bnx2x: Re-factor the initialization code

Moving the code to a more logical place and beautifying it. No real change in
behavior.

Signed-off-by: Vladislav Zolotarov <vladz@broadcom.com>
Signed-off-by: Eilon Greenstein <eilong@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Eilon Greenstein 2009-08-12 08:24:14 +00:00 committed by David S. Miller
parent e4ed711337
commit 573f203574
5 changed files with 495 additions and 464 deletions

View file

@ -116,16 +116,22 @@
#define REG_RD_DMAE(bp, offset, valp, len32) \ #define REG_RD_DMAE(bp, offset, valp, len32) \
do { \ do { \
bnx2x_read_dmae(bp, offset, len32);\ bnx2x_read_dmae(bp, offset, len32);\
memcpy(valp, bnx2x_sp(bp, wb_data[0]), len32 * 4); \ memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
} while (0) } while (0)
#define REG_WR_DMAE(bp, offset, valp, len32) \ #define REG_WR_DMAE(bp, offset, valp, len32) \
do { \ do { \
memcpy(bnx2x_sp(bp, wb_data[0]), valp, len32 * 4); \ memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \ bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
offset, len32); \ offset, len32); \
} while (0) } while (0)
#define VIRT_WR_DMAE_LEN(bp, data, addr, len32) \
do { \
memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
bnx2x_write_big_buf_wb(bp, addr, len32); \
} while (0)
#define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \ #define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \
offsetof(struct shmem_region, field)) offsetof(struct shmem_region, field))
#define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field)) #define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field))
@ -988,6 +994,9 @@ struct bnx2x {
dma_addr_t gunzip_mapping; dma_addr_t gunzip_mapping;
int gunzip_outlen; int gunzip_outlen;
#define FW_BUF_SIZE 0x8000 #define FW_BUF_SIZE 0x8000
#define GUNZIP_BUF(bp) (bp->gunzip_buf)
#define GUNZIP_PHYS(bp) (bp->gunzip_mapping)
#define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen)
struct raw_op *init_ops; struct raw_op *init_ops;
/* Init blocks offsets inside init_ops */ /* Init blocks offsets inside init_ops */
@ -1003,6 +1012,18 @@ struct bnx2x {
const u8 *xsem_pram_data; const u8 *xsem_pram_data;
const u8 *csem_int_table_data; const u8 *csem_int_table_data;
const u8 *csem_pram_data; const u8 *csem_pram_data;
#define INIT_OPS(bp) (bp->init_ops)
#define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets)
#define INIT_DATA(bp) (bp->init_data)
#define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data)
#define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data)
#define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data)
#define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data)
#define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data)
#define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data)
#define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data)
#define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data)
const struct firmware *firmware; const struct firmware *firmware;
}; };
@ -1030,6 +1051,9 @@ int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
u32 bnx2x_fw_command(struct bnx2x *bp, u32 command); u32 bnx2x_fw_command(struct bnx2x *bp, u32 command);
void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
u32 addr, u32 len);
static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms, static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
int wait) int wait)

View file

@ -15,24 +15,11 @@
#ifndef BNX2X_INIT_H #ifndef BNX2X_INIT_H
#define BNX2X_INIT_H #define BNX2X_INIT_H
#define COMMON 0x1
#define PORT0 0x2
#define PORT1 0x4
#define INIT_EMULATION 0x1
#define INIT_FPGA 0x2
#define INIT_ASIC 0x4
#define INIT_HARDWARE 0x7
#define TSTORM_INTMEM_ADDR TSEM_REG_FAST_MEMORY
#define CSTORM_INTMEM_ADDR CSEM_REG_FAST_MEMORY
#define XSTORM_INTMEM_ADDR XSEM_REG_FAST_MEMORY
#define USTORM_INTMEM_ADDR USEM_REG_FAST_MEMORY
/* RAM0 size in bytes */ /* RAM0 size in bytes */
