mirror of
https://github.com/adulau/aha.git
synced 2024-12-27 19:26:25 +00:00
Staging: dst: remove from the tree
DST is dead, no one is using it and upstream has abandoned it, so remove it from the tree because it is not going anywhere. Acked-by: Evgeniy Polyakov <zbr@ioremap.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
parent
d7edf47947
commit
29d249ed80
11 changed files with 0 additions and 4550 deletions
|
@ -87,8 +87,6 @@ source "drivers/staging/frontier/Kconfig"
|
|||
|
||||
source "drivers/staging/dream/Kconfig"
|
||||
|
||||
source "drivers/staging/dst/Kconfig"
|
||||
|
||||
source "drivers/staging/pohmelfs/Kconfig"
|
||||
|
||||
source "drivers/staging/b3dfg/Kconfig"
|
||||
|
|
|
@ -26,7 +26,6 @@ obj-$(CONFIG_RTL8192E) += rtl8192e/
|
|||
obj-$(CONFIG_INPUT_MIMIO) += mimio/
|
||||
obj-$(CONFIG_TRANZPORT) += frontier/
|
||||
obj-$(CONFIG_DREAM) += dream/
|
||||
obj-$(CONFIG_DST) += dst/
|
||||
obj-$(CONFIG_POHMELFS) += pohmelfs/
|
||||
obj-$(CONFIG_B3DFG) += b3dfg/
|
||||
obj-$(CONFIG_IDE_PHISON) += phison/
|
||||
|
|
|
@ -1,67 +0,0 @@
|
|||
config DST
|
||||
tristate "Distributed storage"
|
||||
depends on NET && CRYPTO && SYSFS && BLK_DEV
|
||||
select CONNECTOR
|
||||
---help---
|
||||
DST is a network block device storage, which can be used to organize
|
||||
exported storage on the remote nodes into the local block device.
|
||||
|
||||
DST works on top of any network media and protocol; it is just a matter
|
||||
of configuration utility to understand the correct addresses. The most
|
||||
common example is TCP over IP, which allows to pass through firewalls and
|
||||
create remote backup storage in a different datacenter. DST requires
|
||||
single port to be enabled on the exporting node and outgoing connections
|
||||
on the local node.
|
||||
|
||||
DST works with in-kernel client and server, which improves performance by
|
||||
eliminating unneded data copies and by not depending on the version
|
||||
of the external IO components. It requires userspace configuration utility
|
||||
though.
|
||||
|
||||
DST uses transaction model, when each store has to be explicitly acked
|
||||
from the remote node to be considered as successfully written. There
|
||||
may be lots of in-flight transactions. When remote host does not ack
|
||||
the transaction it will be resent predefined number of times with specified
|
||||
timeouts between them. All those parameters are configurable. Transactions
|
||||
are marked as failed after all resends complete unsuccessfully; having
|
||||
long enough resend timeout and/or large number of resends allows not to
|
||||
return error to the higher (FS usually) layer in case of short network
|
||||
problems or remote node outages. In case of network RAID setup this means
|
||||
that storage will not degrade until transactions are marked as failed, and
|
||||
thus will not force checksum recalculation and data rebuild. In case of
|
||||
connection failure DST will try to reconnect to the remote node automatically.
|
||||
DST sends ping commands at idle time to detect if remote node is alive.
|
||||
|
||||
Because of transactional model it is possible to use zero-copy sending
|
||||
without worry of data corruption (which in turn could be detected by the
|
||||
strong checksums though).
|
||||
|
||||
DST may fully encrypt the data channel in case of untrusted channel and implement
|
||||
strong checksum of the transferred data. It is possible to configure algorithms
|
||||
and crypto keys; they should match on both sides of the network channel.
|
||||
Crypto processing does not introduce noticeble performance overhead, since DST
|
||||
uses configurable pool of threads to perform crypto processing.
|
||||
|
||||
DST utilizes memory pool model of all its transaction allocations (it is the
|
||||
only additional allocation on the client) and server allocations (bio pools,
|
||||
while pages are allocated from the slab).
|
||||
|
||||
At startup DST performs a simple negotiation with the export node to determine
|
||||
access permissions and size of the exported storage. It can be extended if
|
||||
new parameters should be autonegotiated.
|
||||
|
||||
DST carries block IO flags in the protocol, which allows to transparently implement
|
||||
barriers and sync/flush operations. Those flags are used in the export node where
|
||||
IO against the local storage is performed, which means that sync write will be sync
|
||||
on the remote node too, which in turn improves data integrity and improved resistance
|
||||
to errors and data corruption during power outages or storage damages.
|
||||
|
||||
Homepage: http://www.ioremap.net/projects/dst
|
||||
Userspace configuration utility and the latest releases: http://www.ioremap.net/archive/dst/
|
||||
|
||||
config DST_DEBUG
|
||||
bool "DST debug"
|
||||
depends on DST
|
||||
---help---
|
||||
This option will enable HEAVY debugging of the DST.
|
||||
Turn it on ONLY if you have to debug some really obscure problem.
|
|
@ -1,3 +0,0 @@
|
|||
obj-$(CONFIG_DST) += nst.o
|
||||
|
||||
nst-y := dcore.o state.o export.o thread_pool.o crypto.o trans.o
|
|
@ -1,733 +0,0 @@
|
|||
/*
|
||||
* 2007+ Copyright (c) Evgeniy Polyakov <zbr@ioremap.net>
|
||||
* All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/bio.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/dst.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
/*
|
||||
* Tricky bastard, but IV can be more complex with time...
|
||||
*/
|
||||
static inline u64 dst_gen_iv(struct dst_trans *t)
|
||||
{
|
||||
return t->gen;
|
||||
}
|
||||
|
||||
/*
|
||||
* Crypto machinery: hash/cipher support for the given crypto controls.
|
||||
*/
|
||||
static struct crypto_hash *dst_init_hash(struct dst_crypto_ctl *ctl, u8 *key)
|
||||
{
|
||||
int err;
|
||||
struct crypto_hash *hash;
|
||||
|
||||
hash = crypto_alloc_hash(ctl->hash_algo, 0, CRYPTO_ALG_ASYNC);
|
||||
if (IS_ERR(hash)) {
|
||||
err = PTR_ERR(hash);
|
||||
dprintk("%s: failed to allocate hash '%s', err: %d.\n",
|
||||
__func__, ctl->hash_algo, err);
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
ctl->crypto_attached_size = crypto_hash_digestsize(hash);
|
||||
|
||||
if (!ctl->hash_keysize)
|
||||
return hash;
|
||||
|
||||
err = crypto_hash_setkey(hash, key, ctl->hash_keysize);
|
||||
if (err) {
|
||||
dprintk("%s: failed to set key for hash '%s', err: %d.\n",
|
||||
__func__, ctl->hash_algo, err);
|
||||
goto err_out_free;
|
||||
}
|
||||
|
||||
return hash;
|
||||
|
||||
err_out_free:
|
||||
crypto_free_hash(hash);
|
||||
err_out_exit:
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
static struct crypto_ablkcipher *dst_init_cipher(struct dst_crypto_ctl *ctl,
|
||||
u8 *key)
|
||||
{
|
||||
int err = -EINVAL;
|
||||
struct crypto_ablkcipher *cipher;
|
||||
|
||||
if (!ctl->cipher_keysize)
|
||||
goto err_out_exit;
|
||||
|
||||
cipher = crypto_alloc_ablkcipher(ctl->cipher_algo, 0, 0);
|
||||
if (IS_ERR(cipher)) {
|
||||
err = PTR_ERR(cipher);
|
||||
dprintk("%s: failed to allocate cipher '%s', err: %d.\n",
|
||||
__func__, ctl->cipher_algo, err);
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
crypto_ablkcipher_clear_flags(cipher, ~0);
|
||||
|
||||
err = crypto_ablkcipher_setkey(cipher, key, ctl->cipher_keysize);
|
||||
if (err) {
|
||||
dprintk("%s: failed to set key for cipher '%s', err: %d.\n",
|
||||
__func__, ctl->cipher_algo, err);
|
||||
goto err_out_free;
|
||||
}
|
||||
|
||||
return cipher;
|
||||
|
||||
err_out_free:
|
||||
crypto_free_ablkcipher(cipher);
|
||||
err_out_exit:
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
/*
|
||||
* Crypto engine has a pool of pages to encrypt data into before sending
|
||||
* it over the network. This pool is freed/allocated here.
|
||||
*/
|
||||
static void dst_crypto_pages_free(struct dst_crypto_engine *e)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < e->page_num; ++i)
|
||||
__free_page(e->pages[i]);
|
||||
kfree(e->pages);
|
||||
}
|
||||
|
||||
static int dst_crypto_pages_alloc(struct dst_crypto_engine *e, int num)
|
||||
{
|
||||
int i;
|
||||
|
||||
e->pages = kmalloc(num * sizeof(struct page **), GFP_KERNEL);
|
||||
if (!e->pages)
|
||||
return -ENOMEM;
|
||||
|
||||
for (i = 0; i < num; ++i) {
|
||||
e->pages[i] = alloc_page(GFP_KERNEL);
|
||||
if (!e->pages[i])
|
||||
goto err_out_free_pages;
|
||||
}
|
||||
|
||||
e->page_num = num;
|
||||
return 0;
|
||||
|
||||
err_out_free_pages:
|
||||
while (--i >= 0)
|
||||
__free_page(e->pages[i]);
|
||||
|
||||
kfree(e->pages);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize crypto engine for given node.
|
||||
* Setup cipher/hash, keys, pool of threads and private data.
|
||||
*/
|
||||
static int dst_crypto_engine_init(struct dst_crypto_engine *e,
|
||||
struct dst_node *n)
|
||||
{
|
||||
int err;
|
||||
struct dst_crypto_ctl *ctl = &n->crypto;
|
||||
|
||||
err = dst_crypto_pages_alloc(e, n->max_pages);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
e->size = PAGE_SIZE;
|
||||
e->data = kmalloc(e->size, GFP_KERNEL);
|
||||
if (!e->data) {
|
||||
err = -ENOMEM;
|
||||
goto err_out_free_pages;
|
||||
}
|
||||
|
||||
if (ctl->hash_algo[0]) {
|
||||
e->hash = dst_init_hash(ctl, n->hash_key);
|
||||
if (IS_ERR(e->hash)) {
|
||||
err = PTR_ERR(e->hash);
|
||||
e->hash = NULL;
|
||||
goto err_out_free;
|
||||
}
|
||||
}
|
||||
|
||||
if (ctl->cipher_algo[0]) {
|
||||
e->cipher = dst_init_cipher(ctl, n->cipher_key);
|
||||
if (IS_ERR(e->cipher)) {
|
||||
err = PTR_ERR(e->cipher);
|
||||
e->cipher = NULL;
|
||||
goto err_out_free_hash;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_free_hash:
|
||||
crypto_free_hash(e->hash);
|
||||
err_out_free:
|
||||
kfree(e->data);
|
||||
err_out_free_pages:
|
||||
dst_crypto_pages_free(e);
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
static void dst_crypto_engine_exit(struct dst_crypto_engine *e)
|
||||
{
|
||||
if (e->hash)
|
||||
crypto_free_hash(e->hash);
|
||||
if (e->cipher)
|
||||
crypto_free_ablkcipher(e->cipher);
|
||||
dst_crypto_pages_free(e);
|
||||
kfree(e->data);
|
||||
}
|
||||
|
||||
/*
|
||||
* Waiting for cipher processing to be completed.
|
||||
*/
|
||||
struct dst_crypto_completion {
|
||||
struct completion complete;
|
||||
int error;
|
||||
};
|
||||
|
||||
static void dst_crypto_complete(struct crypto_async_request *req, int err)
|
||||
{
|
||||
struct dst_crypto_completion *c = req->data;
|
||||
|
||||
if (err == -EINPROGRESS)
|
||||
return;
|
||||
|
||||
dprintk("%s: req: %p, err: %d.\n", __func__, req, err);
|
||||
c->error = err;
|
||||
complete(&c->complete);
|
||||
}
|
||||
|
||||
static int dst_crypto_process(struct ablkcipher_request *req,
|
||||
struct scatterlist *sg_dst, struct scatterlist *sg_src,
|
||||
void *iv, int enc, unsigned long timeout)
|
||||
{
|
||||
struct dst_crypto_completion c;
|
||||
int err;
|
||||
|
||||
init_completion(&c.complete);
|
||||
c.error = -EINPROGRESS;
|
||||
|
||||
ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
||||
dst_crypto_complete, &c);
|
||||
|
||||
ablkcipher_request_set_crypt(req, sg_src, sg_dst, sg_src->length, iv);
|
||||
|
||||
if (enc)
|
||||
err = crypto_ablkcipher_encrypt(req);
|
||||
else
|
||||
err = crypto_ablkcipher_decrypt(req);
|
||||
|
||||
switch (err) {
|
||||
case -EINPROGRESS:
|
||||
case -EBUSY:
|
||||
err = wait_for_completion_interruptible_timeout(&c.complete,
|
||||
timeout);
|
||||
if (!err)
|
||||
err = -ETIMEDOUT;
|
||||
else
|
||||
err = c.error;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* DST uses generic iteration approach for data crypto processing.
|
||||
* Single block IO request is switched into array of scatterlists,
|
||||
* which are submitted to the crypto processing iterator.
|
||||
*
|
||||
* Input and output iterator initialization are different, since
|
||||
* in output case we can not encrypt data in-place and need a
|
||||
* temporary storage, which is then being sent to the remote peer.
