFIG_ARCH_PXA=y
# CONFIG_MACH_MAINSTONE is not set
# CONFIG_ARCH_PXA_IDP is not set
# CONFIG_PXA_SHARPSL is not set
CONFIG_TRIZEPS_PXA=y
CONFIG_MACH_TRIZEPS4=y
CONFIG_MACH_TRIZEPS4_CONXS=y
# CONFIG_MACH_TRIZEPS4_ANY is not set

View file

@ -165,7 +165,7 @@
__res = __m; \
asm ( "umlal %Q0, %R0, %Q1, %Q2\n\t" \
"mov %Q0, #0" \
: "+r" (__res) \
: "+&r" (__res) \
: "r" (__m), "r" (__n) \
: "cc" ); \
} else { \
@ -182,7 +182,7 @@
"umlal %R0, %Q0, %Q1, %R2\n\t" \
"mov %R0, #0\n\t" \
"umlal %Q0, %R0, %R1, %R2" \
: "+r" (__res) \
: "+&r" (__res) \
: "r" (__m), "r" (__n) \
: "cc" ); \
} else { \
@ -192,7 +192,7 @@
"adds %Q0, %1, %Q0\n\t" \
"adc %R0, %R0, #0\n\t" \
"umlal %Q0, %R0, %R2, %R3" \
: "+r" (__res), "+r" (__z) \
: "+&r" (__res), "+&r" (__z) \
: "r" (__m), "r" (__n) \
: "cc" ); \
} \

View file

@ -404,6 +404,7 @@ static void gpio_irq_handler(unsigned irq, struct irq_desc *desc)
}
pin = bank->chipbase;
gpio = &irq_desc[pin];
while (isr) {
if (isr & 1) {

View file

@ -89,6 +89,8 @@
* node 3: 0xd8000000 - 0xdfffffff
*/
#define NODE_MEM_SIZE_BITS 24
#define SECTION_SIZE_BITS 24
#define MAX_PHYSMEM_BITS 32
#endif

View file

@ -41,7 +41,7 @@ static inline unsigned long iop13xx_core_freq(void)
return 1200000000;
default:
printk("%s: warning unknown frequency, defaulting to 800Mhz\n",
__FUNCTION__);
__func__);
}
return 800000000;
@ -60,7 +60,7 @@ static inline unsigned long iop13xx_xsi_bus_ratio(void)
return 4;
default:
printk("%s: warning unknown ratio, defaulting to 2\n",
__FUNCTION__);
__func__);
}
return 2;

View file

@ -143,7 +143,7 @@ static struct irq_chip ixdp2x00_cpld_irq_chip = {
.unmask = ixdp2x00_irq_unmask
};
void __init ixdp2x00_init_irq(volatile unsigned long *stat_reg, volatile unsigned long *mask_reg, unsigned long nr_irqs)
void __init ixdp2x00_init_irq(volatile unsigned long *stat_reg, volatile unsigned long *mask_reg, unsigned long nr_of_irqs)
{
unsigned int irq;
@ -154,7 +154,7 @@ void __init ixdp2x00_init_irq(volatile unsigned long *stat_reg, volatile unsigne
board_irq_stat = stat_reg;
board_irq_mask = mask_reg;
board_irq_count = nr_irqs;
board_irq_count = nr_of_irqs;
*board_irq_mask = 0xffffffff;

View file

@ -167,11 +167,6 @@ config MACH_GTWX5715
comment "IXP4xx Options"
config DMABOUNCE
bool
default y
depends on PCI
config IXP4XX_INDIRECT_PCI
bool "Use indirect PCI memory access"
depends on PCI

View file

@ -2,4 +2,4 @@ obj-y += common.o addr-map.o irq.o pcie.o
obj-$(CONFIG_MACH_DB88F6281_BP) += db88f6281-bp-setup.o
obj-$(CONFIG_MACH_RD88F6192_NAS) += rd88f6192-nas-setup.o
obj-$(CONFIG_MACH_RD88F6192_NAS) += rd88f6281-setup.o
obj-$(CONFIG_MACH_RD88F6281) += rd88f6281-setup.o

View file

@ -16,6 +16,7 @@
#include <linux/mv643xx_eth.h>
#include <linux/ata_platform.h>
#include <linux/spi/orion_spi.h>
#include <net/dsa.h>
#include <asm/page.h>
#include <asm/timex.h>
#include <asm/mach/map.h>
@ -151,6 +152,40 @@ void __init kirkwood_ge00_init(struct mv643xx_eth_platform_data *eth_data)
}
/*****************************************************************************
* Ethernet switch
****************************************************************************/
static struct resource kirkwood_switch_resources[] = {
{
.start = 0,
.end = 0,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device kirkwood_switch_device = {
.name = "dsa",
.id = 0,
.num_resources = 0,
.resource = kirkwood_switch_resources,
};
void __init kirkwood_ge00_switch_init(struct dsa_platform_data *d, int irq)
{
if (irq != NO_IRQ) {
kirkwood_switch_resources[0].start = irq;
kirkwood_switch_resources[0].end = irq;
kirkwood_switch_device.num_resources = 1;
}
d->mii_bus = &kirkwood_ge00_shared.dev;
d->netdev = &kirkwood_ge00.dev;
kirkwood_switch_device.dev.platform_data = d;
platform_device_register(&kirkwood_switch_device);
}
/*****************************************************************************
* SoC RTC
****************************************************************************/

View file

@ -11,6 +11,7 @@
#ifndef __ARCH_KIRKWOOD_COMMON_H
#define __ARCH_KIRKWOOD_COMMON_H
struct dsa_platform_data;
struct mv643xx_eth_platform_data;
struct mv_sata_platform_data;
@ -29,6 +30,7 @@ void kirkwood_pcie_id(u32 *dev, u32 *rev);
void kirkwood_ehci_init(void);
void kirkwood_ge00_init(struct mv643xx_eth_platform_data *eth_data);
void kirkwood_ge00_switch_init(struct dsa_platform_data *d, int irq);
void kirkwood_pcie_init(void);
void kirkwood_rtc_init(void);
void kirkwood_sata_init(struct mv_sata_platform_data *sata_data);