#define STORM_INTMEM_SIZE_E1 0x5800 #define STORM_INTMEM_SIZE_E1 0x5800
#define STORM_INTMEM_SIZE_E1H 0x10000 #define STORM_INTMEM_SIZE_E1H 0x10000
#define STORM_INTMEM_SIZE(bp) ((CHIP_IS_E1H(bp) ? STORM_INTMEM_SIZE_E1H : \ #define STORM_INTMEM_SIZE(bp) ((CHIP_IS_E1(bp) ? STORM_INTMEM_SIZE_E1 : \
STORM_INTMEM_SIZE_E1) / 4) STORM_INTMEM_SIZE_E1H) / 4)
/* Init operation types and structures */ /* Init operation types and structures */
@ -53,65 +40,68 @@
#define OP_WR_ASIC 0xc /* write single register on ASIC */ #define OP_WR_ASIC 0xc /* write single register on ASIC */
/* Init stages */ /* Init stages */
#define COMMON_STAGE 0 /* Never reorder stages !!! */
#define PORT0_STAGE 1 #define COMMON_STAGE 0
#define PORT1_STAGE 2 #define PORT0_STAGE 1
/* Never reorder FUNCx stages !!! */ #define PORT1_STAGE 2
#define FUNC0_STAGE 3 #define FUNC0_STAGE 3
#define FUNC1_STAGE 4 #define FUNC1_STAGE 4
#define FUNC2_STAGE 5 #define FUNC2_STAGE 5
#define FUNC3_STAGE 6 #define FUNC3_STAGE 6
#define FUNC4_STAGE 7 #define FUNC4_STAGE 7
#define FUNC5_STAGE 8 #define FUNC5_STAGE 8
#define FUNC6_STAGE 9 #define FUNC6_STAGE 9
#define FUNC7_STAGE 10 #define FUNC7_STAGE 10
#define STAGE_IDX_MAX 11 #define STAGE_IDX_MAX 11
#define STAGE_START 0 #define STAGE_START 0
#define STAGE_END 1 #define STAGE_END 1
/* Indices of blocks */ /* Indices of blocks */
#define PRS_BLOCK 0 #define PRS_BLOCK 0
#define SRCH_BLOCK 1 #define SRCH_BLOCK 1
#define TSDM_BLOCK 2 #define TSDM_BLOCK 2
#define TCM_BLOCK 3 #define TCM_BLOCK 3
#define BRB1_BLOCK 4 #define BRB1_BLOCK 4
#define TSEM_BLOCK 5 #define TSEM_BLOCK 5
#define PXPCS_BLOCK 6 #define PXPCS_BLOCK 6
#define EMAC0_BLOCK 7 #define EMAC0_BLOCK 7
#define EMAC1_BLOCK 8 #define EMAC1_BLOCK 8
#define DBU_BLOCK 9 #define DBU_BLOCK 9
#define MISC_BLOCK 10 #define MISC_BLOCK 10
#define DBG_BLOCK 11 #define DBG_BLOCK 11
#define NIG_BLOCK 12 #define NIG_BLOCK 12
#define MCP_BLOCK 13 #define MCP_BLOCK 13
#define UPB_BLOCK 14 #define UPB_BLOCK 14
#define CSDM_BLOCK 15 #define CSDM_BLOCK 15
#define USDM_BLOCK 16 #define USDM_BLOCK 16
#define CCM_BLOCK 17 #define CCM_BLOCK 17
#define UCM_BLOCK 18 #define UCM_BLOCK 18
#define USEM_BLOCK 19 #define USEM_BLOCK 19
#define CSEM_BLOCK 20 #define CSEM_BLOCK 20
#define XPB_BLOCK 21 #define XPB_BLOCK 21
#define DQ_BLOCK 22 #define DQ_BLOCK 22
#define TIMERS_BLOCK 23 #define TIMERS_BLOCK 23
#define XSDM_BLOCK 24 #define XSDM_BLOCK 24
#define QM_BLOCK 25 #define QM_BLOCK 25
#define PBF_BLOCK 26 #define PBF_BLOCK 26
#define XCM_BLOCK 27 #define XCM_BLOCK 27
#define XSEM_BLOCK 28 #define XSEM_BLOCK 28
#define CDU_BLOCK 29 #define CDU_BLOCK 29
#define DMAE_BLOCK 30 #define DMAE_BLOCK 30
#define PXP_BLOCK 31 #define PXP_BLOCK 31
#define CFC_BLOCK 32 #define CFC_BLOCK 32
#define HC_BLOCK 33 #define HC_BLOCK 33
#define PXP2_BLOCK 34 #define PXP2_BLOCK 34
#define MISC_AEU_BLOCK 35 #define MISC_AEU_BLOCK 35
#define PGLUE_B_BLOCK 36
#define IGU_BLOCK 37
/* Returns the index of start or end of a specific block stage in ops array*/ /* Returns the index of start or end of a specific block stage in ops array*/
#define BLOCK_OPS_IDX(block, stage, end) \ #define BLOCK_OPS_IDX(block, stage, end) \
(2*(((block)*STAGE_IDX_MAX) + (stage)) + (end)) (2*(((block)*STAGE_IDX_MAX) + (stage)) + (end))
struct raw_op { struct raw_op {
@ -158,199 +148,5 @@ union init_op {
struct raw_op raw; struct raw_op raw;
}; };
/****************************************************************************
* PXP
****************************************************************************/
/*
* This code configures the PCI read/write arbiter
* which implements a weighted round robin
* between the virtual queues in the chip.
*
* The values were derived for each PCI max payload and max request size.
* since max payload and max request size are only known at run time,
* this is done as a separate init stage.
*/
#define NUM_WR_Q 13
#define NUM_RD_Q 29
#define MAX_RD_ORD 3
#define MAX_WR_ORD 2