|
||||
*/
|
||||
static int dst_trans_iter_out(struct bio *bio, struct dst_crypto_engine *e,
|
||||
int (*iterator) (struct dst_crypto_engine *e,
|
||||
struct scatterlist *dst,
|
||||
struct scatterlist *src))
|
||||
{
|
||||
struct bio_vec *bv;
|
||||
int err, i;
|
||||
|
||||
sg_init_table(e->src, bio->bi_vcnt);
|
||||
sg_init_table(e->dst, bio->bi_vcnt);
|
||||
|
||||
bio_for_each_segment(bv, bio, i) {
|
||||
sg_set_page(&e->src[i], bv->bv_page, bv->bv_len, bv->bv_offset);
|
||||
sg_set_page(&e->dst[i], e->pages[i], bv->bv_len, bv->bv_offset);
|
||||
|
||||
err = iterator(e, &e->dst[i], &e->src[i]);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dst_trans_iter_in(struct bio *bio, struct dst_crypto_engine *e,
|
||||
int (*iterator) (struct dst_crypto_engine *e,
|
||||
struct scatterlist *dst,
|
||||
struct scatterlist *src))
|
||||
{
|
||||
struct bio_vec *bv;
|
||||
int err, i;
|
||||
|
||||
sg_init_table(e->src, bio->bi_vcnt);
|
||||
sg_init_table(e->dst, bio->bi_vcnt);
|
||||
|
||||
bio_for_each_segment(bv, bio, i) {
|
||||
sg_set_page(&e->src[i], bv->bv_page, bv->bv_len, bv->bv_offset);
|
||||
sg_set_page(&e->dst[i], bv->bv_page, bv->bv_len, bv->bv_offset);
|
||||
|
||||
err = iterator(e, &e->dst[i], &e->src[i]);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dst_crypt_iterator(struct dst_crypto_engine *e,
|
||||
struct scatterlist *sg_dst, struct scatterlist *sg_src)
|
||||
{
|
||||
struct ablkcipher_request *req = e->data;
|
||||
u8 iv[32];
|
||||
|
||||
memset(iv, 0, sizeof(iv));
|
||||
|
||||
memcpy(iv, &e->iv, sizeof(e->iv));
|
||||
|
||||
return dst_crypto_process(req, sg_dst, sg_src, iv, e->enc, e->timeout);
|
||||
}
|
||||
|
||||
static int dst_crypt(struct dst_crypto_engine *e, struct bio *bio)
|
||||
{
|
||||
struct ablkcipher_request *req = e->data;
|
||||
|
||||
memset(req, 0, sizeof(struct ablkcipher_request));
|
||||
ablkcipher_request_set_tfm(req, e->cipher);
|
||||
|
||||
if (e->enc)
|
||||
return dst_trans_iter_out(bio, e, dst_crypt_iterator);
|
||||
else
|
||||
return dst_trans_iter_in(bio, e, dst_crypt_iterator);
|
||||
}
|
||||
|
||||
static int dst_hash_iterator(struct dst_crypto_engine *e,
|
||||
struct scatterlist *sg_dst, struct scatterlist *sg_src)
|
||||
{
|
||||
return crypto_hash_update(e->data, sg_src, sg_src->length);
|
||||
}
|
||||
|
||||
static int dst_hash(struct dst_crypto_engine *e, struct bio *bio, void *dst)
|
||||
{
|
||||
struct hash_desc *desc = e->data;
|
||||
int err;
|
||||
|
||||
desc->tfm = e->hash;
|
||||
desc->flags = 0;
|
||||
|
||||
err = crypto_hash_init(desc);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = dst_trans_iter_in(bio, e, dst_hash_iterator);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = crypto_hash_final(desc, dst);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize/cleanup a crypto thread. The only thing it should
|
||||
* do is to allocate a pool of pages as temporary storage.
|
||||
* And to setup cipher and/or hash.
|
||||
*/
|
||||
static void *dst_crypto_thread_init(void *data)
|
||||
{
|
||||
struct dst_node *n = data;
|
||||
struct dst_crypto_engine *e;
|
||||
int err = -ENOMEM;
|
||||
|
||||
e = kzalloc(sizeof(struct dst_crypto_engine), GFP_KERNEL);
|
||||
if (!e)
|
||||
goto err_out_exit;
|
||||
e->src = kcalloc(2 * n->max_pages, sizeof(struct scatterlist),
|
||||
GFP_KERNEL);
|
||||
if (!e->src)
|
||||
goto err_out_free;
|
||||
|
||||
e->dst = e->src + n->max_pages;
|
||||
|
||||
err = dst_crypto_engine_init(e, n);
|
||||
if (err)
|
||||
goto err_out_free_all;
|
||||
|
||||
return e;
|
||||
|
||||
err_out_free_all:
|
||||
kfree(e->src);
|
||||
err_out_free:
|
||||
kfree(e);
|
||||
err_out_exit:
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
static void dst_crypto_thread_cleanup(void *private)
|
||||
{
|
||||
struct dst_crypto_engine *e = private;
|
||||
|
||||
dst_crypto_engine_exit(e);
|
||||
kfree(e->src);
|
||||
kfree(e);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize crypto engine for given node: store keys, create pool
|
||||
* of threads, initialize each one.
|
||||
*
|
||||
* Each thread has unique ID, but 0 and 1 are reserved for receiving and
|
||||
* accepting threads (if export node), so IDs could start from 2, but starting
|
||||
* them from 10 allows easily understand what this thread is for.
|
||||
*/
|
||||
int dst_node_crypto_init(struct dst_node *n, struct dst_crypto_ctl *ctl)
|
||||
{
|
||||
void *key = (ctl + 1);
|
||||
int err = -ENOMEM, i;
|
||||
char name[32];
|
||||
|
||||
if (ctl->hash_keysize) {
|
||||
n->hash_key = kmalloc(ctl->hash_keysize, GFP_KERNEL);
|
||||
if (!n->hash_key)
|
||||
goto err_out_exit;
|
||||
memcpy(n->hash_key, key, ctl->hash_keysize);
|
||||
}
|
||||
|
||||
if (ctl->cipher_keysize) {
|
||||
n->cipher_key = kmalloc(ctl->cipher_keysize, GFP_KERNEL);
|
||||
if (!n->cipher_key)
|
||||
goto err_out_free_hash;
|
||||
memcpy(n->cipher_key, key, ctl->cipher_keysize);
|
||||
}
|
||||
memcpy(&n->crypto, ctl, sizeof(struct dst_crypto_ctl));
|
||||
|
||||
for (i = 0; i < ctl->thread_num; ++i) {
|
||||
snprintf(name, sizeof(name), "%s-crypto-%d", n->name, i);
|
||||
/* Unique ids... */
|
||||
err = thread_pool_add_worker(n->pool, name, i + 10,
|
||||
dst_crypto_thread_init, dst_crypto_thread_cleanup, n);
|
||||
if (err)
|
||||
goto err_out_free_threads;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_free_threads:
|
||||
while (--i >= 0)
|
||||
thread_pool_del_worker_id(n->pool, i+10);
|
||||
|
||||
if (ctl->cipher_keysize)
|
||||
kfree(n->cipher_key);
|
||||
ctl->cipher_keysize = 0;
|
||||
err_out_free_hash:
|
||||
if (ctl->hash_keysize)
|
||||
kfree(n->hash_key);
|
||||
ctl->hash_keysize = 0;
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
void dst_node_crypto_exit(struct dst_node *n)
|
||||
{
|
||||
struct dst_crypto_ctl *ctl = &n->crypto;
|
||||
|
||||
if (ctl->cipher_algo[0] || ctl->hash_algo[0]) {
|
||||
kfree(n->hash_key);
|
||||
kfree(n->cipher_key);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Thrad pool setup callback. Just stores a transaction in private data.
|
||||
*/
|
||||
static int dst_trans_crypto_setup(void *crypto_engine, void *trans)
|
||||
{
|
||||
struct dst_crypto_engine *e = crypto_engine;
|
||||
|
||||
e->private = trans;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void dst_dump_bio(struct bio *bio)
|
||||
{
|
||||
u8 *p;
|
||||
struct bio_vec *bv;
|
||||
int i;
|
||||
|
||||
bio_for_each_segment(bv, bio, i) {
|
||||
dprintk("%s: %llu/%u: size: %u, offset: %u, data: ",
|
||||
__func__, bio->bi_sector, bio->bi_size,
|
||||
bv->bv_len, bv->bv_offset);
|
||||
|
||||
p = kmap(bv->bv_page) + bv->bv_offset;
|
||||
for (i = 0; i < bv->bv_len; ++i)
|
||||
printk(KERN_DEBUG "%02x ", p[i]);
|
||||
kunmap(bv->bv_page);
|
||||
printk("\n");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Encrypt/hash data and send it to the network.
|
||||
*/
|
||||
static int dst_crypto_process_sending(struct dst_crypto_engine *e,
|
||||
struct bio *bio, u8 *hash)
|
||||
{
|
||||
int err;
|
||||
|
||||
if (e->cipher) {
|
||||
err = dst_crypt(e, bio);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
if (e->hash) {
|
||||
err = dst_hash(e, bio, hash);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
#ifdef CONFIG_DST_DEBUG
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
/* dst_dump_bio(bio); */
|
||||
|
||||
printk(KERN_DEBUG "%s: bio: %llu/%u, rw: %lu, hash: ",
|
||||
__func__, (u64)bio->bi_sector,
|
||||
bio->bi_size, bio_data_dir(bio));
|
||||
for (i = 0; i < crypto_hash_digestsize(e->hash); ++i)
|
||||
printk("%02x ", hash[i]);
|
||||
printk("\n");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if received data is valid. Decipher if it is.
|
||||
*/
|
||||
static int dst_crypto_process_receiving(struct dst_crypto_engine *e,
|
||||
struct bio *bio, u8 *hash, u8 *recv_hash)
|
||||
{
|
||||
int err;
|
||||
|
||||
if (e->hash) {
|
||||
int mismatch;
|
||||
|
||||
err = dst_hash(e, bio, hash);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
mismatch = !!memcmp(recv_hash, hash,
|
||||
crypto_hash_digestsize(e->hash));
|
||||
#ifdef CONFIG_DST_DEBUG
|
||||
/* dst_dump_bio(bio); */
|
||||
|
||||
printk(KERN_DEBUG "%s: bio: %llu/%u, rw: %lu, hash mismatch: %d",
|
||||
__func__, (u64)bio->bi_sector, bio->bi_size,
|
||||
bio_data_dir(bio), mismatch);
|
||||
if (mismatch) {
|
||||
unsigned int i;
|
||||
|
||||
printk(", recv/calc: ");
|
||||
for (i = 0; i < crypto_hash_digestsize(e->hash); ++i)
|
||||
printk("%02x/%02x ", recv_hash[i], hash[i]);
|
||||
|
||||
}
|
||||
printk("\n");
|
||||
#endif
|
||||
err = -1;
|
||||
if (mismatch)
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
if (e->cipher) {
|
||||
err = dst_crypt(e, bio);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Thread pool callback to encrypt data and send it to the netowork.
|
||||
*/
|
||||
static int dst_trans_crypto_action(void *crypto_engine, void *schedule_data)
|
||||
{
|
||||
struct dst_crypto_engine *e = crypto_engine;
|
||||
struct dst_trans *t = schedule_data;
|
||||
struct bio *bio = t->bio;
|
||||
int err;
|
||||
|
||||
dprintk("%s: t: %p, gen: %llu, cipher: %p, hash: %p.\n",
|
||||
__func__, t, t->gen, e->cipher, e->hash);
|
||||
|
||||
e->enc = t->enc;
|
||||
e->iv = dst_gen_iv(t);
|
||||
|
||||
if (bio_data_dir(bio) == WRITE) {
|
||||
err = dst_crypto_process_sending(e, bio, t->cmd.hash);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
if (e->hash) {
|
||||
t->cmd.csize = crypto_hash_digestsize(e->hash);
|
||||
t->cmd.size += t->cmd.csize;
|
||||
}
|
||||
|
||||
return dst_trans_send(t);
|
||||
} else {
|
||||
u8 *hash = e->data + e->size/2;
|
||||
|
||||
err = dst_crypto_process_receiving(e, bio, hash, t->cmd.hash);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
dst_trans_remove(t);
|
||||
dst_trans_put(t);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
t->error = err;
|
||||
dst_trans_put(t);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Schedule crypto processing for given transaction.
|
||||
*/
|
||||
int dst_trans_crypto(struct dst_trans *t)
|
||||
{
|
||||
struct dst_node *n = t->n;
|
||||
int err;
|
||||
|
||||
err = thread_pool_schedule(n->pool,
|
||||
dst_trans_crypto_setup, dst_trans_crypto_action,
|
||||
t, MAX_SCHEDULE_TIMEOUT);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
dst_trans_put(t);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Crypto machinery for the export node.