View file

@ -19,6 +19,7 @@
#include <linux/ata_platform.h>
#include <linux/mv643xx_eth.h>
#include <linux/ethtool.h>
#include <net/dsa.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
#include <asm/mach/pci.h>
@ -74,6 +75,15 @@ static struct mv643xx_eth_platform_data rd88f6281_ge00_data = {
.duplex = DUPLEX_FULL,
};
static struct dsa_platform_data rd88f6281_switch_data = {
.port_names[0] = "lan1",
.port_names[1] = "lan2",
.port_names[2] = "lan3",
.port_names[3] = "lan4",
.port_names[4] = "wan",
.port_names[5] = "cpu",
};
static struct mv_sata_platform_data rd88f6281_sata_data = {
.n_ports = 2,
};
@ -87,6 +97,7 @@ static void __init rd88f6281_init(void)
kirkwood_ehci_init();
kirkwood_ge00_init(&rd88f6281_ge00_data);
kirkwood_ge00_switch_init(&rd88f6281_switch_data, NO_IRQ);
kirkwood_rtc_init();
kirkwood_sata_init(&rd88f6281_sata_data);
kirkwood_uart0_init();

View file

@ -1,18 +1,13 @@
if ARCH_MSM7X00A
if ARCH_MSM
comment "MSM7X00A Board Type"
depends on ARCH_MSM7X00A
comment "MSM Board Type"
depends on ARCH_MSM
config MACH_HALIBUT
depends on ARCH_MSM7X00A
depends on ARCH_MSM
default y
bool "Halibut Board (QCT SURF7200A)"
bool "Halibut Board (QCT SURF7201A)"
help
Support for the Qualcomm SURF7200A eval board.
config MSM7X00A_IDLE
depends on ARCH_MSM7X00A
default y
bool "Idle Support for MSM7X00A"
Support for the Qualcomm SURF7201A eval board.
endif

View file

@ -1,7 +1,8 @@
obj-y += io.o idle.o irq.o timer.o dma.o
# Common code for board init
obj-y += common.o
obj-y += devices.o
obj-y += proc_comm.o
obj-y += vreg.o
obj-y += clock.o clock-7x01a.o
obj-$(CONFIG_MACH_HALIBUT) += board-halibut.o

View file

@ -33,6 +33,8 @@
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include "devices.h"
static struct resource smc91x_resources[] = {
[0] = {
.start = 0x9C004300,
@ -53,31 +55,12 @@ static struct platform_device smc91x_device = {
.resource = smc91x_resources,
};
static void mddi0_panel_power(int on)
{
}
static struct msm_mddi_platform_data msm_mddi0_pdata = {
.panel_power = mddi0_panel_power,
.has_vsync_irq = 0,
};
static struct platform_device msm_mddi0_device = {
.name = "msm_mddi",
.id = 0,
.dev = {
.platform_data = &msm_mddi0_pdata
},
};
static struct platform_device msm_serial0_device = {
.name = "msm_serial",
.id = 0,
};
static struct platform_device *devices[] __initdata = {
&msm_serial0_device,
&msm_mddi0_device,
&msm_device_uart3,
&msm_device_smd,
&msm_device_nand,
&msm_device_hsusb,
&msm_device_i2c,
&smc91x_device,
};
@ -91,20 +74,15 @@ static void __init halibut_init_irq(void)
static void __init halibut_init(void)
{
platform_add_devices(devices, ARRAY_SIZE(devices));
msm_add_devices();
}
static void __init halibut_map_io(void)
{
msm_map_common_io();
msm_clock_init();
}
MACHINE_START(HALIBUT, "Halibut Board (QCT SURF7200A)")
/* UART for LL DEBUG */
.phys_io = MSM_UART1_PHYS,
.io_pg_offst = ((MSM_UART1_BASE) >> 18) & 0xfffc,
.boot_params = 0x10000100,
.map_io = halibut_map_io,
.init_irq = halibut_init_irq,