/* configuration for one arbiter queue */
struct arb_line {
int l;
int add;
int ubound;
};
/* derived configuration for each read queue for each max request size */
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
{ {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
{ {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
};
/* derived configuration for each write queue for each max request size */
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
{ {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
{ {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
};
/* register addresses for read queues */
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
PXP2_REG_RQ_BW_RD_UBOUND0},
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
PXP2_REG_RQ_BW_RD_UBOUND4},
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
PXP2_REG_RQ_BW_RD_UBOUND5},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
PXP2_REG_RQ_BW_RD_UBOUND12},
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
PXP2_REG_RQ_BW_RD_UBOUND13},
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
PXP2_REG_RQ_BW_RD_UBOUND14},
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
PXP2_REG_RQ_BW_RD_UBOUND15},
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
PXP2_REG_RQ_BW_RD_UBOUND16},
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
PXP2_REG_RQ_BW_RD_UBOUND17},
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
PXP2_REG_RQ_BW_RD_UBOUND18},
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
PXP2_REG_RQ_BW_RD_UBOUND19},
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
PXP2_REG_RQ_BW_RD_UBOUND20},
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
PXP2_REG_RQ_BW_RD_UBOUND22},
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
PXP2_REG_RQ_BW_RD_UBOUND23},
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
PXP2_REG_RQ_BW_RD_UBOUND24},
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
PXP2_REG_RQ_BW_RD_UBOUND25},
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
PXP2_REG_RQ_BW_RD_UBOUND26},
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
PXP2_REG_RQ_BW_RD_UBOUND27},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28}
};
/* register addresses for write queues */
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28},
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
PXP2_REG_RQ_BW_WR_UBOUND29},
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
PXP2_REG_RQ_BW_WR_UBOUND30}
};
/****************************************************************************
* CDU
****************************************************************************/
#define CDU_REGION_NUMBER_XCM_AG 2
#define CDU_REGION_NUMBER_UCM_AG 4
/**
* String-to-compress [31:8] = CID (all 24 bits)
* String-to-compress [7:4] = Region
* String-to-compress [3:0] = Type
*/
#define CDU_VALID_DATA(_cid, _region, _type) \
(((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
#define CDU_CRC8(_cid, _region, _type) \
calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
(0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
#define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
(0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
/* registers addresses are not in order
so these arrays help simplify the code */
static const int cm_blocks[9] = {
MISC_BLOCK, TCM_BLOCK, UCM_BLOCK, CCM_BLOCK, XCM_BLOCK,
TSEM_BLOCK, USEM_BLOCK, CSEM_BLOCK, XSEM_BLOCK
};
#endif /* BNX2X_INIT_H */ #endif /* BNX2X_INIT_H */

View file

@ -11,85 +11,68 @@
* Maintained by: Eilon Greenstein <eilong@broadcom.com> * Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Vladislav Zolotarov <vladz@broadcom.com> * Written by: Vladislav Zolotarov <vladz@broadcom.com>
*/ */
#ifndef BNX2X_INIT_OPS_H #ifndef BNX2X_INIT_OPS_H
#define BNX2X_INIT_OPS_H #define BNX2X_INIT_OPS_H
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len) u32 len)
{ {
int i; u32 i;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++)