|
||||
*/
|
||||
static int dst_export_crypto_setup(void *crypto_engine, void *bio)
|
||||
{
|
||||
struct dst_crypto_engine *e = crypto_engine;
|
||||
|
||||
e->private = bio;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dst_export_crypto_action(void *crypto_engine, void *schedule_data)
|
||||
{
|
||||
struct dst_crypto_engine *e = crypto_engine;
|
||||
struct bio *bio = schedule_data;
|
||||
struct dst_export_priv *p = bio->bi_private;
|
||||
int err;
|
||||
|
||||
dprintk("%s: e: %p, data: %p, bio: %llu/%u, dir: %lu.\n",
|
||||
__func__, e, e->data, (u64)bio->bi_sector,
|
||||
bio->bi_size, bio_data_dir(bio));
|
||||
|
||||
e->enc = (bio_data_dir(bio) == READ);
|
||||
e->iv = p->cmd.id;
|
||||
|
||||
if (bio_data_dir(bio) == WRITE) {
|
||||
u8 *hash = e->data + e->size/2;
|
||||
|
||||
err = dst_crypto_process_receiving(e, bio, hash, p->cmd.hash);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
generic_make_request(bio);
|
||||
} else {
|
||||
err = dst_crypto_process_sending(e, bio, p->cmd.hash);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
if (e->hash) {
|
||||
p->cmd.csize = crypto_hash_digestsize(e->hash);
|
||||
p->cmd.size += p->cmd.csize;
|
||||
}
|
||||
|
||||
err = dst_export_send_bio(bio);
|
||||
}
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
bio_put(bio);
|
||||
return err;
|
||||
}
|
||||
|
||||
int dst_export_crypto(struct dst_node *n, struct bio *bio)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = thread_pool_schedule(n->pool,
|
||||
dst_export_crypto_setup, dst_export_crypto_action,
|
||||
bio, MAX_SCHEDULE_TIMEOUT);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
bio_put(bio);
|
||||
return err;
|
||||
}
|
|
@ -1,968 +0,0 @@
|
|||
/*
|
||||
* 2007+ Copyright (c) Evgeniy Polyakov <zbr@ioremap.net>
|
||||
* All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/buffer_head.h>
|
||||
#include <linux/connector.h>
|
||||
#include <linux/dst.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/jhash.h>
|
||||
#include <linux/idr.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/namei.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/socket.h>
|
||||
|
||||
#include <linux/in.h>
|
||||
#include <linux/in6.h>
|
||||
|
||||
#include <net/sock.h>
|
||||
|
||||
static int dst_major;
|
||||
|
||||
static DEFINE_MUTEX(dst_hash_lock);
|
||||
static struct list_head *dst_hashtable;
|
||||
static unsigned int dst_hashtable_size = 128;
|
||||
module_param(dst_hashtable_size, uint, 0644);
|
||||
|
||||
static char dst_name[] = "Dementianting goldfish";
|
||||
|
||||
static DEFINE_IDR(dst_index_idr);
|
||||
static struct cb_id cn_dst_id = { CN_DST_IDX, CN_DST_VAL };
|
||||
|
||||
/*
|
||||
* DST sysfs tree for device called 'storage':
|
||||
*
|
||||
* /sys/bus/dst/devices/storage/
|
||||
* /sys/bus/dst/devices/storage/type : 192.168.4.80:1025
|
||||
* /sys/bus/dst/devices/storage/size : 800
|
||||
* /sys/bus/dst/devices/storage/name : storage
|
||||
*/
|
||||
|
||||
static int dst_dev_match(struct device *dev, struct device_driver *drv)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
static struct bus_type dst_dev_bus_type = {
|
||||
.name = "dst",
|
||||
.match = &dst_dev_match,
|
||||
};
|
||||
|
||||
static void dst_node_release(struct device *dev)
|
||||
{
|
||||
struct dst_info *info = container_of(dev, struct dst_info, device);
|
||||
|
||||
kfree(info);
|
||||
}
|
||||
|
||||
static struct device dst_node_dev = {
|
||||
.bus = &dst_dev_bus_type,
|
||||
.release = &dst_node_release
|
||||
};
|
||||
|
||||
/*
|
||||
* Setting size of the node after it was changed.
|
||||
*/
|
||||
static void dst_node_set_size(struct dst_node *n)
|
||||
{
|
||||
struct block_device *bdev;
|
||||
|
||||
set_capacity(n->disk, n->size >> 9);
|
||||
|
||||
bdev = bdget_disk(n->disk, 0);
|
||||
if (bdev) {
|
||||
mutex_lock(&bdev->bd_inode->i_mutex);
|
||||
i_size_write(bdev->bd_inode, n->size);
|
||||
mutex_unlock(&bdev->bd_inode->i_mutex);
|
||||
bdput(bdev);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Distributed storage request processing function.
|
||||
*/
|
||||
static int dst_request(struct request_queue *q, struct bio *bio)
|
||||
{
|
||||
struct dst_node *n = q->queuedata;
|
||||
int err = -EIO;
|
||||
|
||||
if (bio_empty_barrier(bio) && !blk_queue_discard(q)) {
|
||||
/*
|
||||
* This is a dirty^Wnice hack, but if we complete this
|
||||
* operation with -EOPNOTSUPP like intended, XFS
|
||||
* will stuck and freeze the machine. This may be
|
||||
* not particulary XFS problem though, but it is the
|
||||
* only FS which sends empty barrier at umount time
|
||||
* I worked with.
|
||||
*
|
||||
* Empty barriers are not allowed anyway, see 51fd77bd9f512
|
||||
* for example, although later it was changed to
|
||||
* bio_rw_flagged(bio, BIO_RW_DISCARD) only, which does not
|
||||
* work in this case.
|
||||
*/
|
||||
/* err = -EOPNOTSUPP; */
|
||||
err = 0;
|
||||
goto end_io;
|
||||
}
|
||||
|
||||
bio_get(bio);
|
||||
|
||||
return dst_process_bio(n, bio);
|
||||
|
||||
end_io:
|
||||
bio_endio(bio, err);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Open/close callbacks for appropriate block device.
|
||||
*/
|
||||
static int dst_bdev_open(struct block_device *bdev, fmode_t mode)
|
||||
{
|
||||
struct dst_node *n = bdev->bd_disk->private_data;
|
||||
|
||||
dst_node_get(n);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dst_bdev_release(struct gendisk *disk, fmode_t mode)
|
||||
{
|
||||
struct dst_node *n = disk->private_data;
|
||||
|
||||
dst_node_put(n);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct block_device_operations dst_blk_ops = {
|
||||
.open = dst_bdev_open,
|
||||
.release = dst_bdev_release,
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
/*
|
||||
* Block layer binding - disk is created when array is fully configured
|
||||
* by userspace request.
|
||||
*/
|
||||
static int dst_node_create_disk(struct dst_node *n)
|
||||
{
|
||||
int err = -ENOMEM;
|
||||
u32 index = 0;
|
||||
|
||||
n->queue = blk_init_queue(NULL, NULL);
|
||||
if (!n->queue)
|
||||
goto err_out_exit;
|
||||
|
||||
n->queue->queuedata = n;
|
||||
blk_queue_make_request(n->queue, dst_request);
|
||||
blk_queue_max_phys_segments(n->queue, n->max_pages);
|
||||
blk_queue_max_hw_segments(n->queue, n->max_pages);
|
||||
|
||||
err = -ENOMEM;
|
||||
n->disk = alloc_disk(1);
|
||||
if (!n->disk)
|
||||
goto err_out_free_queue;
|
||||
|
||||
if (!(n->state->permissions & DST_PERM_WRITE)) {
|
||||
printk(KERN_INFO "DST node %s attached read-only.\n", n->name);
|
||||
set_disk_ro(n->disk, 1);
|
||||
}
|
||||
|
||||
if (!idr_pre_get(&dst_index_idr, GFP_KERNEL))
|
||||
goto err_out_put;
|
||||
|
||||
mutex_lock(&dst_hash_lock);
|
||||
err = idr_get_new(&dst_index_idr, NULL, &index);
|
||||
mutex_unlock(&dst_hash_lock);
|
||||
if (err)
|
||||
goto err_out_put;
|
||||
|
||||
n->disk->major = dst_major;
|
||||
n->disk->first_minor = index;
|
||||
n->disk->fops = &dst_blk_ops;
|
||||
n->disk->queue = n->queue;
|
||||
n->disk->private_data = n;
|
||||
snprintf(n->disk->disk_name, sizeof(n->disk->disk_name),
|
||||
"dst-%s", n->name);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_put:
|
||||
put_disk(n->disk);
|
||||
err_out_free_queue:
|
||||
blk_cleanup_queue(n->queue);
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Sysfs machinery: show device's size.
|
||||
*/
|
||||
static ssize_t dst_show_size(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
struct dst_info *info = container_of(dev, struct dst_info, device);
|
||||
|
||||
return sprintf(buf, "%llu\n", info->size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Show local exported device.
|
||||
*/
|
||||
static ssize_t dst_show_local(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
struct dst_info *info = container_of(dev, struct dst_info, device);
|
||||
|
||||
return sprintf(buf, "%s\n", info->local);
|
||||
}
|
||||
|
||||
/*
|
||||
* Shows type of the remote node - device major/minor number
|
||||
* for local nodes and address (af_inet ipv4/ipv6 only) for remote nodes.
|
||||
*/
|
||||
static ssize_t dst_show_type(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
struct dst_info *info = container_of(dev, struct dst_info, device);
|
||||
int family = info->net.addr.sa_family;
|
||||
|
||||
if (family == AF_INET) {
|
||||
struct sockaddr_in *sin = (struct sockaddr_in *)&info->net.addr;
|
||||
return sprintf(buf, "%u.%u.%u.%u:%d\n",
|
||||
NIPQUAD(sin->sin_addr.s_addr), ntohs(sin->sin_port));
|
||||
} else if (family == AF_INET6) {
|
||||
struct sockaddr_in6 *sin = (struct sockaddr_in6 *)
|
||||
&info->net.addr;
|
||||
return sprintf(buf,
|
||||
"%pi6:%d\n",
|
||||
&sin->sin6_addr, ntohs(sin->sin6_port));
|
||||
} else {
|
||||
int i, sz = PAGE_SIZE - 2; /* 0 symbol and '\n' below */
|
||||
int size, addrlen = info->net.addr.sa_data_len;
|
||||
unsigned char *a = (unsigned char *)&info->net.addr.sa_data;
|
||||
char *buf_orig = buf;
|
||||
|
||||
size = snprintf(buf, sz, "family: %d, addrlen: %u, addr: ",
|
||||
family, addrlen);
|
||||
sz -= size;
|
||||
buf += size;
|
||||
|
||||
for (i = 0; i < addrlen; ++i) {
|
||||
if (sz < 3)
|
||||
break;
|
||||
|
||||
size = snprintf(buf, sz, "%02x ", a[i]);
|
||||
sz -= size;
|
||||
buf += size;
|
||||
}
|
||||
buf += sprintf(buf, "\n");
|
||||
|
||||
return buf - buf_orig;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct device_attribute dst_node_attrs[] = {
|
||||
__ATTR(size, 0444, dst_show_size, NULL),
|
||||
__ATTR(type, 0444, dst_show_type, NULL),
|
||||
__ATTR(local, 0444, dst_show_local, NULL),
|
||||
};
|
||||
|
||||
static int dst_create_node_attributes(struct dst_node *n)
|
||||
{
|
||||
int err, i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(dst_node_attrs); ++i) {
|
||||
err = device_create_file(&n->info->device,
|
||||
&dst_node_attrs[i]);
|
||||
if (err)
|
||||
goto err_out_remove_all;
|
||||
}
|
||||
return 0;
|
||||
|
||||
err_out_remove_all:
|
||||
while (--i >= 0)
|
||||
device_remove_file(&n->info->device,
|
||||
&dst_node_attrs[i]);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void dst_remove_node_attributes(struct dst_node *n)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(dst_node_attrs); ++i)
|
||||
device_remove_file(&n->info->device,
|
||||
&dst_node_attrs[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sysfs cleanup and initialization.
|
||||
* Shows number of useful parameters.
|
||||
*/
|
||||
static void dst_node_sysfs_exit(struct dst_node *n)
|
||||
{
|
||||
if (n->info) {
|
||||
dst_remove_node_attributes(n);
|
||||
device_unregister(&n->info->device);
|
||||
n->info = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static int dst_node_sysfs_init(struct dst_node *n)
|
||||
{
|
||||
int err;
|
||||
|
||||
n->info = kzalloc(sizeof(struct dst_info), GFP_KERNEL);
|
||||
if (!n->info)
|
||||
return -ENOMEM;
|
||||
|
||||
memcpy(&n->info->device, &dst_node_dev, sizeof(struct device));
|
||||
n->info->size = n->size;
|
||||
|
||||
dev_set_name(&n->info->device, "dst-%s", n->name);
|
||||
err = device_register(&n->info->device);
|
||||
if (err) {
|
||||
dprintk(KERN_ERR "Failed to register node '%s', err: %d.\n",
|
||||
n->name, err);
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
dst_create_node_attributes(n);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
kfree(n->info);
|
||||
n->info = NULL;
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* DST node hash tables machinery.
|
||||
*/
|
||||
static inline unsigned int dst_hash(char *str, unsigned int size)
|
||||
{
|
||||
return jhash(str, size, 0) % dst_hashtable_size;
|
||||
}
|
||||
|
||||
static void dst_node_remove(struct dst_node *n)
|
||||
{
|
||||
mutex_lock(&dst_hash_lock);
|
||||
list_del_init(&n->node_entry);
|
||||
mutex_unlock(&dst_hash_lock);
|
||||
}
|
||||
|
||||
static void dst_node_add(struct dst_node *n)
|
||||
{
|
||||
unsigned hash = dst_hash(n->name, sizeof(n->name));
|
||||
|
||||
mutex_lock(&dst_hash_lock);
|
||||
list_add_tail(&n->node_entry, &dst_hashtable[hash]);
|
||||
mutex_unlock(&dst_hash_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Cleaning node when it is about to be freed.
|
||||
* There are still users of the socket though,
|
||||
* so connection cleanup should be protected.