View file

@ -0,0 +1,126 @@
/* arch/arm/mach-msm/clock-7x01a.c
*
* Clock tables for MSM7X01A
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007 QUALCOMM Incorporated
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include "clock.h"
#include "devices.h"
/* clock IDs used by the modem processor */
#define ACPU_CLK 0 /* Applications processor clock */
#define ADM_CLK 1 /* Applications data mover clock */
#define ADSP_CLK 2 /* ADSP clock */
#define EBI1_CLK 3 /* External bus interface 1 clock */
#define EBI2_CLK 4 /* External bus interface 2 clock */
#define ECODEC_CLK 5 /* External CODEC clock */
#define EMDH_CLK 6 /* External MDDI host clock */
#define GP_CLK 7 /* General purpose clock */
#define GRP_CLK 8 /* Graphics clock */
#define I2C_CLK 9 /* I2C clock */
#define ICODEC_RX_CLK 10 /* Internal CODEX RX clock */
#define ICODEC_TX_CLK 11 /* Internal CODEX TX clock */
#define IMEM_CLK 12 /* Internal graphics memory clock */
#define MDC_CLK 13 /* MDDI client clock */
#define MDP_CLK 14 /* Mobile display processor clock */
#define PBUS_CLK 15 /* Peripheral bus clock */
#define PCM_CLK 16 /* PCM clock */
#define PMDH_CLK 17 /* Primary MDDI host clock */
#define SDAC_CLK 18 /* Stereo DAC clock */
#define SDC1_CLK 19 /* Secure Digital Card clocks */
#define SDC1_PCLK 20
#define SDC2_CLK 21
#define SDC2_PCLK 22
#define SDC3_CLK 23
#define SDC3_PCLK 24
#define SDC4_CLK 25
#define SDC4_PCLK 26
#define TSIF_CLK 27 /* Transport Stream Interface clocks */
#define TSIF_REF_CLK 28
#define TV_DAC_CLK 29 /* TV clocks */
#define TV_ENC_CLK 30
#define UART1_CLK 31 /* UART clocks */
#define UART2_CLK 32
#define UART3_CLK 33
#define UART1DM_CLK 34
#define UART2DM_CLK 35
#define USB_HS_CLK 36 /* High speed USB core clock */
#define USB_HS_PCLK 37 /* High speed USB pbus clock */
#define USB_OTG_CLK 38 /* Full speed USB clock */
#define VDC_CLK 39 /* Video controller clock */
#define VFE_CLK 40 /* Camera / Video Front End clock */
#define VFE_MDC_CLK 41 /* VFE MDDI client clock */
#define NR_CLKS 42
#define CLOCK(clk_name, clk_id, clk_dev, clk_flags) { \
.name = clk_name, \
.id = clk_id, \
.flags = clk_flags, \
.dev = clk_dev, \
}
#define OFF CLKFLAG_AUTO_OFF
#define MINMAX CLKFLAG_USE_MIN_MAX_TO_SET
struct clk msm_clocks[] = {
CLOCK("adm_clk", ADM_CLK, NULL, 0),
CLOCK("adsp_clk", ADSP_CLK, NULL, 0),
CLOCK("ebi1_clk", EBI1_CLK, NULL, 0),
CLOCK("ebi2_clk", EBI2_CLK, NULL, 0),
CLOCK("ecodec_clk", ECODEC_CLK, NULL, 0),
CLOCK("emdh_clk", EMDH_CLK, NULL, OFF),
CLOCK("gp_clk", GP_CLK, NULL, 0),
CLOCK("grp_clk", GRP_CLK, NULL, OFF),
CLOCK("i2c_clk", I2C_CLK, &msm_device_i2c.dev, 0),
CLOCK("icodec_rx_clk", ICODEC_RX_CLK, NULL, 0),
CLOCK("icodec_tx_clk", ICODEC_TX_CLK, NULL, 0),
CLOCK("imem_clk", IMEM_CLK, NULL, OFF),
CLOCK("mdc_clk", MDC_CLK, NULL, 0),
CLOCK("mdp_clk", MDP_CLK, NULL, OFF),
CLOCK("pbus_clk", PBUS_CLK, NULL, 0),
CLOCK("pcm_clk", PCM_CLK, NULL, 0),
CLOCK("pmdh_clk", PMDH_CLK, NULL, OFF | MINMAX),
CLOCK("sdac_clk", SDAC_CLK, NULL, OFF),
CLOCK("sdc_clk", SDC1_CLK, &msm_device_sdc1.dev, OFF),
CLOCK("sdc_pclk", SDC1_PCLK, &msm_device_sdc1.dev, OFF),
CLOCK("sdc_clk", SDC2_CLK, &msm_device_sdc2.dev, OFF),
CLOCK("sdc_pclk", SDC2_PCLK, &msm_device_sdc2.dev, OFF),
CLOCK("sdc_clk", SDC3_CLK, &msm_device_sdc3.dev, OFF),
CLOCK("sdc_pclk", SDC3_PCLK, &msm_device_sdc3.dev, OFF),
CLOCK("sdc_clk", SDC4_CLK, &msm_device_sdc4.dev, OFF),
CLOCK("sdc_pclk", SDC4_PCLK, &msm_device_sdc4.dev, OFF),
CLOCK("tsif_clk", TSIF_CLK, NULL, 0),
CLOCK("tsif_ref_clk", TSIF_REF_CLK, NULL, 0),
CLOCK("tv_dac_clk", TV_DAC_CLK, NULL, 0),
CLOCK("tv_enc_clk", TV_ENC_CLK, NULL, 0),
CLOCK("uart_clk", UART1_CLK, &msm_device_uart1.dev, OFF),
CLOCK("uart_clk", UART2_CLK, &msm_device_uart2.dev, 0),
CLOCK("uart_clk", UART3_CLK, &msm_device_uart3.dev, OFF),
CLOCK("uart1dm_clk", UART1DM_CLK, NULL, OFF),
CLOCK("uart2dm_clk", UART2DM_CLK, NULL, 0),
CLOCK("usb_hs_clk", USB_HS_CLK, &msm_device_hsusb.dev, OFF),
CLOCK("usb_hs_pclk", USB_HS_PCLK, &msm_device_hsusb.dev, OFF),
CLOCK("usb_otg_clk", USB_OTG_CLK, NULL, 0),
CLOCK("vdc_clk", VDC_CLK, NULL, OFF | MINMAX),
CLOCK("vfe_clk", VFE_CLK, NULL, OFF),
CLOCK("vfe_mdc_clk", VFE_MDC_CLK, NULL, OFF),
};
unsigned msm_num_clocks = ARRAY_SIZE(msm_clocks);