REG_WR(bp, addr + i*4, data[i]); REG_WR(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
} }
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u16 len) u32 len)
{ {
int i; u32 i;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++)
REG_WR_IND(bp, addr + i*4, data[i]); REG_WR_IND(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
} }
static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
{ {
int offset = 0; if (bp->dmae_ready)
bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
if (bp->dmae_ready) { else
while (len > DMAE_LEN32_WR_MAX) { bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
} }
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
{ {
u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4)); u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
u32 buf_len32 = buf_len / 4; u32 buf_len32 = buf_len/4;
int i; u32 i;
memset(bp->gunzip_buf, fill, buf_len); memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
for (i = 0; i < len; i += buf_len32) { for (i = 0; i < len; i += buf_len32) {
u32 cur_len = min(buf_len32, len - i); u32 cur_len = min(buf_len32, len - i);
bnx2x_write_big_buf(bp, addr + i * 4, cur_len); bnx2x_write_big_buf(bp, addr + i*4, cur_len);
} }
} }
static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len64) u32 len64)
{ {
u32 buf_len32 = FW_BUF_SIZE / 4; u32 buf_len32 = FW_BUF_SIZE/4;
u32 len = len64 * 2; u32 len = len64*2;
u64 data64 = 0; u64 data64 = 0;
int i; u32 i;
/* 64 bit value is in a blob: first low DWORD, then high DWORD */ /* 64 bit value is in a blob: first low DWORD, then high DWORD */
data64 = HILO_U64((*(data + 1)), (*data)); data64 = HILO_U64((*(data + 1)), (*data));
len64 = min((u32)(FW_BUF_SIZE/8), len64); len64 = min((u32)(FW_BUF_SIZE/8), len64);
for (i = 0; i < len64; i++) { for (i = 0; i < len64; i++) {
u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i; u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
*pdata = data64; *pdata = data64;
} }
@ -97,7 +80,7 @@ static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
for (i = 0; i < len; i += buf_len32) { for (i = 0; i < len; i += buf_len32) {
u32 cur_len = min(buf_len32, len - i); u32 cur_len = min(buf_len32, len - i);
bnx2x_write_big_buf(bp, addr + i * 4, cur_len); bnx2x_write_big_buf(bp, addr + i*4, cur_len);
} }
} }
@ -118,97 +101,81 @@ static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data) static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
{ {
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
data = bp->tsem_int_table_data; data = INIT_TSEM_INT_TABLE_DATA(bp);
else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) else
data = bp->csem_int_table_data; IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) data = INIT_CSEM_INT_TABLE_DATA(bp);
data = bp->usem_int_table_data; else
else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
data = bp->xsem_int_table_data; data = INIT_USEM_INT_TABLE_DATA(bp);
else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) else
data = bp->tsem_pram_data; IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) data = INIT_XSEM_INT_TABLE_DATA(bp);
data = bp->csem_pram_data; else
else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
data = bp->usem_pram_data; data = INIT_TSEM_PRAM_DATA(bp);
else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) else
data = bp->xsem_pram_data; IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
data = INIT_CSEM_PRAM_DATA(bp);
else
IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
data = INIT_USEM_PRAM_DATA(bp);
else
IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
data = INIT_XSEM_PRAM_DATA(bp);
return data; return data;
} }
static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
{ {
int offset = 0; if (bp->dmae_ready)
bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
if (bp->dmae_ready) { else
while (len > DMAE_LEN32_WR_MAX) { bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
} }
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len) u32 len)