|
||||
*/
|
||||
static void dst_node_cleanup(struct dst_node *n)
|
||||
{
|
||||
struct dst_state *st = n->state;
|
||||
|
||||
if (!st)
|
||||
return;
|
||||
|
||||
if (n->queue) {
|
||||
blk_cleanup_queue(n->queue);
|
||||
|
||||
mutex_lock(&dst_hash_lock);
|
||||
idr_remove(&dst_index_idr, n->disk->first_minor);
|
||||
mutex_unlock(&dst_hash_lock);
|
||||
|
||||
put_disk(n->disk);
|
||||
}
|
||||
|
||||
if (n->bdev) {
|
||||
sync_blockdev(n->bdev);
|
||||
close_bdev_exclusive(n->bdev, FMODE_READ|FMODE_WRITE);
|
||||
}
|
||||
|
||||
dst_state_lock(st);
|
||||
st->need_exit = 1;
|
||||
dst_state_exit_connected(st);
|
||||
dst_state_unlock(st);
|
||||
|
||||
wake_up(&st->thread_wait);
|
||||
|
||||
dst_state_put(st);
|
||||
n->state = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free security attributes attached to given node.
|
||||
*/
|
||||
static void dst_security_exit(struct dst_node *n)
|
||||
{
|
||||
struct dst_secure *s, *tmp;
|
||||
|
||||
list_for_each_entry_safe(s, tmp, &n->security_list, sec_entry) {
|
||||
list_del(&s->sec_entry);
|
||||
kfree(s);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Free node when there are no more users.
|
||||
* Actually node has to be freed on behalf od userspace process,
|
||||
* since there are number of threads, which are embedded in the
|
||||
* node, so they can not exit and free node from there, that is
|
||||
* why there is a wakeup if reference counter is not equal to zero.
|
||||
*/
|
||||
void dst_node_put(struct dst_node *n)
|
||||
{
|
||||
if (unlikely(!n))
|
||||
return;
|
||||
|
||||
dprintk("%s: n: %p, refcnt: %d.\n",
|
||||
__func__, n, atomic_read(&n->refcnt));
|
||||
|
||||
if (atomic_dec_and_test(&n->refcnt)) {
|
||||
dst_node_remove(n);
|
||||
n->trans_scan_timeout = 0;
|
||||
dst_node_cleanup(n);
|
||||
thread_pool_destroy(n->pool);
|
||||
dst_node_sysfs_exit(n);
|
||||
dst_node_crypto_exit(n);
|
||||
dst_security_exit(n);
|
||||
dst_node_trans_exit(n);
|
||||
|
||||
kfree(n);
|
||||
|
||||
dprintk("%s: freed n: %p.\n", __func__, n);
|
||||
} else {
|
||||
wake_up(&n->wait);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Setting up export device: lookup by the name, get its size
|
||||
* and setup listening socket, which will accept clients, which
|
||||
* will submit IO for given storage.
|
||||
*/
|
||||
static int dst_setup_export(struct dst_node *n, struct dst_ctl *ctl,
|
||||
struct dst_export_ctl *le)
|
||||
{
|
||||
int err;
|
||||
|
||||
snprintf(n->info->local, sizeof(n->info->local), "%s", le->device);
|
||||
|
||||
n->bdev = open_bdev_exclusive(le->device, FMODE_READ|FMODE_WRITE, NULL);
|
||||
if (IS_ERR(n->bdev))
|
||||
return PTR_ERR(n->bdev);
|
||||
|
||||
if (n->size != 0)
|
||||
n->size = min_t(loff_t, n->bdev->bd_inode->i_size, n->size);
|
||||
else
|
||||
n->size = n->bdev->bd_inode->i_size;
|
||||
|
||||
n->info->size = n->size;
|
||||
err = dst_node_init_listened(n, le);
|
||||
if (err)
|
||||
goto err_out_cleanup;
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_cleanup:
|
||||
close_bdev_exclusive(n->bdev, FMODE_READ|FMODE_WRITE);
|
||||
n->bdev = NULL;
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/* Empty thread pool callbacks for the network processing threads. */
|
||||
static inline void *dst_thread_network_init(void *data)
|
||||
{
|
||||
dprintk("%s: data: %p.\n", __func__, data);
|
||||
return data;
|
||||
}
|
||||
|
||||
static inline void dst_thread_network_cleanup(void *data)
|
||||
{
|
||||
dprintk("%s: data: %p.\n", __func__, data);
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate DST node and initialize some of its parameters.
|
||||
*/
|
||||
static struct dst_node *dst_alloc_node(struct dst_ctl *ctl,
|
||||
int (*start)(struct dst_node *),
|
||||
int num)
|
||||
{
|
||||
struct dst_node *n;
|
||||
int err;
|
||||
|
||||
n = kzalloc(sizeof(struct dst_node), GFP_KERNEL);
|
||||
if (!n)
|
||||
return NULL;
|
||||
|
||||
INIT_LIST_HEAD(&n->node_entry);
|
||||
|
||||
INIT_LIST_HEAD(&n->security_list);
|
||||
mutex_init(&n->security_lock);
|
||||
|
||||
init_waitqueue_head(&n->wait);
|
||||
|
||||
n->trans_scan_timeout = msecs_to_jiffies(ctl->trans_scan_timeout);
|
||||
if (!n->trans_scan_timeout)
|
||||
n->trans_scan_timeout = HZ;
|
||||
|
||||
n->trans_max_retries = ctl->trans_max_retries;
|
||||
if (!n->trans_max_retries)
|
||||
n->trans_max_retries = 10;
|
||||
|
||||
/*
|
||||
* Pretty much arbitrary default numbers.
|
||||
* 32 matches maximum number of pages in bio originated from ext3 (31).
|
||||
*/
|
||||
n->max_pages = ctl->max_pages;
|
||||
if (!n->max_pages)
|
||||
n->max_pages = 32;
|
||||
|
||||
if (n->max_pages > 1024)
|
||||
n->max_pages = 1024;
|
||||
|
||||
n->start = start;
|
||||
n->size = ctl->size;
|
||||
|
||||
atomic_set(&n->refcnt, 1);
|
||||
atomic_long_set(&n->gen, 0);
|
||||
snprintf(n->name, sizeof(n->name), "%s", ctl->name);
|
||||
|
||||
err = dst_node_sysfs_init(n);
|
||||
if (err)
|
||||
goto err_out_free;
|
||||
|
||||
n->pool = thread_pool_create(num, n->name, dst_thread_network_init,
|
||||
dst_thread_network_cleanup, n);
|
||||
if (IS_ERR(n->pool)) {
|
||||
err = PTR_ERR(n->pool);
|
||||
goto err_out_sysfs_exit;
|
||||
}
|
||||
|
||||
dprintk("%s: n: %p, name: %s.\n", __func__, n, n->name);
|
||||
|
||||
return n;
|
||||
|
||||
err_out_sysfs_exit:
|
||||
dst_node_sysfs_exit(n);
|
||||
err_out_free:
|
||||
kfree(n);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Starting a node, connected to the remote server:
|
||||
* register block device and initialize transaction mechanism.
|
||||
* In revers order though.
|
||||
*
|
||||
* It will autonegotiate some parameters with the remote node
|
||||
* and update local if needed.
|
||||
*
|
||||
* Transaction initialization should be the last thing before
|
||||
* starting the node, since transaction should include not only
|
||||
* block IO, but also crypto related data (if any), which are
|
||||
* initialized separately.
|
||||
*/
|
||||
static int dst_start_remote(struct dst_node *n)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = dst_node_trans_init(n, sizeof(struct dst_trans));
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = dst_node_create_disk(n);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
dst_node_set_size(n);
|
||||
add_disk(n->disk);
|
||||
|
||||
dprintk("DST: started remote node '%s', minor: %d.\n",
|
||||
n->name, n->disk->first_minor);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Adding remote node and initialize connection.
|
||||
*/
|
||||
static int dst_add_remote(struct dst_node *n, struct dst_ctl *ctl,
|
||||
void *data, unsigned int size)
|
||||
{
|
||||
int err;
|
||||
struct dst_network_ctl *rctl = data;
|
||||
|
||||
if (n)
|
||||
return -EEXIST;
|
||||
|
||||
if (size != sizeof(struct dst_network_ctl))
|
||||
return -EINVAL;
|
||||
|
||||
n = dst_alloc_node(ctl, dst_start_remote, 1);
|
||||
if (!n)
|
||||
return -ENOMEM;
|
||||
|
||||
memcpy(&n->info->net, rctl, sizeof(struct dst_network_ctl));
|
||||
err = dst_node_init_connected(n, rctl);
|
||||
if (err)
|
||||
goto err_out_free;
|
||||
|
||||
dst_node_add(n);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_free:
|
||||
dst_node_put(n);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Adding export node: initializing block device and listening socket.
|
||||
*/
|
||||
static int dst_add_export(struct dst_node *n, struct dst_ctl *ctl,
|
||||
void *data, unsigned int size)
|
||||
{
|
||||
int err;
|
||||
struct dst_export_ctl *le = data;
|
||||
|
||||
if (n)
|
||||
return -EEXIST;
|
||||
|
||||
if (size != sizeof(struct dst_export_ctl))
|
||||
return -EINVAL;
|
||||
|
||||
n = dst_alloc_node(ctl, dst_start_export, 2);
|
||||
if (!n)
|
||||
return -EINVAL;
|
||||
|
||||
err = dst_setup_export(n, ctl, le);
|
||||
if (err)
|
||||
goto err_out_free;
|
||||
|
||||
dst_node_add(n);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_free:
|
||||
dst_node_put(n);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int dst_node_remove_unload(struct dst_node *n)
|
||||
{
|
||||
printk(KERN_INFO "STOPPED name: '%s', size: %llu.\n",
|
||||
n->name, n->size);
|
||||
|
||||
if (n->disk)
|
||||
del_gendisk(n->disk);
|
||||
|
||||
dst_node_remove(n);
|
||||
dst_node_sysfs_exit(n);
|
||||
|
||||
/*
|
||||
* This is not a hack. Really.
|
||||
* Node's reference counter allows to implement fine grained
|
||||
* node freeing, but since all transactions (which hold node's
|
||||
* reference counter) are processed in the dedicated thread,
|
||||
* it is possible that reference will hit zero in that thread,
|
||||
* so we will not be able to exit thread and cleanup the node.
|
||||
*
|
||||
* So, we remove disk, so no new activity is possible, and
|
||||
* wait until all pending transaction are completed (either
|
||||
* in receiving thread or by timeout in workqueue), in this
|
||||
* case reference counter will be less or equal to 2 (once set in
|
||||
* dst_alloc_node() and then in connector message parser;
|
||||
* or when we force module unloading, and connector message
|
||||
* parser does not hold a reference, in this case reference
|
||||
* counter will be equal to 1),
|
||||
* and subsequent dst_node_put() calls will free the node.
|
||||
*/
|
||||
dprintk("%s: going to sleep with %d refcnt.\n",
|
||||
__func__, atomic_read(&n->refcnt));
|
||||
wait_event(n->wait, atomic_read(&n->refcnt) <= 2);
|
||||
|
||||
dst_node_put(n);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove node from the hash table.
|
||||
*/
|
||||
static int dst_del_node(struct dst_node *n, struct dst_ctl *ctl,
|
||||
void *data, unsigned int size)
|
||||
{
|
||||
if (!n)
|
||||
return -ENODEV;
|
||||
|
||||
return dst_node_remove_unload(n);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize crypto processing for given node.
|
||||
*/
|
||||
static int dst_crypto_init(struct dst_node *n, struct dst_ctl *ctl,
|
||||
void *data, unsigned int size)
|
||||
{
|
||||
struct dst_crypto_ctl *crypto = data;
|
||||
|
||||
if (!n)
|
||||
return -ENODEV;
|
||||
|
||||
if (size != sizeof(struct dst_crypto_ctl) + crypto->hash_keysize +
|
||||
crypto->cipher_keysize)
|
||||
return -EINVAL;
|
||||
|
||||
if (n->trans_cache)
|
||||
return -EEXIST;
|
||||
|
||||
return dst_node_crypto_init(n, crypto);
|
||||
}
|
||||
|
||||
/*
|
||||
* Security attributes for given node.
|
||||
*/
|
||||
static int dst_security_init(struct dst_node *n, struct dst_ctl *ctl,
|
||||
void *data, unsigned int size)
|
||||
{
|
||||
struct dst_secure *s;
|
||||
|
||||
if (!n)
|
||||
return -ENODEV;
|
||||
|
||||
if (size != sizeof(struct dst_secure_user))
|
||||
return -EINVAL;
|
||||
|
||||
s = kmalloc(sizeof(struct dst_secure), GFP_KERNEL);
|
||||
if (!s)
|
||||
return -ENOMEM;
|
||||
|
||||
memcpy(&s->sec, data, size);
|
||||
|
||||
mutex_lock(&n->security_lock);
|
||||
list_add_tail(&s->sec_entry, &n->security_list);
|
||||
mutex_unlock(&n->security_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Kill'em all!
|
||||
*/
|
||||
static int dst_start_node(struct dst_node *n, struct dst_ctl *ctl,
|
||||
void *data, unsigned int size)
|
||||
{
|
||||
int err;
|
||||
|
||||
if (!n)
|
||||
return -ENODEV;
|
||||
|
||||
if (n->trans_cache)
|
||||
return 0;
|
||||
|
||||
err = n->start(n);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
printk(KERN_INFO "STARTED name: '%s', size: %llu.\n", n->name, n->size);
|
||||
return 0;
|
||||
}
|
||||
|
||||
typedef int (*dst_command_func)(struct dst_node *n, struct dst_ctl *ctl,
|
||||
void *data, unsigned int size);
|
||||
|
||||
/*
|
||||
* List of userspace commands.
|
||||
*/
|
||||
static dst_command_func dst_commands[] = {
|
||||
[DST_ADD_REMOTE] = &dst_add_remote,
|
||||
[DST_ADD_EXPORT] = &dst_add_export,
|
||||
[DST_DEL_NODE] = &dst_del_node,
|
||||
[DST_CRYPTO] = &dst_crypto_init,
|
||||
[DST_SECURITY] = &dst_security_init,
|
||||
[DST_START] = &dst_start_node,
|
||||
};
|
||||
|
||||
/*
|
||||
* Configuration parser.