218
arch/arm/mach-msm/clock.c Normal file
View file

@ -0,0 +1,218 @@
/* arch/arm/mach-msm/clock.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007 QUALCOMM Incorporated
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/spinlock.h>
#include "clock.h"
#include "proc_comm.h"
static DEFINE_MUTEX(clocks_mutex);
static DEFINE_SPINLOCK(clocks_lock);
static LIST_HEAD(clocks);
/*
* glue for the proc_comm interface
*/
static inline int pc_clk_enable(unsigned id)
{
return msm_proc_comm(PCOM_CLKCTL_RPC_ENABLE, &id, NULL);
}
static inline void pc_clk_disable(unsigned id)
{
msm_proc_comm(PCOM_CLKCTL_RPC_DISABLE, &id, NULL);
}
static inline int pc_clk_set_rate(unsigned id, unsigned rate)
{
return msm_proc_comm(PCOM_CLKCTL_RPC_SET_RATE, &id, &rate);
}
static inline int pc_clk_set_min_rate(unsigned id, unsigned rate)
{
return msm_proc_comm(PCOM_CLKCTL_RPC_MIN_RATE, &id, &rate);
}
static inline int pc_clk_set_max_rate(unsigned id, unsigned rate)
{
return msm_proc_comm(PCOM_CLKCTL_RPC_MAX_RATE, &id, &rate);
}
static inline int pc_clk_set_flags(unsigned id, unsigned flags)
{
return msm_proc_comm(PCOM_CLKCTL_RPC_SET_FLAGS, &id, &flags);
}
static inline unsigned pc_clk_get_rate(unsigned id)
{
if (msm_proc_comm(PCOM_CLKCTL_RPC_RATE, &id, NULL))
return 0;
else
return id;
}
static inline unsigned pc_clk_is_enabled(unsigned id)
{
if (msm_proc_comm(PCOM_CLKCTL_RPC_ENABLED, &id, NULL))
return 0;
else
return id;
}
static inline int pc_pll_request(unsigned id, unsigned on)
{
on = !!on;
return msm_proc_comm(PCOM_CLKCTL_RPC_PLL_REQUEST, &id, &on);
}
/*
* Standard clock functions defined in include/linux/clk.h
*/
struct clk *clk_get(struct device *dev, const char *id)
{
struct clk *clk;
mutex_lock(&clocks_mutex);
list_for_each_entry(clk, &clocks, list)
if (!strcmp(id, clk->name) && clk->dev == dev)
goto found_it;
list_for_each_entry(clk, &clocks, list)
if (!strcmp(id, clk->name) && clk->dev == NULL)
goto found_it;
clk = ERR_PTR(-ENOENT);
found_it:
mutex_unlock(&clocks_mutex);
return clk;
}
EXPORT_SYMBOL(clk_get);
void clk_put(struct clk *clk)
{
}
EXPORT_SYMBOL(clk_put);
int clk_enable(struct clk *clk)
{
unsigned long flags;
spin_lock_irqsave(&clocks_lock, flags);
clk->count++;
if (clk->count == 1)
pc_clk_enable(clk->id);
spin_unlock_irqrestore(&clocks_lock, flags);
return 0;
}
EXPORT_SYMBOL(clk_enable);
void clk_disable(struct clk *clk)
{
unsigned long flags;
spin_lock_irqsave(&clocks_lock, flags);
BUG_ON(clk->count == 0);
clk->count--;
if (clk->count == 0)
pc_clk_disable(clk->id);
spin_unlock_irqrestore(&clocks_lock, flags);
}
EXPORT_SYMBOL(clk_disable);
unsigned long clk_get_rate(struct clk *clk)
{
return pc_clk_get_rate(clk->id);
}
EXPORT_SYMBOL(clk_get_rate);
int clk_set_rate(struct clk *clk, unsigned long rate)
{
int ret;
if (clk->flags & CLKFLAG_USE_MIN_MAX_TO_SET) {
ret = pc_clk_set_max_rate(clk->id, rate);
if (ret)
return ret;
return pc_clk_set_min_rate(clk->id, rate);
}
return pc_clk_set_rate(clk->id, rate);
}
EXPORT_SYMBOL(clk_set_rate);
int clk_set_parent(struct clk *clk, struct clk *parent)
{
return -ENOSYS;
}
EXPORT_SYMBOL(clk_set_parent);
struct clk *clk_get_parent(struct clk *clk)
{
return ERR_PTR(-ENOSYS);
}
EXPORT_SYMBOL(clk_get_parent);
int clk_set_flags(struct clk *clk, unsigned long flags)
{
if (clk == NULL || IS_ERR(clk))
return -EINVAL;
return pc_clk_set_flags(clk->id, flags);
}
EXPORT_SYMBOL(clk_set_flags);
void __init msm_clock_init(void)
{
unsigned n;
spin_lock_init(&clocks_lock);
mutex_lock(&clocks_mutex);
for (n = 0; n < msm_num_clocks; n++)
list_add_tail(&msm_clocks[n].list, &clocks);
mutex_unlock(&clocks_mutex);
}
/* The bootloader and/or AMSS may have left various clocks enabled.
* Disable any clocks that belong to us (CLKFLAG_AUTO_OFF) but have
* not been explicitly enabled by a clk_enable() call.
*/
static int __init clock_late_init(void)
{
unsigned long flags;
struct clk *clk;
unsigned count = 0;
mutex_lock(&clocks_mutex);
list_for_each_entry(clk, &clocks, list) {
if (clk->flags & CLKFLAG_AUTO_OFF) {
spin_lock_irqsave(&clocks_lock, flags);
if (!clk->count) {
count++;
pc_clk_disable(clk->id);
}
spin_unlock_irqrestore(&clocks_lock, flags);
}
}
mutex_unlock(&clocks_mutex);
pr_info("clock_late_init() disabled %d unused clocks\n", count);
return 0;
}
late_initcall(clock_late_init);

48
arch/arm/mach-msm/clock.h Normal file
View file

@ -0,0 +1,48 @@
/* arch/arm/mach-msm/clock.h
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007 QUALCOMM Incorporated
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __ARCH_ARM_MACH_MSM_CLOCK_H
#define __ARCH_ARM_MACH_MSM_CLOCK_H
#include <linux/list.h>
#define CLKFLAG_INVERT 0x00000001
#define CLKFLAG_NOINVERT 0x00000002
#define CLKFLAG_NONEST 0x00000004
#define CLKFLAG_NORESET 0x00000008
#define CLK_FIRST_AVAILABLE_FLAG 0x00000100
#define CLKFLAG_USE_MIN_MAX_TO_SET 0x00000200
#define CLKFLAG_AUTO_OFF 0x00000400
struct clk {
uint32_t id;
uint32_t count;
uint32_t flags;
const char *name;
struct list_head list;
struct device *dev;
};
#define A11S_CLK_CNTL_ADDR (MSM_CSR_BASE + 0x100)
#define A11S_CLK_SEL_ADDR (MSM_CSR_BASE + 0x104)
#define A11S_VDD_SVS_PLEVEL_ADDR (MSM_CSR_BASE + 0x124)
extern struct clk msm_clocks[];
extern unsigned msm_num_clocks;
#endif

View file

@ -1,116 +0,0 @@
/* linux/arch/arm/mach-msm/common.c
*
* Common setup code for MSM7K Boards
*
* Copyright (C) 2007 Google, Inc.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <asm/mach/flash.h>
#include <asm/setup.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <mach/msm_iomap.h>
#include <mach/board.h>
struct flash_platform_data msm_nand_data = {
.parts = 0,
.nr_parts = 0,
};
static struct resource msm_nand_resources[] = {
[0] = {
.start = 7,
.end = 7,
.flags = IORESOURCE_DMA,
},
};
static struct platform_device msm_nand_device = {
.name = "msm_nand",
.id = -1,
.num_resources = ARRAY_SIZE(msm_nand_resources),
.resource = msm_nand_resources,
.dev = {
.platform_data = &msm_nand_data,
},
};
static struct platform_device msm_smd_device = {
.name = "msm_smd",
.id = -1,
};
static struct resource msm_i2c_resources[] = {
{
.start = MSM_I2C_BASE,
.end = MSM_I2C_BASE + MSM_I2C_SIZE - 1,
.flags = IORESOURCE_MEM,
},
{
.start = INT_PWB_I2C,
.end = INT_PWB_I2C,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device msm_i2c_device = {
.name = "msm_i2c",
.id = 0,
.num_resources = ARRAY_SIZE(msm_i2c_resources),
.resource = msm_i2c_resources,
};
static struct resource usb_resources[] = {
{
.start = MSM_HSUSB_PHYS,
.end = MSM_HSUSB_PHYS + MSM_HSUSB_SIZE,
.flags = IORESOURCE_MEM,
},
{
.start = INT_USB_HS,
.end = INT_USB_HS,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device msm_hsusb_device = {
.name = "msm_hsusb",
.id = -1,
.num_resources = ARRAY_SIZE(usb_resources),
.resource = usb_resources,
.dev = {
.coherent_dma_mask = 0xffffffff,
},
};
static struct platform_device *devices[] __initdata = {
&msm_nand_device,
&msm_smd_device,
&msm_i2c_device,
&msm_hsusb_device,
};
void __init msm_add_devices(void)
{
platform_add_devices(devices, ARRAY_SIZE(devices));
}