{ {
/* This is needed for NO_ZIP mode, currently supported data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
in little endian mode only */
data = (const u32*)bnx2x_sel_blob(bp, addr, (const u8*)data);
if ((len * 4) > FW_BUF_SIZE) { if (bp->dmae_ready)
BNX2X_ERR("LARGE DMAE OPERATION ! " VIRT_WR_DMAE_LEN(bp, data, addr, len);
"addr 0x%x len 0x%x\n", addr, len*4); else
return; bnx2x_init_ind_wr(bp, addr, data, len);
}
memcpy(bp->gunzip_buf, data, len * 4);
bnx2x_write_big_buf_wb(bp, addr, len);
} }
static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
u32 len, u32 blob_off)
{ {
int rc, i; const u8 *data = NULL;
const u8 *data = NULL; int rc;
u32 i;
data = bnx2x_sel_blob(bp, addr, data) + 4*blob_off; data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
if (data == NULL) {
panic("Blob not found for addr 0x%x\n", addr);
return;
}
rc = bnx2x_gunzip(bp, data, len); rc = bnx2x_gunzip(bp, data, len);
if (rc) { if (rc)
BNX2X_ERR("gunzip failed ! addr 0x%x rc %d\n", addr, rc);
BNX2X_ERR("blob_offset=0x%x\n", blob_off);
return; return;
}
/* gunzip_outlen is in dwords */ /* gunzip_outlen is in dwords */
len = bp->gunzip_outlen; len = GUNZIP_OUTLEN(bp);
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
((u32 *)bp->gunzip_buf)[i] = ((u32 *)GUNZIP_BUF(bp))[i] =
cpu_to_le32(((u32 *)bp->gunzip_buf)[i]); cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
bnx2x_write_big_buf_wb(bp, addr, len); bnx2x_write_big_buf_wb(bp, addr, len);
} }
static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
{ {
int hw_wr, i;
u16 op_start = u16 op_start =
bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_START)]; INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
u16 op_end = u16 op_end =
bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_END)]; INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
union init_op *op; union init_op *op;
u32 op_type, addr, len; int hw_wr;
u32 i, op_type, addr, len;
const u32 *data, *data_base; const u32 *data, *data_base;
/* If empty block */ /* If empty block */
@ -222,11 +189,11 @@ static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
else else
hw_wr = OP_WR_ASIC; hw_wr = OP_WR_ASIC;
data_base = bp->init_data; data_base = INIT_DATA(bp);
for (i = op_start; i < op_end; i++) { for (i = op_start; i < op_end; i++) {
op = (union init_op *)&(bp->init_ops[i]); op = (union init_op *)&(INIT_OPS(bp)[i]);
op_type = op->str_wr.op; op_type = op->str_wr.op;
addr = op->str_wr.offset; addr = op->str_wr.offset;
@ -234,7 +201,7 @@ static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
data = data_base + op->str_wr.data_off; data = data_base + op->str_wr.data_off;
/* HW/EMUL specific */ /* HW/EMUL specific */
if (unlikely((op_type > OP_WB) && (op_type == hw_wr))) if ((op_type > OP_WB) && (op_type == hw_wr))
op_type = OP_WR; op_type = OP_WR;
switch (op_type) { switch (op_type) {
@ -265,34 +232,178 @@ static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
break; break;
default: default:
/* happens whenever an op is of a diff HW */ /* happens whenever an op is of a diff HW */
#if 0
DP(NETIF_MSG_HW, "skipping init operation "
"index %d[%d:%d]: type %d addr 0x%x "
"len %d(0x%x)\n",
i, op_start, op_end, op_type, addr, len, len);
#endif
break; break;
} }
} }
} }
/* PXP */
static void bnx2x_init_pxp(struct bnx2x *bp)
{
u16 devctl;
int r_order, w_order;
u32 val, i;
pci_read_config_word(bp->pdev, /****************************************************************************
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl); * PXP Arbiter
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); ****************************************************************************/
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); /*
if (bp->mrrs == -1) * This code configures the PCI read/write arbiter
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); * which implements a weighted round robin
else { * between the virtual queues in the chip.