|
||||
*/
|
||||
static void cn_dst_callback(struct cn_msg *msg, struct netlink_skb_parms *nsp)
|
||||
{
|
||||
struct dst_ctl *ctl;
|
||||
int err;
|
||||
struct dst_ctl_ack ack;
|
||||
struct dst_node *n = NULL, *tmp;
|
||||
unsigned int hash;
|
||||
|
||||
if (!cap_raised(nsp->eff_cap, CAP_SYS_ADMIN)) {
|
||||
err = -EPERM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (msg->len < sizeof(struct dst_ctl)) {
|
||||
err = -EBADMSG;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ctl = (struct dst_ctl *)msg->data;
|
||||
|
||||
if (ctl->cmd >= DST_CMD_MAX) {
|
||||
err = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
hash = dst_hash(ctl->name, sizeof(ctl->name));
|
||||
|
||||
mutex_lock(&dst_hash_lock);
|
||||
list_for_each_entry(tmp, &dst_hashtable[hash], node_entry) {
|
||||
if (!memcmp(tmp->name, ctl->name, sizeof(tmp->name))) {
|
||||
n = tmp;
|
||||
dst_node_get(n);
|
||||
break;
|
||||
}
|
||||
}
|
||||
mutex_unlock(&dst_hash_lock);
|
||||
|
||||
err = dst_commands[ctl->cmd](n, ctl, msg->data + sizeof(struct dst_ctl),
|
||||
msg->len - sizeof(struct dst_ctl));
|
||||
|
||||
dst_node_put(n);
|
||||
out:
|
||||
memcpy(&ack.msg, msg, sizeof(struct cn_msg));
|
||||
|
||||
ack.msg.ack = msg->ack + 1;
|
||||
ack.msg.len = sizeof(struct dst_ctl_ack) - sizeof(struct cn_msg);
|
||||
|
||||
ack.error = err;
|
||||
|
||||
cn_netlink_send(&ack.msg, 0, GFP_KERNEL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Global initialization: sysfs, hash table, block device registration,
|
||||
* connector and various caches.
|
||||
*/
|
||||
static int __init dst_sysfs_init(void)
|
||||
{
|
||||
return bus_register(&dst_dev_bus_type);
|
||||
}
|
||||
|
||||
static void dst_sysfs_exit(void)
|
||||
{
|
||||
bus_unregister(&dst_dev_bus_type);
|
||||
}
|
||||
|
||||
static int __init dst_hashtable_init(void)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
dst_hashtable = kcalloc(dst_hashtable_size, sizeof(struct list_head),
|
||||
GFP_KERNEL);
|
||||
if (!dst_hashtable)
|
||||
return -ENOMEM;
|
||||
|
||||
for (i = 0; i < dst_hashtable_size; ++i)
|
||||
INIT_LIST_HEAD(&dst_hashtable[i]);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void dst_hashtable_exit(void)
|
||||
{
|
||||
unsigned int i;
|
||||
struct dst_node *n, *tmp;
|
||||
|
||||
for (i = 0; i < dst_hashtable_size; ++i) {
|
||||
list_for_each_entry_safe(n, tmp, &dst_hashtable[i], node_entry) {
|
||||
dst_node_remove_unload(n);
|
||||
}
|
||||
}
|
||||
|
||||
kfree(dst_hashtable);
|
||||
}
|
||||
|
||||
static int __init dst_sys_init(void)
|
||||
{
|
||||
int err = -ENOMEM;
|
||||
|
||||
err = dst_hashtable_init();
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
err = dst_export_init();
|
||||
if (err)
|
||||
goto err_out_hashtable_exit;
|
||||
|
||||
err = register_blkdev(dst_major, DST_NAME);
|
||||
if (err < 0)
|
||||
goto err_out_export_exit;
|
||||
if (err)
|
||||
dst_major = err;
|
||||
|
||||
err = dst_sysfs_init();
|
||||
if (err)
|
||||
goto err_out_unregister;
|
||||
|
||||
err = cn_add_callback(&cn_dst_id, "DST", cn_dst_callback);
|
||||
if (err)
|
||||
goto err_out_sysfs_exit;
|
||||
|
||||
printk(KERN_INFO "Distributed storage, '%s' release.\n", dst_name);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_sysfs_exit:
|
||||
dst_sysfs_exit();
|
||||
err_out_unregister:
|
||||
unregister_blkdev(dst_major, DST_NAME);
|
||||
err_out_export_exit:
|
||||
dst_export_exit();
|
||||
err_out_hashtable_exit:
|
||||
dst_hashtable_exit();
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
static void __exit dst_sys_exit(void)
|
||||
{
|
||||
cn_del_callback(&cn_dst_id);
|
||||
unregister_blkdev(dst_major, DST_NAME);
|
||||
dst_hashtable_exit();
|
||||
dst_sysfs_exit();
|
||||
dst_export_exit();
|
||||
}
|
||||
|
||||
module_init(dst_sys_init);
|
||||
module_exit(dst_sys_exit);
|
||||
|
||||
MODULE_DESCRIPTION("Distributed storage");
|
||||
MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
|
||||
MODULE_LICENSE("GPL");
|
|
@ -1,660 +0,0 @@
|
|||
/*
|
||||
* 2007+ Copyright (c) Evgeniy Polyakov <zbr@ioremap.net>
|
||||
* All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/dst.h>
|
||||
#include <linux/in.h>
|
||||
#include <linux/in6.h>
|
||||
#include <linux/poll.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/socket.h>
|
||||
|
||||
#include <net/sock.h>
|
||||
|
||||
/*
|
||||
* Export bioset is used for server block IO requests.
|
||||
*/
|
||||
static struct bio_set *dst_bio_set;
|
||||
|
||||
int __init dst_export_init(void)
|
||||
{
|
||||
int err = -ENOMEM;
|
||||
|
||||
dst_bio_set = bioset_create(32, sizeof(struct dst_export_priv));
|
||||
if (!dst_bio_set)
|
||||
goto err_out_exit;
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
void dst_export_exit(void)
|
||||
{
|
||||
bioset_free(dst_bio_set);
|
||||
}
|
||||
|
||||
/*
|
||||
* When client connects and autonegotiates with the server node,
|
||||
* its permissions are checked in a security attributes and sent
|
||||
* back.
|
||||
*/
|
||||
static unsigned int dst_check_permissions(struct dst_state *main,
|
||||
struct dst_state *st)
|
||||
{
|
||||
struct dst_node *n = main->node;
|
||||
struct dst_secure *sentry;
|
||||
struct dst_secure_user *s;
|
||||
struct saddr *sa = &st->ctl.addr;
|
||||
unsigned int perm = 0;
|
||||
|
||||
mutex_lock(&n->security_lock);
|
||||
list_for_each_entry(sentry, &n->security_list, sec_entry) {
|
||||
s = &sentry->sec;
|
||||
|
||||
if (s->addr.sa_family != sa->sa_family)
|
||||
continue;
|
||||
|
||||
if (s->addr.sa_data_len != sa->sa_data_len)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* This '2' below is a port field. This may be very wrong to do
|
||||
* in atalk for example though. If there will be any need
|
||||
* to extent protocol to something else, I can create
|
||||
* per-family helpers and use them instead of this memcmp.
|
||||
*/
|
||||
if (memcmp(s->addr.sa_data + 2, sa->sa_data + 2,
|
||||
sa->sa_data_len - 2))
|
||||
continue;
|
||||
|
||||
perm = s->permissions;
|
||||
}
|
||||
mutex_unlock(&n->security_lock);
|
||||
|
||||
return perm;
|
||||
}
|
||||
|
||||
/*
|
||||
* Accept new client: allocate appropriate network state and check permissions.
|
||||
*/
|
||||
static struct dst_state *dst_accept_client(struct dst_state *st)
|
||||
{
|
||||
unsigned int revents = 0;
|
||||
unsigned int err_mask = POLLERR | POLLHUP | POLLRDHUP;
|
||||
unsigned int mask = err_mask | POLLIN;
|
||||
struct dst_node *n = st->node;
|
||||
int err = 0;
|
||||
struct socket *sock = NULL;
|
||||
struct dst_state *new;
|
||||
|
||||
while (!err && !sock) {
|
||||
revents = dst_state_poll(st);
|
||||
|
||||
if (!(revents & mask)) {
|
||||
DEFINE_WAIT(wait);
|
||||
|
||||
for (;;) {
|
||||
prepare_to_wait(&st->thread_wait,
|
||||
&wait, TASK_INTERRUPTIBLE);
|
||||
if (!n->trans_scan_timeout || st->need_exit)
|
||||
break;
|
||||
|
||||
revents = dst_state_poll(st);
|
||||
|
||||
if (revents & mask)
|
||||
break;
|
||||
|
||||
if (signal_pending(current))
|
||||
break;
|
||||
|
||||
/*
|
||||
* Magic HZ? Polling check above is not safe in
|
||||
* all cases (like socket reset in BH context),
|
||||
* so it is simpler just to postpone it to the
|
||||
* process context instead of implementing
|
||||
* special locking there.
|
||||
*/
|
||||
schedule_timeout(HZ);
|
||||
}
|
||||
finish_wait(&st->thread_wait, &wait);
|
||||
}
|
||||
|
||||
err = -ECONNRESET;
|
||||
dst_state_lock(st);
|
||||
|
||||
dprintk("%s: st: %p, revents: %x [err: %d, in: %d].\n",
|
||||
__func__, st, revents, revents & err_mask,
|
||||
revents & POLLIN);
|
||||
|
||||
if (revents & err_mask) {
|
||||
dprintk("%s: revents: %x, socket: %p, err: %d.\n",
|
||||
__func__, revents, st->socket, err);
|
||||
err = -ECONNRESET;
|
||||
}
|
||||
|
||||
if (!n->trans_scan_timeout || st->need_exit)
|
||||
err = -ENODEV;
|
||||
|
||||
if (st->socket && (revents & POLLIN))
|
||||
err = kernel_accept(st->socket, &sock, 0);
|
||||
|
||||
dst_state_unlock(st);
|
||||
}
|
||||
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
new = dst_state_alloc(st->node);
|
||||
if (IS_ERR(new)) {
|
||||
err = -ENOMEM;
|
||||
goto err_out_release;
|
||||
}
|
||||
new->socket = sock;
|
||||
|
||||
new->ctl.addr.sa_data_len = sizeof(struct sockaddr);
|
||||
err = kernel_getpeername(sock, (struct sockaddr *)&new->ctl.addr,
|
||||
(int *)&new->ctl.addr.sa_data_len);
|
||||
if (err)
|
||||
goto err_out_put;
|
||||
|
||||
new->permissions = dst_check_permissions(st, new);
|
||||
if (new->permissions == 0) {
|
||||
err = -EPERM;
|
||||
dst_dump_addr(sock, (struct sockaddr *)&new->ctl.addr,
|
||||
"Client is not allowed to connect");
|
||||
goto err_out_put;
|
||||
}
|
||||
|
||||
err = dst_poll_init(new);
|
||||
if (err)
|
||||
goto err_out_put;
|
||||
|
||||
dst_dump_addr(sock, (struct sockaddr *)&new->ctl.addr,
|
||||
"Connected client");
|
||||
|
||||
return new;
|
||||
|
||||
err_out_put:
|
||||
dst_state_put(new);
|
||||
err_out_release:
|
||||
sock_release(sock);
|
||||
err_out_exit:
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
/*
|
||||
* Each server's block request sometime finishes.
|
||||
* Usually it happens in hard irq context of the appropriate controller,
|
||||
* so to play good with all cases we just queue BIO into the queue
|
||||
* and wake up processing thread, which gets completed request and
|
||||
* send (encrypting if needed) it back to the client (if it was a read
|
||||
* request), or sends back reply that writing successfully completed.
|
||||
*/
|
||||
static int dst_export_process_request_queue(struct dst_state *st)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct dst_export_priv *p = NULL;
|
||||
struct bio *bio;
|
||||
int err = 0;
|
||||
|
||||
while (!list_empty(&st->request_list)) {
|
||||
spin_lock_irqsave(&st->request_lock, flags);
|
||||
if (!list_empty(&st->request_list)) {
|
||||
p = list_first_entry(&st->request_list,
|
||||
struct dst_export_priv, request_entry);
|
||||
list_del(&p->request_entry);
|
||||
}
|
||||
spin_unlock_irqrestore(&st->request_lock, flags);
|
||||
|
||||
if (!p)
|
||||
break;
|
||||
|
||||
bio = p->bio;
|
||||
|
||||
if (dst_need_crypto(st->node) && (bio_data_dir(bio) == READ))
|
||||
err = dst_export_crypto(st->node, bio);
|
||||
else
|
||||
err = dst_export_send_bio(bio);
|
||||
|
||||
if (err)
|
||||
break;
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Cleanup export state.
|
||||
* It has to wait until all requests are finished,
|
||||
* and then free them all.
|
||||
*/
|
||||
static void dst_state_cleanup_export(struct dst_state *st)
|
||||
{
|
||||
struct dst_export_priv *p;
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* This loop waits for all pending bios to be completed and freed.