267
arch/arm/mach-msm/devices.c Normal file
View file

@ -0,0 +1,267 @@
/* linux/arch/arm/mach-msm/devices.c
*
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <mach/msm_iomap.h>
#include "devices.h"
#include <asm/mach/flash.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
static struct resource resources_uart1[] = {
{
.start = INT_UART1,
.end = INT_UART1,
.flags = IORESOURCE_IRQ,
},
{
.start = MSM_UART1_PHYS,
.end = MSM_UART1_PHYS + MSM_UART1_SIZE - 1,
.flags = IORESOURCE_MEM,
},
};
static struct resource resources_uart2[] = {
{
.start = INT_UART2,
.end = INT_UART2,
.flags = IORESOURCE_IRQ,
},
{
.start = MSM_UART2_PHYS,
.end = MSM_UART2_PHYS + MSM_UART2_SIZE - 1,
.flags = IORESOURCE_MEM,
},
};
static struct resource resources_uart3[] = {
{
.start = INT_UART3,
.end = INT_UART3,
.flags = IORESOURCE_IRQ,
},
{
.start = MSM_UART3_PHYS,
.end = MSM_UART3_PHYS + MSM_UART3_SIZE - 1,
.flags = IORESOURCE_MEM,
},
};
struct platform_device msm_device_uart1 = {
.name = "msm_serial",
.id = 0,
.num_resources = ARRAY_SIZE(resources_uart1),
.resource = resources_uart1,
};
struct platform_device msm_device_uart2 = {
.name = "msm_serial",
.id = 1,
.num_resources = ARRAY_SIZE(resources_uart2),
.resource = resources_uart2,
};
struct platform_device msm_device_uart3 = {
.name = "msm_serial",
.id = 2,
.num_resources = ARRAY_SIZE(resources_uart3),
.resource = resources_uart3,
};
static struct resource resources_i2c[] = {
{
.start = MSM_I2C_PHYS,
.end = MSM_I2C_PHYS + MSM_I2C_SIZE - 1,
.flags = IORESOURCE_MEM,
},
{
.start = INT_PWB_I2C,
.end = INT_PWB_I2C,
.flags = IORESOURCE_IRQ,
},
};
struct platform_device msm_device_i2c = {
.name = "msm_i2c",
.id = 0,
.num_resources = ARRAY_SIZE(resources_i2c),
.resource = resources_i2c,
};
static struct resource resources_hsusb[] = {
{
.start = MSM_HSUSB_PHYS,
.end = MSM_HSUSB_PHYS + MSM_HSUSB_SIZE,
.flags = IORESOURCE_MEM,
},
{
.start = INT_USB_HS,
.end = INT_USB_HS,
.flags = IORESOURCE_IRQ,
},
};
struct platform_device msm_device_hsusb = {
.name = "msm_hsusb",
.id = -1,
.num_resources = ARRAY_SIZE(resources_hsusb),
.resource = resources_hsusb,
.dev = {
.coherent_dma_mask = 0xffffffff,
},
};
struct flash_platform_data msm_nand_data = {
.parts = NULL,
.nr_parts = 0,
};
static struct resource resources_nand[] = {
[0] = {
.start = 7,
.end = 7,
.flags = IORESOURCE_DMA,
},
};
struct platform_device msm_device_nand = {
.name = "msm_nand",
.id = -1,
.num_resources = ARRAY_SIZE(resources_nand),
.resource = resources_nand,
.dev = {
.platform_data = &msm_nand_data,
},
};
struct platform_device msm_device_smd = {
.name = "msm_smd",
.id = -1,
};
static struct resource resources_sdc1[] = {
{
.start = MSM_SDC1_PHYS,
.end = MSM_SDC1_PHYS + MSM_SDC1_SIZE - 1,
.flags = IORESOURCE_MEM,
},
{
.start = INT_SDC1_0,
.end = INT_SDC1_1,
.flags = IORESOURCE_IRQ,
},
{
.start = 8,
.end = 8,
.flags = IORESOURCE_DMA,
},
};
static struct resource resources_sdc2[] = {
{
.start = MSM_SDC2_PHYS,
.end = MSM_SDC2_PHYS + MSM_SDC2_SIZE - 1,
.flags = IORESOURCE_MEM,
},
{
.start = INT_SDC2_0,
.end = INT_SDC2_1,
.flags = IORESOURCE_IRQ,
},
{
.start = 8,
.end = 8,
.flags = IORESOURCE_DMA,
},
};
static struct resource resources_sdc3[] = {
{
.start = MSM_SDC3_PHYS,
.end = MSM_SDC3_PHYS + MSM_SDC3_SIZE - 1,
.flags = IORESOURCE_MEM,
},
{
.start = INT_SDC3_0,
.end = INT_SDC3_1,
.flags = IORESOURCE_IRQ,
},
{
.start = 8,
.end = 8,
.flags = IORESOURCE_DMA,
},
};
static struct resource resources_sdc4[] = {
{
.start = MSM_SDC4_PHYS,
.end = MSM_SDC4_PHYS + MSM_SDC4_SIZE - 1,
.flags = IORESOURCE_MEM,
},
{
.start = INT_SDC4_0,
.end = INT_SDC4_1,
.flags = IORESOURCE_IRQ,
},
{
.start = 8,
.end = 8,
.flags = IORESOURCE_DMA,
},
};
struct platform_device msm_device_sdc1 = {
.name = "msm_sdcc",
.id = 1,
.num_resources = ARRAY_SIZE(resources_sdc1),
.resource = resources_sdc1,
.dev = {
.coherent_dma_mask = 0xffffffff,
},
};
struct platform_device msm_device_sdc2 = {
.name = "msm_sdcc",
.id = 2,
.num_resources = ARRAY_SIZE(resources_sdc2),
.resource = resources_sdc2,
.dev = {
.coherent_dma_mask = 0xffffffff,
},
};
struct platform_device msm_device_sdc3 = {
.name = "msm_sdcc",
.id = 3,
.num_resources = ARRAY_SIZE(resources_sdc3),
.resource = resources_sdc3,
.dev = {
.coherent_dma_mask = 0xffffffff,
},
};
struct platform_device msm_device_sdc4 = {
.name = "msm_sdcc",
.id = 4,
.num_resources = ARRAY_SIZE(resources_sdc4),
.resource = resources_sdc4,
.dev = {
.coherent_dma_mask = 0xffffffff,
},
};