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); *
r_order = bp->mrrs; * The values were derived for each PCI max payload and max request size.
} * since max payload and max request size are only known at run time,
* this is done as a separate init stage.
*/
#define NUM_WR_Q 13
#define NUM_RD_Q 29
#define MAX_RD_ORD 3
#define MAX_WR_ORD 2
/* configuration for one arbiter queue */
struct arb_line {
int l;
int add;
int ubound;
};
/* derived configuration for each read queue for each max request size */
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
{ {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
{ {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
};
/* derived configuration for each write queue for each max request size */
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
{ {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
{ {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
};
/* register addresses for read queues */
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
PXP2_REG_RQ_BW_RD_UBOUND0},
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
PXP2_REG_RQ_BW_RD_UBOUND4},
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
PXP2_REG_RQ_BW_RD_UBOUND5},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
PXP2_REG_RQ_BW_RD_UBOUND12},
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
PXP2_REG_RQ_BW_RD_UBOUND13},
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
PXP2_REG_RQ_BW_RD_UBOUND14},
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
PXP2_REG_RQ_BW_RD_UBOUND15},
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
PXP2_REG_RQ_BW_RD_UBOUND16},
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
PXP2_REG_RQ_BW_RD_UBOUND17},
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
PXP2_REG_RQ_BW_RD_UBOUND18},
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
PXP2_REG_RQ_BW_RD_UBOUND19},
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
PXP2_REG_RQ_BW_RD_UBOUND20},
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
PXP2_REG_RQ_BW_RD_UBOUND22},
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
PXP2_REG_RQ_BW_RD_UBOUND23},
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
PXP2_REG_RQ_BW_RD_UBOUND24},
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
PXP2_REG_RQ_BW_RD_UBOUND25},
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
PXP2_REG_RQ_BW_RD_UBOUND26},
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
PXP2_REG_RQ_BW_RD_UBOUND27},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28}
};
/* register addresses for write queues */
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28},
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
PXP2_REG_RQ_BW_WR_UBOUND29},
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
PXP2_REG_RQ_BW_WR_UBOUND30}
};
static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
{
u32 val, i;
if (r_order > MAX_RD_ORD) { if (r_order > MAX_RD_ORD) {
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
@ -367,6 +478,11 @@ static void bnx2x_init_pxp(struct bnx2x *bp)
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
if (CHIP_IS_E1H(bp)) { if (CHIP_IS_E1H(bp)) {
/* MPS w_order optimal TH presently TH
* 128 0 0 2
* 256 1 1 3
* >=512 2 2 3
*/
val = ((w_order == 0) ? 2 : 3); val = ((w_order == 0) ? 2 : 3);
REG_WR(bp, PXP2_REG_WR_HC_MPS, val); REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
@ -382,61 +498,4 @@ static void bnx2x_init_pxp(struct bnx2x *bp)
} }
} }
/*****************************************************************************
* Description:
* Calculates crc 8 on a word value: polynomial 0-1-2-8
* Code was translated from Verilog.