|
||||
*/
|
||||
while (atomic_read(&st->refcnt) > 1) {
|
||||
dprintk("%s: st: %p, refcnt: %d, list_empty: %d.\n",
|
||||
__func__, st, atomic_read(&st->refcnt),
|
||||
list_empty(&st->request_list));
|
||||
wait_event_timeout(st->thread_wait,
|
||||
(atomic_read(&st->refcnt) == 1) ||
|
||||
!list_empty(&st->request_list),
|
||||
HZ/2);
|
||||
|
||||
while (!list_empty(&st->request_list)) {
|
||||
p = NULL;
|
||||
spin_lock_irqsave(&st->request_lock, flags);
|
||||
if (!list_empty(&st->request_list)) {
|
||||
p = list_first_entry(&st->request_list,
|
||||
struct dst_export_priv, request_entry);
|
||||
list_del(&p->request_entry);
|
||||
}
|
||||
spin_unlock_irqrestore(&st->request_lock, flags);
|
||||
|
||||
if (p)
|
||||
bio_put(p->bio);
|
||||
|
||||
dprintk("%s: st: %p, refcnt: %d, list_empty: %d, p: "
|
||||
"%p.\n", __func__, st, atomic_read(&st->refcnt),
|
||||
list_empty(&st->request_list), p);
|
||||
}
|
||||
}
|
||||
|
||||
dst_state_put(st);
|
||||
}
|
||||
|
||||
/*
|
||||
* Client accepting thread.
|
||||
* Not only accepts new connection, but also schedules receiving thread
|
||||
* and performs request completion described above.
|
||||
*/
|
||||
static int dst_accept(void *init_data, void *schedule_data)
|
||||
{
|
||||
struct dst_state *main_st = schedule_data;
|
||||
struct dst_node *n = init_data;
|
||||
struct dst_state *st;
|
||||
int err;
|
||||
|
||||
while (n->trans_scan_timeout && !main_st->need_exit) {
|
||||
dprintk("%s: main_st: %p, n: %p.\n", __func__, main_st, n);
|
||||
st = dst_accept_client(main_st);
|
||||
if (IS_ERR(st))
|
||||
continue;
|
||||
|
||||
err = dst_state_schedule_receiver(st);
|
||||
if (!err) {
|
||||
while (n->trans_scan_timeout) {
|
||||
err = wait_event_interruptible_timeout(st->thread_wait,
|
||||
!list_empty(&st->request_list) ||
|
||||
!n->trans_scan_timeout ||
|
||||
st->need_exit,
|
||||
HZ);
|
||||
|
||||
if (!n->trans_scan_timeout || st->need_exit)
|
||||
break;
|
||||
|
||||
if (list_empty(&st->request_list))
|
||||
continue;
|
||||
|
||||
err = dst_export_process_request_queue(st);
|
||||
if (err)
|
||||
break;
|
||||
}
|
||||
|
||||
st->need_exit = 1;
|
||||
wake_up(&st->thread_wait);
|
||||
}
|
||||
|
||||
dst_state_cleanup_export(st);
|
||||
}
|
||||
|
||||
dprintk("%s: freeing listening socket st: %p.\n", __func__, main_st);
|
||||
|
||||
dst_state_lock(main_st);
|
||||
dst_poll_exit(main_st);
|
||||
dst_state_socket_release(main_st);
|
||||
dst_state_unlock(main_st);
|
||||
dst_state_put(main_st);
|
||||
dprintk("%s: freed listening socket st: %p.\n", __func__, main_st);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int dst_start_export(struct dst_node *n)
|
||||
{
|
||||
if (list_empty(&n->security_list)) {
|
||||
printk(KERN_ERR "You are trying to export node '%s' "
|
||||
"without security attributes.\nNo clients will "
|
||||
"be allowed to connect. Exiting.\n", n->name);
|
||||
return -EINVAL;
|
||||
}
|
||||
return dst_node_trans_init(n, sizeof(struct dst_export_priv));
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize listening state and schedule accepting thread.
|
||||
*/
|
||||
int dst_node_init_listened(struct dst_node *n, struct dst_export_ctl *le)
|
||||
{
|
||||
struct dst_state *st;
|
||||
int err = -ENOMEM;
|
||||
struct dst_network_ctl *ctl = &le->ctl;
|
||||
|
||||
memcpy(&n->info->net, ctl, sizeof(struct dst_network_ctl));
|
||||
|
||||
st = dst_state_alloc(n);
|
||||
if (IS_ERR(st)) {
|
||||
err = PTR_ERR(st);
|
||||
goto err_out_exit;
|
||||
}
|
||||
memcpy(&st->ctl, ctl, sizeof(struct dst_network_ctl));
|
||||
|
||||
err = dst_state_socket_create(st);
|
||||
if (err)
|
||||
goto err_out_put;
|
||||
|
||||
st->socket->sk->sk_reuse = 1;
|
||||
|
||||
err = kernel_bind(st->socket, (struct sockaddr *)&ctl->addr,
|
||||
ctl->addr.sa_data_len);
|
||||
if (err)
|
||||
goto err_out_socket_release;
|
||||
|
||||
err = kernel_listen(st->socket, 1024);
|
||||
if (err)
|
||||
goto err_out_socket_release;
|
||||
n->state = st;
|
||||
|
||||
err = dst_poll_init(st);
|
||||
if (err)
|
||||
goto err_out_socket_release;
|
||||
|
||||
dst_state_get(st);
|
||||
|
||||
err = thread_pool_schedule(n->pool, dst_thread_setup,
|
||||
dst_accept, st, MAX_SCHEDULE_TIMEOUT);
|
||||
if (err)
|
||||
goto err_out_poll_exit;
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_poll_exit:
|
||||
dst_poll_exit(st);
|
||||
err_out_socket_release:
|
||||
dst_state_socket_release(st);
|
||||
err_out_put:
|
||||
dst_state_put(st);
|
||||
err_out_exit:
|
||||
n->state = NULL;
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free bio and related private data.
|
||||
* Also drop a reference counter for appropriate state,
|
||||
* which waits when there are no more block IOs in-flight.
|
||||
*/
|
||||
static void dst_bio_destructor(struct bio *bio)
|
||||
{
|
||||
struct bio_vec *bv;
|
||||
struct dst_export_priv *priv = bio->bi_private;
|
||||
int i;
|
||||
|
||||
bio_for_each_segment(bv, bio, i) {
|
||||
if (!bv->bv_page)
|
||||
break;
|
||||
|
||||
__free_page(bv->bv_page);
|
||||
}
|
||||
|
||||
if (priv)
|
||||
dst_state_put(priv->state);
|
||||
bio_free(bio, dst_bio_set);
|
||||
}
|
||||
|
||||
/*
|
||||
* Block IO completion. Queue request to be sent back to
|
||||
* the client (or just confirmation).
|
||||
*/
|
||||
static void dst_bio_end_io(struct bio *bio, int err)
|
||||
{
|
||||
struct dst_export_priv *p = bio->bi_private;
|
||||
struct dst_state *st = p->state;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&st->request_lock, flags);
|
||||
list_add_tail(&p->request_entry, &st->request_list);
|
||||
spin_unlock_irqrestore(&st->request_lock, flags);
|
||||
|
||||
wake_up(&st->thread_wait);
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate read request for the server.
|
||||
*/
|
||||
static int dst_export_read_request(struct bio *bio, unsigned int total_size)
|
||||
{
|
||||
unsigned int size;
|
||||
struct page *page;
|
||||
int err;
|
||||
|
||||
while (total_size) {
|
||||
err = -ENOMEM;
|
||||
page = alloc_page(GFP_KERNEL);
|
||||
if (!page)
|
||||
goto err_out_exit;
|
||||
|
||||
size = min_t(unsigned int, PAGE_SIZE, total_size);
|
||||
|
||||
err = bio_add_page(bio, page, size, 0);
|
||||
dprintk("%s: bio: %llu/%u, size: %u, err: %d.\n",
|
||||
__func__, (u64)bio->bi_sector, bio->bi_size,
|
||||
size, err);
|
||||
if (err <= 0)
|
||||
goto err_out_free_page;
|
||||
|
||||
total_size -= size;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_free_page:
|
||||
__free_page(page);
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate write request for the server.
|
||||
* Should not only get pages, but also read data from the network.
|
||||
*/
|
||||
static int dst_export_write_request(struct dst_state *st,
|
||||
struct bio *bio, unsigned int total_size)
|
||||
{
|
||||
unsigned int size;
|
||||
struct page *page;
|
||||
void *data;
|
||||
int err;
|
||||
|
||||
while (total_size) {
|
||||
err = -ENOMEM;
|
||||
page = alloc_page(GFP_KERNEL);
|
||||
if (!page)
|
||||
goto err_out_exit;
|
||||
|
||||
data = kmap(page);
|
||||
if (!data)
|
||||
goto err_out_free_page;
|
||||
|
||||
size = min_t(unsigned int, PAGE_SIZE, total_size);
|
||||
|
||||
err = dst_data_recv(st, data, size);
|
||||
if (err)
|
||||
goto err_out_unmap_page;
|
||||
|
||||
err = bio_add_page(bio, page, size, 0);
|
||||
if (err <= 0)
|
||||
goto err_out_unmap_page;
|
||||
|
||||
kunmap(page);
|
||||
|
||||
total_size -= size;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_unmap_page:
|
||||
kunmap(page);
|
||||
err_out_free_page:
|
||||
__free_page(page);
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Groovy, we've gotten an IO request from the client.
|
||||
* Allocate BIO from the bioset, private data from the mempool
|
||||
* and lots of pages for IO.
|
||||
*/
|
||||
int dst_process_io(struct dst_state *st)
|
||||
{
|
||||
struct dst_node *n = st->node;
|
||||
struct dst_cmd *cmd = st->data;
|
||||
struct bio *bio;
|
||||
struct dst_export_priv *priv;
|
||||
int err = -ENOMEM;
|
||||
|
||||
if (unlikely(!n->bdev)) {
|
||||
err = -EINVAL;
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
bio = bio_alloc_bioset(GFP_KERNEL,
|
||||
PAGE_ALIGN(cmd->size) >> PAGE_SHIFT,
|
||||
dst_bio_set);
|
||||
if (!bio)
|
||||
goto err_out_exit;
|
||||
|
||||
priv = (struct dst_export_priv *)(((void *)bio) -
|
||||
sizeof (struct dst_export_priv));
|
||||
|
||||
priv->state = dst_state_get(st);
|
||||
priv->bio = bio;
|
||||
|
||||
bio->bi_private = priv;
|
||||
bio->bi_end_io = dst_bio_end_io;
|
||||
bio->bi_destructor = dst_bio_destructor;
|
||||
bio->bi_bdev = n->bdev;
|
||||
|
||||
/*
|
||||
* Server side is only interested in two low bits:
|
||||
* uptodate (set by itself actually) and rw block
|
||||
*/
|
||||
bio->bi_flags |= cmd->flags & 3;
|
||||
|
||||
bio->bi_rw = cmd->rw;
|
||||
bio->bi_size = 0;
|
||||
bio->bi_sector = cmd->sector;
|
||||
|
||||
dst_bio_to_cmd(bio, &priv->cmd, DST_IO_RESPONSE, cmd->id);
|
||||
|
||||
priv->cmd.flags = 0;
|
||||
priv->cmd.size = cmd->size;
|
||||
|
||||
if (bio_data_dir(bio) == WRITE) {
|
||||
err = dst_recv_cdata(st, priv->cmd.hash);
|
||||
if (err)
|
||||
goto err_out_free;
|
||||
|
||||
err = dst_export_write_request(st, bio, cmd->size);
|
||||
if (err)
|
||||
goto err_out_free;
|
||||
|
||||
if (dst_need_crypto(n))
|
||||
return dst_export_crypto(n, bio);
|
||||
} else {
|
||||
err = dst_export_read_request(bio, cmd->size);
|
||||
if (err)
|
||||
goto err_out_free;
|
||||
}
|
||||
|
||||
dprintk("%s: bio: %llu/%u, rw: %lu, dir: %lu, flags: %lx, phys: %d.\n",
|
||||
__func__, (u64)bio->bi_sector, bio->bi_size,
|
||||
bio->bi_rw, bio_data_dir(bio),
|
||||
bio->bi_flags, bio->bi_phys_segments);
|
||||
|
||||
generic_make_request(bio);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_free:
|
||||
bio_put(bio);
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Ok, block IO is ready, let's send it back to the client...
|
||||
*/
|
||||
int dst_export_send_bio(struct bio *bio)
|
||||
{
|
||||
struct dst_export_priv *p = bio->bi_private;
|
||||
struct dst_state *st = p->state;
|
||||
struct dst_cmd *cmd = &p->cmd;
|
||||
int err;
|
||||
|
||||
dprintk("%s: id: %llu, bio: %llu/%u, csize: %u, flags: %lu, rw: %lu.\n",
|
||||
__func__, cmd->id, (u64)bio->bi_sector, bio->bi_size,
|
||||
cmd->csize, bio->bi_flags, bio->bi_rw);
|
||||
|
||||
dst_convert_cmd(cmd);
|
||||
|
||||
dst_state_lock(st);
|
||||
if (!st->socket) {
|
||||
err = -ECONNRESET;
|
||||
goto err_out_unlock;
|
||||
}
|
||||
|
||||
if (bio_data_dir(bio) == WRITE) {
|
||||
/* ... or just confirmation that writing has completed. */
|
||||
cmd->size = cmd->csize = 0;
|
||||
err = dst_data_send_header(st->socket, cmd,
|
||||
sizeof(struct dst_cmd), 0);
|
||||
if (err)
|
||||
goto err_out_unlock;
|
||||
} else {
|
||||
err = dst_send_bio(st, cmd, bio);
|
||||
if (err)
|
||||
goto err_out_unlock;
|
||||
}
|
||||
|
||||
dst_state_unlock(st);
|
||||
|
||||
bio_put(bio);
|
||||
return 0;
|
||||
|
||||
err_out_unlock:
|
||||
dst_state_unlock(st);
|
||||
|
||||
bio_put(bio);
|
||||
return err;
|
||||
}
|
|
@ -1,844 +0,0 @@
|
|||
/*
|
||||
* 2007+ Copyright (c) Evgeniy Polyakov <zbr@ioremap.net>
|
||||
* All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/buffer_head.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/connector.h>
|
||||
#include <linux/dst.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/in.h>
|
||||
#include <linux/in6.h>
|
||||
#include <linux/socket.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <net/sock.h>
|
||||
|
||||
/*
|
||||
* Polling machinery.