View file

@ -0,0 +1,36 @@
/* linux/arch/arm/mach-msm/devices.h
*
* Copyright (C) 2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __ARCH_ARM_MACH_MSM_DEVICES_H
#define __ARCH_ARM_MACH_MSM_DEVICES_H
extern struct platform_device msm_device_uart1;
extern struct platform_device msm_device_uart2;
extern struct platform_device msm_device_uart3;
extern struct platform_device msm_device_sdc1;
extern struct platform_device msm_device_sdc2;
extern struct platform_device msm_device_sdc3;
extern struct platform_device msm_device_sdc4;
extern struct platform_device msm_device_hsusb;
extern struct platform_device msm_device_i2c;
extern struct platform_device msm_device_smd;
extern struct platform_device msm_device_nand;
#endif

View file

@ -26,7 +26,7 @@ enum {
};
static DEFINE_SPINLOCK(msm_dmov_lock);
static struct msm_dmov_cmd active_command;
static unsigned int channel_active;
static struct list_head ready_commands[MSM_DMOV_CHANNEL_COUNT];
static struct list_head active_commands[MSM_DMOV_CHANNEL_COUNT];
unsigned int msm_dmov_print_mask = MSM_DMOV_PRINT_ERRORS;
@ -43,6 +43,11 @@ unsigned int msm_dmov_print_mask = MSM_DMOV_PRINT_ERRORS;
#define PRINT_FLOW(format, args...) \
MSM_DMOV_DPRINTF(MSM_DMOV_PRINT_FLOW, format, args);
void msm_dmov_stop_cmd(unsigned id, struct msm_dmov_cmd *cmd, int graceful)
{
writel((graceful << 31), DMOV_FLUSH0(id));
}
void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd)
{
unsigned long irq_flags;
@ -60,6 +65,9 @@ void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd)
#endif
PRINT_IO("msm_dmov_enqueue_cmd(%d), start command, status %x\n", id, status);
list_add_tail(&cmd->list, &active_commands[id]);
if (!channel_active)
enable_irq(INT_ADM_AARM);
channel_active |= 1U << id;
writel(cmd->cmdptr, DMOV_CMD_PTR(id));
} else {
if (list_empty(&active_commands[id]))
@ -76,21 +84,19 @@ struct msm_dmov_exec_cmdptr_cmd {
struct completion complete;
unsigned id;
unsigned int result;
unsigned int flush[6];
struct msm_dmov_errdata err;
};
static void dmov_exec_cmdptr_complete_func(struct msm_dmov_cmd *_cmd, unsigned int result)
static void
dmov_exec_cmdptr_complete_func(struct msm_dmov_cmd *_cmd,
unsigned int result,
struct msm_dmov_errdata *err)
{
struct msm_dmov_exec_cmdptr_cmd *cmd = container_of(_cmd, struct msm_dmov_exec_cmdptr_cmd, dmov_cmd);
cmd->result = result;
if (result != 0x80000002) {
cmd->flush[0] = readl(DMOV_FLUSH0(cmd->id));
cmd->flush[1] = readl(DMOV_FLUSH1(cmd->id));
cmd->flush[2] = readl(DMOV_FLUSH2(cmd->id));
cmd->flush[3] = readl(DMOV_FLUSH3(cmd->id));
cmd->flush[4] = readl(DMOV_FLUSH4(cmd->id));
cmd->flush[5] = readl(DMOV_FLUSH5(cmd->id));
}
if (result != 0x80000002 && err)
memcpy(&cmd->err, err, sizeof(struct msm_dmov_errdata));
complete(&cmd->complete);
}
@ -111,7 +117,7 @@ int msm_dmov_exec_cmd(unsigned id, unsigned int cmdptr)
if (cmd.result != 0x80000002) {
PRINT_ERROR("dmov_exec_cmdptr(%d): ERROR, result: %x\n", id, cmd.result);
PRINT_ERROR("dmov_exec_cmdptr(%d): flush: %x %x %x %x\n",
id, cmd.flush[0], cmd.flush[1], cmd.flush[2], cmd.flush[3]);
id, cmd.err.flush[0], cmd.err.flush[1], cmd.err.flush[2], cmd.err.flush[3]);
return -EIO;
}
PRINT_FLOW("dmov_exec_cmdptr(%d, %x) done\n", id, cmdptr);
@ -159,25 +165,40 @@ static irqreturn_t msm_datamover_irq_handler(int irq, void *dev_id)
"for %p, result %x\n", id, cmd, ch_result);
if (cmd) {
list_del(&cmd->list);
cmd->complete_func(cmd, ch_result);
cmd->complete_func(cmd, ch_result, NULL);
}
}
if (ch_result & DMOV_RSLT_FLUSH) {
unsigned int flush0 = readl(DMOV_FLUSH0(id));
struct msm_dmov_errdata errdata;
errdata.flush[0] = readl(DMOV_FLUSH0(id));
errdata.flush[1] = readl(DMOV_FLUSH1(id));
errdata.flush[2] = readl(DMOV_FLUSH2(id));
errdata.flush[3] = readl(DMOV_FLUSH3(id));
errdata.flush[4] = readl(DMOV_FLUSH4(id));
errdata.flush[5] = readl(DMOV_FLUSH5(id));
PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", id, ch_status);
PRINT_FLOW("msm_datamover_irq_handler id %d, flush, result %x, flush0 %x\n", id, ch_result, flush0);
PRINT_FLOW("msm_datamover_irq_handler id %d, flush, result %x, flush0 %x\n", id, ch_result, errdata.flush[0]);
if (cmd) {
list_del(&cmd->list);
cmd->complete_func(cmd, ch_result);
cmd->complete_func(cmd, ch_result, &errdata);
}
}
if (ch_result & DMOV_RSLT_ERROR) {
unsigned int flush0 = readl(DMOV_FLUSH0(id));
struct msm_dmov_errdata errdata;
errdata.flush[0] = readl(DMOV_FLUSH0(id));
errdata.flush[1] = readl(DMOV_FLUSH1(id));
errdata.flush[2] = readl(DMOV_FLUSH2(id));
errdata.flush[3] = readl(DMOV_FLUSH3(id));
errdata.flush[4] = readl(DMOV_FLUSH4(id));
errdata.flush[5] = readl(DMOV_FLUSH5(id));
PRINT_ERROR("msm_datamover_irq_handler id %d, status %x\n", id, ch_status);
PRINT_ERROR("msm_datamover_irq_handler id %d, error, result %x, flush0 %x\n", id, ch_result, flush0);
PRINT_ERROR("msm_datamover_irq_handler id %d, error, result %x, flush0 %x\n", id, ch_result, errdata.flush[0]);
if (cmd) {
list_del(&cmd->list);
cmd->complete_func(cmd, ch_result);
cmd->complete_func(cmd, ch_result, &errdata);
}
/* this does not seem to work, once we get an error */
/* the datamover will no longer accept commands */
@ -193,8 +214,14 @@ static irqreturn_t msm_datamover_irq_handler(int irq, void *dev_id)
writel(cmd->cmdptr, DMOV_CMD_PTR(id));
}
} while (ch_status & DMOV_STATUS_RSLT_VALID);
if (list_empty(&active_commands[id]) && list_empty(&ready_commands[id]))
channel_active &= ~(1U << id);
PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", id, ch_status);
}
if (!channel_active)
disable_irq(INT_ADM_AARM);
spin_unlock_irqrestore(&msm_dmov_lock, irq_flags);
return IRQ_HANDLED;
}
@ -202,12 +229,17 @@ static irqreturn_t msm_datamover_irq_handler(int irq, void *dev_id)
static int __init msm_init_datamover(void)
{
int i;
int ret;
for (i = 0; i < MSM_DMOV_CHANNEL_COUNT; i++) {
INIT_LIST_HEAD(&ready_commands[i]);
INIT_LIST_HEAD(&active_commands[i]);
writel(DMOV_CONFIG_IRQ_EN | DMOV_CONFIG_FORCE_TOP_PTR_RSLT | DMOV_CONFIG_FORCE_FLUSH_RSLT, DMOV_CONFIG(i));
}
return request_irq(INT_ADM_AARM, msm_datamover_irq_handler, 0, "msmdatamover", NULL);
ret = request_irq(INT_ADM_AARM, msm_datamover_irq_handler, 0, "msmdatamover", NULL);
if (ret)
return ret;
disable_irq(INT_ADM_AARM);
return 0;
}
arch_initcall(msm_init_datamover);