****************************************************************************/
static u8 calc_crc8(u32 data, u8 crc)
{
u8 D[32];
u8 NewCRC[8];
u8 C[8];
u8 crc_res;
u8 i;
/* split the data into 31 bits */
for (i = 0; i < 32; i++) {
D[i] = data & 1;
data = data >> 1;
}
/* split the crc into 8 bits */
for (i = 0; i < 8; i++) {
C[i] = crc & 1;
crc = crc >> 1;
}
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
C[6] ^ C[7];
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
C[0] ^ C[1] ^ C[4] ^ C[5];
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
C[1] ^ C[2] ^ C[5] ^ C[6];
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
C[3] ^ C[4] ^ C[7];
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
C[5];
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
C[6];
crc_res = 0;
for (i = 0; i < 8; i++)
crc_res |= (NewCRC[i] << i);
return crc_res;
}
#endif /* BNX2X_INIT_OPS_H */ #endif /* BNX2X_INIT_OPS_H */

View file

@ -153,7 +153,7 @@ MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
/* used only at init /* used only at init
* locking is done by mcp * locking is done by mcp
*/ */
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
{ {
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
@ -346,6 +346,21 @@ void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
mutex_unlock(&bp->dmae_mutex); mutex_unlock(&bp->dmae_mutex);
} }
void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
u32 addr, u32 len)
{
int offset = 0;
while (len > DMAE_LEN32_WR_MAX) {
bnx2x_write_dmae(bp, phys_addr + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
}
/* used only for slowpath so not inlined */ /* used only for slowpath so not inlined */
static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo) static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
{ {
@ -5917,6 +5932,24 @@ static void bnx2x_reset_common(struct bnx2x *bp)
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 0x1403); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 0x1403);
} }
static void bnx2x_init_pxp(struct bnx2x *bp)
{
u16 devctl;
int r_order, w_order;
pci_read_config_word(bp->pdev,
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
if (bp->mrrs == -1)
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
else {
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
r_order = bp->mrrs;
}
bnx2x_init_pxp_arb(bp, r_order, w_order);
}
static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
{ {
@ -6479,9 +6512,15 @@ static int bnx2x_init_func(struct bnx2x *bp)
if (CHIP_IS_E1H(bp)) { if (CHIP_IS_E1H(bp)) {
for (i = 0; i < 9; i++) bnx2x_init_block(bp, MISC_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, bnx2x_init_block(bp, TCM_BLOCK, FUNC0_STAGE + func);
cm_blocks[i], FUNC0_STAGE + func); bnx2x_init_block(bp, UCM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, CCM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, XCM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, TSEM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, USEM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, CSEM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, XSEM_BLOCK, FUNC0_STAGE + func);
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->e1hov); REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->e1hov);
@ -11834,22 +11873,22 @@ static int __devinit bnx2x_init_firmware(struct bnx2x *bp, struct device *dev)
BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, be16_to_cpu_n); BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, be16_to_cpu_n);
/* STORMs firmware */ /* STORMs firmware */
bp->tsem_int_table_data = bp->firmware->data + INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->tsem_int_table_data.offset); be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
bp->tsem_pram_data = bp->firmware->data + INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->tsem_pram_data.offset); be32_to_cpu(fw_hdr->tsem_pram_data.offset);
bp->usem_int_table_data = bp->firmware->data + INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->usem_int_table_data.offset); be32_to_cpu(fw_hdr->usem_int_table_data.offset);