|
||||
*/
|
||||
|
||||
struct dst_poll_helper {
|
||||
poll_table pt;
|
||||
struct dst_state *st;
|
||||
};
|
||||
|
||||
static int dst_queue_wake(wait_queue_t *wait, unsigned mode,
|
||||
int sync, void *key)
|
||||
{
|
||||
struct dst_state *st = container_of(wait, struct dst_state, wait);
|
||||
|
||||
wake_up(&st->thread_wait);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void dst_queue_func(struct file *file, wait_queue_head_t *whead,
|
||||
poll_table *pt)
|
||||
{
|
||||
struct dst_state *st = container_of(pt, struct dst_poll_helper, pt)->st;
|
||||
|
||||
st->whead = whead;
|
||||
init_waitqueue_func_entry(&st->wait, dst_queue_wake);
|
||||
add_wait_queue(whead, &st->wait);
|
||||
}
|
||||
|
||||
void dst_poll_exit(struct dst_state *st)
|
||||
{
|
||||
if (st->whead) {
|
||||
remove_wait_queue(st->whead, &st->wait);
|
||||
st->whead = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
int dst_poll_init(struct dst_state *st)
|
||||
{
|
||||
struct dst_poll_helper ph;
|
||||
|
||||
ph.st = st;
|
||||
init_poll_funcptr(&ph.pt, &dst_queue_func);
|
||||
|
||||
st->socket->ops->poll(NULL, st->socket, &ph.pt);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Header receiving function - may block.
|
||||
*/
|
||||
static int dst_data_recv_header(struct socket *sock,
|
||||
void *data, unsigned int size, int block)
|
||||
{
|
||||
struct msghdr msg;
|
||||
struct kvec iov;
|
||||
int err;
|
||||
|
||||
iov.iov_base = data;
|
||||
iov.iov_len = size;
|
||||
|
||||
msg.msg_iov = (struct iovec *)&iov;
|
||||
msg.msg_iovlen = 1;
|
||||
msg.msg_name = NULL;
|
||||
msg.msg_namelen = 0;
|
||||
msg.msg_control = NULL;
|
||||
msg.msg_controllen = 0;
|
||||
msg.msg_flags = (block) ? MSG_WAITALL : MSG_DONTWAIT;
|
||||
|
||||
err = kernel_recvmsg(sock, &msg, &iov, 1, iov.iov_len,
|
||||
msg.msg_flags);
|
||||
if (err != size)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Header sending function - may block.
|
||||
*/
|
||||
int dst_data_send_header(struct socket *sock,
|
||||
void *data, unsigned int size, int more)
|
||||
{
|
||||
struct msghdr msg;
|
||||
struct kvec iov;
|
||||
int err;
|
||||
|
||||
iov.iov_base = data;
|
||||
iov.iov_len = size;
|
||||
|
||||
msg.msg_iov = (struct iovec *)&iov;
|
||||
msg.msg_iovlen = 1;
|
||||
msg.msg_name = NULL;
|
||||
msg.msg_namelen = 0;
|
||||
msg.msg_control = NULL;
|
||||
msg.msg_controllen = 0;
|
||||
msg.msg_flags = MSG_WAITALL | (more ? MSG_MORE : 0);
|
||||
|
||||
err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
|
||||
if (err != size) {
|
||||
dprintk("%s: size: %u, more: %d, err: %d.\n",
|
||||
__func__, size, more, err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Block autoconfiguration: request size of the storage and permissions.
|
||||
*/
|
||||
static int dst_request_remote_config(struct dst_state *st)
|
||||
{
|
||||
struct dst_node *n = st->node;
|
||||
int err = -EINVAL;
|
||||
struct dst_cmd *cmd = st->data;
|
||||
|
||||
memset(cmd, 0, sizeof(struct dst_cmd));
|
||||
cmd->cmd = DST_CFG;
|
||||
|
||||
dst_convert_cmd(cmd);
|
||||
|
||||
err = dst_data_send_header(st->socket, cmd, sizeof(struct dst_cmd), 0);
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
err = dst_data_recv_header(st->socket, cmd, sizeof(struct dst_cmd), 1);
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
dst_convert_cmd(cmd);
|
||||
|
||||
if (cmd->cmd != DST_CFG) {
|
||||
err = -EINVAL;
|
||||
dprintk("%s: checking result: cmd: %d, size reported: %llu.\n",
|
||||
__func__, cmd->cmd, cmd->sector);
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (n->size != 0)
|
||||
n->size = min_t(loff_t, n->size, cmd->sector);
|
||||
else
|
||||
n->size = cmd->sector;
|
||||
|
||||
n->info->size = n->size;
|
||||
st->permissions = cmd->rw;
|
||||
|
||||
out:
|
||||
dprintk("%s: n: %p, err: %d, size: %llu, permission: %x.\n",
|
||||
__func__, n, err, n->size, st->permissions);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Socket machinery.
|
||||
*/
|
||||
|
||||
#define DST_DEFAULT_TIMEO 20000
|
||||
|
||||
int dst_state_socket_create(struct dst_state *st)
|
||||
{
|
||||
int err;
|
||||
struct socket *sock;
|
||||
struct dst_network_ctl *ctl = &st->ctl;
|
||||
|
||||
err = sock_create(ctl->addr.sa_family, ctl->type, ctl->proto, &sock);
|
||||
if (err < 0)
|
||||
return err;
|
||||
|
||||
sock->sk->sk_sndtimeo = sock->sk->sk_rcvtimeo =
|
||||
msecs_to_jiffies(DST_DEFAULT_TIMEO);
|
||||
sock->sk->sk_allocation = GFP_NOIO;
|
||||
|
||||
st->socket = st->read_socket = sock;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void dst_state_socket_release(struct dst_state *st)
|
||||
{
|
||||
dprintk("%s: st: %p, socket: %p, n: %p.\n",
|
||||
__func__, st, st->socket, st->node);
|
||||
if (st->socket) {
|
||||
sock_release(st->socket);
|
||||
st->socket = NULL;
|
||||
st->read_socket = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void dst_dump_addr(struct socket *sk, struct sockaddr *sa, char *str)
|
||||
{
|
||||
if (sk->ops->family == AF_INET) {
|
||||
struct sockaddr_in *sin = (struct sockaddr_in *)sa;
|
||||
printk(KERN_INFO "%s %u.%u.%u.%u:%d.\n", str,
|
||||
NIPQUAD(sin->sin_addr.s_addr), ntohs(sin->sin_port));
|
||||
} else if (sk->ops->family == AF_INET6) {
|
||||
struct sockaddr_in6 *sin = (struct sockaddr_in6 *)sa;
|
||||
printk(KERN_INFO "%s %pi6:%d",
|
||||
str, &sin->sin6_addr, ntohs(sin->sin6_port));
|
||||
}
|
||||
}
|
||||
|
||||
void dst_state_exit_connected(struct dst_state *st)
|
||||
{
|
||||
if (st->socket) {
|
||||
dst_poll_exit(st);
|
||||
st->socket->ops->shutdown(st->socket, 2);
|
||||
|
||||
dst_dump_addr(st->socket, (struct sockaddr *)&st->ctl.addr,
|
||||
"Disconnected peer");
|
||||
dst_state_socket_release(st);
|
||||
}
|
||||
}
|
||||
|
||||
static int dst_state_init_connected(struct dst_state *st)
|
||||
{
|
||||
int err;
|
||||
struct dst_network_ctl *ctl = &st->ctl;
|
||||
|
||||
err = dst_state_socket_create(st);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
err = kernel_connect(st->socket, (struct sockaddr *)&st->ctl.addr,
|
||||
st->ctl.addr.sa_data_len, 0);
|
||||
if (err)
|
||||
goto err_out_release;
|
||||
|
||||
err = dst_poll_init(st);
|
||||
if (err)
|
||||
goto err_out_release;
|
||||
|
||||
dst_dump_addr(st->socket, (struct sockaddr *)&ctl->addr,
|
||||
"Connected to peer");
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_release:
|
||||
dst_state_socket_release(st);
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* State reset is used to reconnect to the remote peer.
|
||||
* May fail, but who cares, we will try again later.
|
||||
*/
|
||||
static inline void dst_state_reset_nolock(struct dst_state *st)
|
||||
{
|
||||
dst_state_exit_connected(st);
|
||||
dst_state_init_connected(st);
|
||||
}
|
||||
|
||||
static inline void dst_state_reset(struct dst_state *st)
|
||||
{
|
||||
dst_state_lock(st);
|
||||
dst_state_reset_nolock(st);
|
||||
dst_state_unlock(st);
|
||||
}
|
||||
|
||||
/*
|
||||
* Basic network sending/receiving functions.
|
||||
* Blocked mode is used.
|
||||
*/
|
||||
static int dst_data_recv_raw(struct dst_state *st, void *buf, u64 size)
|
||||
{
|
||||
struct msghdr msg;
|
||||
struct kvec iov;
|
||||
int err;
|
||||
|
||||
BUG_ON(!size);
|
||||
|
||||
iov.iov_base = buf;
|
||||
iov.iov_len = size;
|
||||
|
||||
msg.msg_iov = (struct iovec *)&iov;
|
||||
msg.msg_iovlen = 1;
|
||||
msg.msg_name = NULL;
|
||||
msg.msg_namelen = 0;
|
||||
msg.msg_control = NULL;
|
||||
msg.msg_controllen = 0;
|
||||
msg.msg_flags = MSG_DONTWAIT;
|
||||
|
||||
err = kernel_recvmsg(st->socket, &msg, &iov, 1, iov.iov_len,
|
||||
msg.msg_flags);
|
||||
if (err <= 0) {
|
||||
dprintk("%s: failed to recv data: size: %llu, err: %d.\n",
|
||||
__func__, size, err);
|
||||
if (err == 0)
|
||||
err = -ECONNRESET;
|
||||
|
||||
dst_state_exit_connected(st);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Ping command to early detect failed nodes.
|
||||
*/
|
||||
static int dst_send_ping(struct dst_state *st)
|
||||
{
|
||||
struct dst_cmd *cmd = st->data;
|
||||
int err = -ECONNRESET;
|
||||
|
||||
dst_state_lock(st);
|
||||
if (st->socket) {
|
||||
memset(cmd, 0, sizeof(struct dst_cmd));
|
||||
|
||||
cmd->cmd = __cpu_to_be32(DST_PING);
|
||||
|
||||
err = dst_data_send_header(st->socket, cmd,
|
||||
sizeof(struct dst_cmd), 0);
|
||||
}
|
||||
dprintk("%s: st: %p, socket: %p, err: %d.\n", __func__,
|
||||
st, st->socket, err);
|
||||
dst_state_unlock(st);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receiving function, which should either return error or read
|
||||
* whole block request. If there was no traffic for a one second,
|
||||
* send a ping, since remote node may die.
|
||||
*/
|
||||
int dst_data_recv(struct dst_state *st, void *data, unsigned int size)
|
||||
{
|
||||
unsigned int revents = 0;
|
||||
unsigned int err_mask = POLLERR | POLLHUP | POLLRDHUP;
|
||||
unsigned int mask = err_mask | POLLIN;
|
||||
struct dst_node *n = st->node;
|
||||
int err = 0;
|
||||
|
||||
while (size && !err) {
|
||||
revents = dst_state_poll(st);
|
||||
|
||||
if (!(revents & mask)) {
|
||||
DEFINE_WAIT(wait);
|
||||
|
||||
for (;;) {
|
||||
prepare_to_wait(&st->thread_wait, &wait,
|
||||
TASK_INTERRUPTIBLE);
|
||||
if (!n->trans_scan_timeout || st->need_exit)
|
||||
break;
|
||||
|
||||
revents = dst_state_poll(st);
|
||||
|
||||
if (revents & mask)
|
||||
break;
|
||||
|
||||
if (signal_pending(current))
|
||||
break;
|
||||
|
||||
if (!schedule_timeout(HZ)) {
|
||||
err = dst_send_ping(st);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
finish_wait(&st->thread_wait, &wait);
|
||||
}
|
||||
|
||||
err = -ECONNRESET;
|
||||
dst_state_lock(st);
|
||||
|
||||
if (st->socket && (st->read_socket == st->socket) &&
|
||||
(revents & POLLIN)) {
|
||||
err = dst_data_recv_raw(st, data, size);
|
||||
if (err > 0) {
|
||||
data += err;
|
||||
size -= err;
|
||||
err = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (revents & err_mask || !st->socket) {
|
||||
dprintk("%s: revents: %x, socket: %p, size: %u, "
|
||||
"err: %d.\n", __func__, revents,
|
||||
st->socket, size, err);
|
||||
err = -ECONNRESET;
|
||||
}
|
||||
|
||||
dst_state_unlock(st);
|
||||
|
||||
if (!n->trans_scan_timeout)
|
||||
err = -ENODEV;
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Send block autoconf reply.
|
||||
*/
|
||||
static int dst_process_cfg(struct dst_state *st)
|
||||
{
|
||||
struct dst_node *n = st->node;
|
||||
struct dst_cmd *cmd = st->data;
|
||||
int err;
|
||||
|
||||
cmd->sector = n->size;
|
||||
cmd->rw = st->permissions;
|
||||
|
||||
dst_convert_cmd(cmd);
|
||||
|
||||
dst_state_lock(st);
|
||||
err = dst_data_send_header(st->socket, cmd, sizeof(struct dst_cmd), 0);
|
||||
dst_state_unlock(st);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receive block IO from the network.