View file

@ -33,5 +33,6 @@ void __init msm_add_devices(void);
void __init msm_map_common_io(void);
void __init msm_init_irq(void);
void __init msm_init_gpio(void);
void __init msm_clock_init(void);
#endif

View file

@ -22,18 +22,22 @@
mrc p15, 0, \rx, c1, c0
tst \rx, #1
ldreq \rx, =MSM_UART1_PHYS
ldrne \rx, =MSM_UART1_BASE
movne \rx, #0
.endm
.macro senduart,rd,rx
str \rd, [\rx, #0x0C]
teq \rx, #0
strne \rd, [\rx, #0x0C]
.endm
.macro waituart,rd,rx
@ wait for TX_READY
teq \rx, #0
bne 2f
1: ldr \rd, [\rx, #0x08]
tst \rd, #0x04
beq 1b
2:
.endm
.macro busyuart,rd,rx

View file

@ -1,4 +1,4 @@
/* arch/arm/mach-msm/include/mach/dma.h
/* linux/include/asm-arm/arch-msm/dma.h
*
* Copyright (C) 2007 Google, Inc.
*
@ -18,17 +18,21 @@
#include <linux/list.h>
#include <mach/msm_iomap.h>
struct msm_dmov_errdata {
uint32_t flush[6];
};
struct msm_dmov_cmd {
struct list_head list;
unsigned int cmdptr;
void (*complete_func)(struct msm_dmov_cmd *cmd, unsigned int result);
/* void (*user_result_func)(struct msm_dmov_cmd *cmd); */
void (*complete_func)(struct msm_dmov_cmd *cmd,
unsigned int result,
struct msm_dmov_errdata *err);
};
void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd);
void msm_dmov_stop_cmd(unsigned id, struct msm_dmov_cmd *cmd);
void msm_dmov_stop_cmd(unsigned id, struct msm_dmov_cmd *cmd, int graceful);
int msm_dmov_exec_cmd(unsigned id, unsigned int cmdptr);
/* int msm_dmov_exec_cmd_etc(unsigned id, unsigned int cmdptr, int timeout, int interruptible); */
@ -122,6 +126,16 @@ typedef struct {
unsigned _reserved;
} dmov_sg;
/* Box mode */
typedef struct {
uint32_t cmd;
uint32_t src_row_addr;
uint32_t dst_row_addr;
uint32_t src_dst_len;
uint32_t num_rows;
uint32_t row_offset;
} dmov_box;
/* bits for the cmd field of the above structures */
#define CMD_LC (1 << 31) /* last command */