bp->usem_pram_data = bp->firmware->data + INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->usem_pram_data.offset); be32_to_cpu(fw_hdr->usem_pram_data.offset);
bp->xsem_int_table_data = bp->firmware->data + INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->xsem_int_table_data.offset); be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
bp->xsem_pram_data = bp->firmware->data + INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->xsem_pram_data.offset); be32_to_cpu(fw_hdr->xsem_pram_data.offset);
bp->csem_int_table_data = bp->firmware->data + INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->csem_int_table_data.offset); be32_to_cpu(fw_hdr->csem_int_table_data.offset);
bp->csem_pram_data = bp->firmware->data + INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->csem_pram_data.offset); be32_to_cpu(fw_hdr->csem_pram_data.offset);
return 0; return 0;
init_offsets_alloc_err: init_offsets_alloc_err:

View file

@ -6019,3 +6019,116 @@ Theotherbitsarereservedandshouldbezero*/
#define COMMAND_REG_SIMD_NOMASK 0x1c #define COMMAND_REG_SIMD_NOMASK 0x1c
#define IGU_MEM_BASE 0x0000
#define IGU_MEM_MSIX_BASE 0x0000
#define IGU_MEM_MSIX_UPPER 0x007f
#define IGU_MEM_MSIX_RESERVED_UPPER 0x01ff
#define IGU_MEM_PBA_MSIX_BASE 0x0200
#define IGU_MEM_PBA_MSIX_UPPER 0x0200
#define IGU_CMD_BACKWARD_COMP_PROD_UPD 0x0201
#define IGU_MEM_PBA_MSIX_RESERVED_UPPER 0x03ff
#define IGU_CMD_INT_ACK_BASE 0x0400
#define IGU_CMD_INT_ACK_UPPER\
(IGU_CMD_INT_ACK_BASE + MAX_SB_PER_PORT * NUM_OF_PORTS_PER_PATH - 1)
#define IGU_CMD_INT_ACK_RESERVED_UPPER 0x04ff
#define IGU_CMD_E2_PROD_UPD_BASE 0x0500
#define IGU_CMD_E2_PROD_UPD_UPPER\
(IGU_CMD_E2_PROD_UPD_BASE + MAX_SB_PER_PORT * NUM_OF_PORTS_PER_PATH - 1)
#define IGU_CMD_E2_PROD_UPD_RESERVED_UPPER 0x059f
#define IGU_CMD_ATTN_BIT_UPD_UPPER 0x05a0
#define IGU_CMD_ATTN_BIT_SET_UPPER 0x05a1
#define IGU_CMD_ATTN_BIT_CLR_UPPER 0x05a2
#define IGU_REG_SISR_MDPC_WMASK_UPPER 0x05a3
#define IGU_REG_SISR_MDPC_WMASK_LSB_UPPER 0x05a4
#define IGU_REG_SISR_MDPC_WMASK_MSB_UPPER 0x05a5
#define IGU_REG_SISR_MDPC_WOMASK_UPPER 0x05a6
#define IGU_REG_RESERVED_UPPER 0x05ff
#define CDU_REGION_NUMBER_XCM_AG 2
#define CDU_REGION_NUMBER_UCM_AG 4
/**
* String-to-compress [31:8] = CID (all 24 bits)
* String-to-compress [7:4] = Region
* String-to-compress [3:0] = Type
*/
#define CDU_VALID_DATA(_cid, _region, _type)\
(((_cid) << 8) | (((_region)&0xf)<<4) | (((_type)&0xf)))
#define CDU_CRC8(_cid, _region, _type)\
(calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff))
#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type)\
(0x80 | ((CDU_CRC8(_cid, _region, _type)) & 0x7f))
#define CDU_RSRVD_VALUE_TYPE_B(_crc, _type)\
(0x80 | ((_type)&0xf << 3) | ((CDU_CRC8(_cid, _region, _type)) & 0x7))
#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
/******************************************************************************
* Description:
* Calculates crc 8 on a word value: polynomial 0-1-2-8
* Code was translated from Verilog.
* Return:
*****************************************************************************/
static inline u8 calc_crc8(u32 data, u8 crc)
{
u8 D[32];
u8 NewCRC[8];
u8 C[8];
u8 crc_res;
u8 i;
/* split the data into 31 bits */
for (i = 0; i < 32; i++) {
D[i] = (u8)(data & 1);
data = data >> 1;
}
/* split the crc into 8 bits */
for (i = 0; i < 8; i++) {
C[i] = crc & 1;
crc = crc >> 1;
}
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
C[6] ^ C[7];
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^
C[6];
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
C[0] ^ C[1] ^ C[4] ^ C[5];
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
C[1] ^ C[2] ^ C[5] ^ C[6];
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
C[3] ^ C[4] ^ C[7];
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
C[5];
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
C[6];
crc_res = 0;
for (i = 0; i < 8; i++)
crc_res |= (NewCRC[i] << i);
return crc_res;
}