View file

@ -37,11 +37,17 @@
*
*/
#define MSM_VIC_BASE 0xE0000000
#ifdef __ASSEMBLY__
#define IOMEM(x) x
#else
#define IOMEM(x) ((void __force __iomem *)(x))
#endif
#define MSM_VIC_BASE IOMEM(0xE0000000)
#define MSM_VIC_PHYS 0xC0000000
#define MSM_VIC_SIZE SZ_4K
#define MSM_CSR_BASE 0xE0001000
#define MSM_CSR_BASE IOMEM(0xE0001000)
#define MSM_CSR_PHYS 0xC0100000
#define MSM_CSR_SIZE SZ_4K
@ -49,56 +55,67 @@
#define MSM_GPT_BASE MSM_CSR_BASE
#define MSM_GPT_SIZE SZ_4K
#define MSM_DMOV_BASE 0xE0002000
#define MSM_DMOV_BASE IOMEM(0xE0002000)
#define MSM_DMOV_PHYS 0xA9700000
#define MSM_DMOV_SIZE SZ_4K
#define MSM_UART1_BASE 0xE0003000
#define MSM_UART1_PHYS 0xA9A00000
#define MSM_UART1_SIZE SZ_4K
#define MSM_UART2_BASE 0xE0004000
#define MSM_UART2_PHYS 0xA9B00000
#define MSM_UART2_SIZE SZ_4K
#define MSM_UART3_BASE 0xE0005000
#define MSM_UART3_PHYS 0xA9C00000
#define MSM_UART3_SIZE SZ_4K
#define MSM_I2C_BASE 0xE0006000
#define MSM_I2C_PHYS 0xA9900000
#define MSM_I2C_SIZE SZ_4K
#define MSM_GPIO1_BASE 0xE0007000
#define MSM_GPIO1_BASE IOMEM(0xE0003000)
#define MSM_GPIO1_PHYS 0xA9200000
#define MSM_GPIO1_SIZE SZ_4K
#define MSM_GPIO2_BASE 0xE0008000
#define MSM_GPIO2_BASE IOMEM(0xE0004000)
#define MSM_GPIO2_PHYS 0xA9300000
#define MSM_GPIO2_SIZE SZ_4K
#define MSM_HSUSB_BASE 0xE0009000
#define MSM_HSUSB_PHYS 0xA0800000
#define MSM_HSUSB_SIZE SZ_4K
#define MSM_CLK_CTL_BASE 0xE000A000
#define MSM_CLK_CTL_BASE IOMEM(0xE0005000)
#define MSM_CLK_CTL_PHYS 0xA8600000
#define MSM_CLK_CTL_SIZE SZ_4K
#define MSM_PMDH_BASE 0xE000B000
#define MSM_PMDH_PHYS 0xAA600000
#define MSM_PMDH_SIZE SZ_4K
#define MSM_EMDH_BASE 0xE000C000
#define MSM_EMDH_PHYS 0xAA700000
#define MSM_EMDH_SIZE SZ_4K
#define MSM_MDP_BASE 0xE0010000
#define MSM_MDP_PHYS 0xAA200000
#define MSM_MDP_SIZE 0x000F0000
#define MSM_SHARED_RAM_BASE 0xE0100000
#define MSM_SHARED_RAM_BASE IOMEM(0xE0100000)
#define MSM_SHARED_RAM_PHYS 0x01F00000
#define MSM_SHARED_RAM_SIZE SZ_1M
#define MSM_UART1_PHYS 0xA9A00000
#define MSM_UART1_SIZE SZ_4K
#define MSM_UART2_PHYS 0xA9B00000
#define MSM_UART2_SIZE SZ_4K
#define MSM_UART3_PHYS 0xA9C00000
#define MSM_UART3_SIZE SZ_4K
#define MSM_SDC1_PHYS 0xA0400000
#define MSM_SDC1_SIZE SZ_4K
#define MSM_SDC2_PHYS 0xA0500000
#define MSM_SDC2_SIZE SZ_4K
#define MSM_SDC3_PHYS 0xA0600000
#define MSM_SDC3_SIZE SZ_4K
#define MSM_SDC4_PHYS 0xA0700000
#define MSM_SDC4_SIZE SZ_4K
#define MSM_I2C_PHYS 0xA9900000
#define MSM_I2C_SIZE SZ_4K
#define MSM_HSUSB_PHYS 0xA0800000
#define MSM_HSUSB_SIZE SZ_4K
#define MSM_PMDH_PHYS 0xAA600000
#define MSM_PMDH_SIZE SZ_4K
#define MSM_EMDH_PHYS 0xAA700000
#define MSM_EMDH_SIZE SZ_4K
#define MSM_MDP_PHYS 0xAA200000
#define MSM_MDP_SIZE 0x000F0000
#define MSM_MDC_PHYS 0xAA500000
#define MSM_MDC_SIZE SZ_1M
#define MSM_AD5_PHYS 0xAC000000
#define MSM_AD5_SIZE (SZ_1M*13)
#endif

View file

@ -0,0 +1,29 @@
/* linux/include/asm-arm/arch-msm/vreg.h
*
* Copyright (C) 2008 Google, Inc.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __ARCH_ARM_MACH_MSM_VREG_H
#define __ARCH_ARM_MACH_MSM_VREG_H
struct vreg;
struct vreg *vreg_get(struct device *dev, const char *id);
void vreg_put(struct vreg *vreg);
int vreg_enable(struct vreg *vreg);
void vreg_disable(struct vreg *vreg);
int vreg_set_level(struct vreg *vreg, unsigned mv);
#endif

View file

@ -28,7 +28,7 @@
#include <mach/board.h>
#define MSM_DEVICE(name) { \
.virtual = MSM_##name##_BASE, \
.virtual = (unsigned long) MSM_##name##_BASE, \
.pfn = __phys_to_pfn(MSM_##name##_PHYS), \
.length = MSM_##name##_SIZE, \
.type = MT_DEVICE_NONSHARED, \
@ -39,19 +39,11 @@ static struct map_desc msm_io_desc[] __initdata = {
MSM_DEVICE(CSR),
MSM_DEVICE(GPT),
MSM_DEVICE(DMOV),
MSM_DEVICE(UART1),
MSM_DEVICE(UART2),
MSM_DEVICE(UART3),
MSM_DEVICE(I2C),
MSM_DEVICE(GPIO1),
MSM_DEVICE(GPIO2),
MSM_DEVICE(HSUSB),
MSM_DEVICE(CLK_CTL),
MSM_DEVICE(PMDH),
MSM_DEVICE(EMDH),
MSM_DEVICE(MDP),
{
.virtual = MSM_SHARED_RAM_BASE,
.virtual = (unsigned long) MSM_SHARED_RAM_BASE,
.pfn = __phys_to_pfn(MSM_SHARED_RAM_PHYS),
.length = MSM_SHARED_RAM_SIZE,
.type = MT_DEVICE,

Some files were not shown because too many files have changed in this diff Show more