|
||||
*/
|
||||
static int dst_recv_bio(struct dst_state *st, struct bio *bio,
|
||||
unsigned int total_size)
|
||||
{
|
||||
struct bio_vec *bv;
|
||||
int i, err;
|
||||
void *data;
|
||||
unsigned int sz;
|
||||
|
||||
bio_for_each_segment(bv, bio, i) {
|
||||
sz = min(total_size, bv->bv_len);
|
||||
|
||||
dprintk("%s: bio: %llu/%u, total: %u, len: %u, sz: %u, "
|
||||
"off: %u.\n", __func__, (u64)bio->bi_sector,
|
||||
bio->bi_size, total_size, bv->bv_len, sz,
|
||||
bv->bv_offset);
|
||||
|
||||
data = kmap(bv->bv_page) + bv->bv_offset;
|
||||
err = dst_data_recv(st, data, sz);
|
||||
kunmap(bv->bv_page);
|
||||
|
||||
bv->bv_len = sz;
|
||||
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
total_size -= sz;
|
||||
if (total_size == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Our block IO has just completed and arrived: get it.
|
||||
*/
|
||||
static int dst_process_io_response(struct dst_state *st)
|
||||
{
|
||||
struct dst_node *n = st->node;
|
||||
struct dst_cmd *cmd = st->data;
|
||||
struct dst_trans *t;
|
||||
int err = 0;
|
||||
struct bio *bio;
|
||||
|
||||
mutex_lock(&n->trans_lock);
|
||||
t = dst_trans_search(n, cmd->id);
|
||||
mutex_unlock(&n->trans_lock);
|
||||
|
||||
if (!t)
|
||||
goto err_out_exit;
|
||||
|
||||
bio = t->bio;
|
||||
|
||||
dprintk("%s: bio: %llu/%u, cmd_size: %u, csize: %u, dir: %lu.\n",
|
||||
__func__, (u64)bio->bi_sector, bio->bi_size, cmd->size,
|
||||
cmd->csize, bio_data_dir(bio));
|
||||
|
||||
if (bio_data_dir(bio) == READ) {
|
||||
if (bio->bi_size != cmd->size - cmd->csize)
|
||||
goto err_out_exit;
|
||||
|
||||
if (dst_need_crypto(n)) {
|
||||
err = dst_recv_cdata(st, t->cmd.hash);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
err = dst_recv_bio(st, t->bio, bio->bi_size);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
if (dst_need_crypto(n))
|
||||
return dst_trans_crypto(t);
|
||||
} else {
|
||||
err = -EBADMSG;
|
||||
if (cmd->size || cmd->csize)
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
dst_trans_remove(t);
|
||||
dst_trans_put(t);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receive crypto data.
|
||||
*/
|
||||
int dst_recv_cdata(struct dst_state *st, void *cdata)
|
||||
{
|
||||
struct dst_cmd *cmd = st->data;
|
||||
struct dst_node *n = st->node;
|
||||
struct dst_crypto_ctl *c = &n->crypto;
|
||||
int err;
|
||||
|
||||
if (cmd->csize != c->crypto_attached_size) {
|
||||
dprintk("%s: cmd: cmd: %u, sector: %llu, size: %u, "
|
||||
"csize: %u != digest size %u.\n",
|
||||
__func__, cmd->cmd, cmd->sector, cmd->size,
|
||||
cmd->csize, c->crypto_attached_size);
|
||||
err = -EINVAL;
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
err = dst_data_recv(st, cdata, cmd->csize);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
cmd->size -= cmd->csize;
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receive the command and start its processing.
|
||||
*/
|
||||
static int dst_recv_processing(struct dst_state *st)
|
||||
{
|
||||
int err = -EINTR;
|
||||
struct dst_cmd *cmd = st->data;
|
||||
|
||||
/*
|
||||
* If socket will be reset after this statement, then
|
||||
* dst_data_recv() will just fail and loop will
|
||||
* start again, so it can be done without any locks.
|
||||
*
|
||||
* st->read_socket is needed to prevents state machine
|
||||
* breaking between this data reading and subsequent one
|
||||
* in protocol specific functions during connection reset.
|
||||
* In case of reset we have to read next command and do
|
||||
* not expect data for old command to magically appear in
|
||||
* new connection.
|
||||
*/
|
||||
st->read_socket = st->socket;
|
||||
err = dst_data_recv(st, cmd, sizeof(struct dst_cmd));
|
||||
if (err)
|
||||
goto out_exit;
|
||||
|
||||
dst_convert_cmd(cmd);
|
||||
|
||||
dprintk("%s: cmd: %u, size: %u, csize: %u, id: %llu, "
|
||||
"sector: %llu, flags: %llx, rw: %llx.\n",
|
||||
__func__, cmd->cmd, cmd->size,
|
||||
cmd->csize, cmd->id, cmd->sector,
|
||||
cmd->flags, cmd->rw);
|
||||
|
||||
/*
|
||||
* This should catch protocol breakage and random garbage
|
||||
* instead of commands.
|
||||
*/
|
||||
if (unlikely(cmd->csize > st->size - sizeof(struct dst_cmd))) {
|
||||
err = -EBADMSG;
|
||||
goto out_exit;
|
||||
}
|
||||
|
||||
err = -EPROTO;
|
||||
switch (cmd->cmd) {
|
||||
case DST_IO_RESPONSE:
|
||||
err = dst_process_io_response(st);
|
||||
break;
|
||||
case DST_IO:
|
||||
err = dst_process_io(st);
|
||||
break;
|
||||
case DST_CFG:
|
||||
err = dst_process_cfg(st);
|
||||
break;
|
||||
case DST_PING:
|
||||
err = 0;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receiving thread. For the client node we should try to reconnect,
|
||||
* for accepted client we just drop the state and expect it to reconnect.
|
||||
*/
|
||||
static int dst_recv(void *init_data, void *schedule_data)
|
||||
{
|
||||
struct dst_state *st = schedule_data;
|
||||
struct dst_node *n = init_data;
|
||||
int err = 0;
|
||||
|
||||
dprintk("%s: start st: %p, n: %p, scan: %lu, need_exit: %d.\n",
|
||||
__func__, st, n, n->trans_scan_timeout, st->need_exit);
|
||||
|
||||
while (n->trans_scan_timeout && !st->need_exit) {
|
||||
err = dst_recv_processing(st);
|
||||
if (err < 0) {
|
||||
if (!st->ctl.type)
|
||||
break;
|
||||
|
||||
if (!n->trans_scan_timeout || st->need_exit)
|
||||
break;
|
||||
|
||||
dst_state_reset(st);
|
||||
msleep(1000);
|
||||
}
|
||||
}
|
||||
|
||||
st->need_exit = 1;
|
||||
wake_up(&st->thread_wait);
|
||||
|
||||
dprintk("%s: freeing receiving socket st: %p.\n", __func__, st);
|
||||
dst_state_lock(st);
|
||||
dst_state_exit_connected(st);
|
||||
dst_state_unlock(st);
|
||||
dst_state_put(st);
|
||||
|
||||
dprintk("%s: freed receiving socket st: %p.\n", __func__, st);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Network state dies here and borns couple of lines below.
|
||||
* This object is the main network state processing engine:
|
||||
* sending, receiving, reconnections, all network related
|
||||
* tasks are handled on behalf of the state.
|
||||
*/
|
||||
static void dst_state_free(struct dst_state *st)
|
||||
{
|
||||
dprintk("%s: st: %p.\n", __func__, st);
|
||||
if (st->cleanup)
|
||||
st->cleanup(st);
|
||||
kfree(st->data);
|
||||
kfree(st);
|
||||
}
|
||||
|
||||
struct dst_state *dst_state_alloc(struct dst_node *n)
|
||||
{
|
||||
struct dst_state *st;
|
||||
int err = -ENOMEM;
|
||||
|
||||
st = kzalloc(sizeof(struct dst_state), GFP_KERNEL);
|
||||
if (!st)
|
||||
goto err_out_exit;
|
||||
|
||||
st->node = n;
|
||||
st->need_exit = 0;
|
||||
|
||||
st->size = PAGE_SIZE;
|
||||
st->data = kmalloc(st->size, GFP_KERNEL);
|
||||
if (!st->data)
|
||||
goto err_out_free;
|
||||
|
||||
spin_lock_init(&st->request_lock);
|
||||
INIT_LIST_HEAD(&st->request_list);
|
||||
|
||||
mutex_init(&st->state_lock);
|
||||
init_waitqueue_head(&st->thread_wait);
|
||||
|
||||
/*
|
||||
* One for processing thread, another one for node itself.
|
||||
*/
|
||||
atomic_set(&st->refcnt, 2);
|
||||
|
||||
dprintk("%s: st: %p, n: %p.\n", __func__, st, st->node);
|
||||
|
||||
return st;
|
||||
|
||||
err_out_free:
|
||||
kfree(st);
|
||||
err_out_exit:
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
int dst_state_schedule_receiver(struct dst_state *st)
|
||||
{
|
||||
return thread_pool_schedule_private(st->node->pool, dst_thread_setup,
|
||||
dst_recv, st, MAX_SCHEDULE_TIMEOUT, st->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize client's connection to the remote peer: allocate state,
|
||||
* connect and perform block IO autoconfiguration.
|
||||
*/
|
||||
int dst_node_init_connected(struct dst_node *n, struct dst_network_ctl *r)
|
||||
{
|
||||
struct dst_state *st;
|
||||
int err = -ENOMEM;
|
||||
|
||||
st = dst_state_alloc(n);
|
||||
if (IS_ERR(st)) {
|
||||
err = PTR_ERR(st);
|
||||
goto err_out_exit;
|
||||
}
|
||||
memcpy(&st->ctl, r, sizeof(struct dst_network_ctl));
|
||||
|
||||
err = dst_state_init_connected(st);
|
||||
if (err)
|
||||
goto err_out_free_data;
|
||||
|
||||
err = dst_request_remote_config(st);
|
||||
if (err)
|
||||
goto err_out_exit_connected;
|
||||
n->state = st;
|
||||
|
||||
err = dst_state_schedule_receiver(st);
|
||||
if (err)
|
||||
goto err_out_exit_connected;
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit_connected:
|
||||
dst_state_exit_connected(st);
|
||||
err_out_free_data:
|
||||
dst_state_free(st);
|
||||
err_out_exit:
|
||||
n->state = NULL;
|
||||
return err;
|
||||
}
|
||||
|
||||
void dst_state_put(struct dst_state *st)
|
||||
{
|
||||
dprintk("%s: st: %p, refcnt: %d.\n",
|
||||
__func__, st, atomic_read(&st->refcnt));
|
||||
if (atomic_dec_and_test(&st->refcnt))
|
||||
dst_state_free(st);
|
||||
}
|
||||
|
||||
/*
|
||||
* Send block IO to the network one by one using zero-copy ->sendpage().
|
||||
*/
|
||||
int dst_send_bio(struct dst_state *st, struct dst_cmd *cmd, struct bio *bio)
|
||||
{
|
||||
struct bio_vec *bv;
|
||||
struct dst_crypto_ctl *c = &st->node->crypto;
|
||||
int err, i = 0;
|
||||
int flags = MSG_WAITALL;
|
||||
|
||||
err = dst_data_send_header(st->socket, cmd,
|
||||
sizeof(struct dst_cmd) + c->crypto_attached_size, bio->bi_vcnt);
|
||||
if (err)
|
||||
goto err_out_exit;
|
||||
|
||||
bio_for_each_segment(bv, bio, i) {
|
||||
if (i < bio->bi_vcnt - 1)
|
||||
flags |= MSG_MORE;
|
||||
|
||||
err = kernel_sendpage(st->socket, bv->bv_page, bv->bv_offset,
|
||||
bv->bv_len, flags);
|
||||
if (err <= 0)
|
||||
goto err_out_exit;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_exit:
|
||||
dprintk("%s: %d/%d, flags: %x, err: %d.\n",
|
||||
__func__, i, bio->bi_vcnt, flags, err);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Send transaction to the remote peer.
|
||||
*/
|
||||
int dst_trans_send(struct dst_trans *t)
|
||||
{
|
||||
int err;
|
||||
struct dst_state *st = t->n->state;
|
||||
struct bio *bio = t->bio;
|
||||
|
||||
dst_convert_cmd(&t->cmd);
|
||||
|
||||
dst_state_lock(st);
|
||||
if (!st->socket) {
|
||||
err = dst_state_init_connected(st);
|
||||
if (err)
|
||||
goto err_out_unlock;
|
||||
}
|
||||
|
||||
if (bio_data_dir(bio) == WRITE) {
|
||||
err = dst_send_bio(st, &t->cmd, t->bio);
|
||||
} else {
|
||||
err = dst_data_send_header(st->socket, &t->cmd,
|
||||
sizeof(struct dst_cmd), 0);
|
||||
}
|
||||
if (err)
|
||||
goto err_out_reset;
|
||||
|
||||
dst_state_unlock(st);
|
||||
return 0;
|
||||
|
||||
err_out_reset:
|
||||
dst_state_reset_nolock(st);
|
||||
err_out_unlock:
|
||||
dst_state_unlock(st);
|
||||
|
||||
return err;
|
||||
}
|
|
@ -1,348 +0,0 @@
|
|||
/*
|
||||
* 2007+ Copyright (c) Evgeniy Polyakov <zbr@ioremap.net>
|
||||
* All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/dst.h>
|
||||
#include <linux/kthread.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
/*
|
||||
* Thread pool abstraction allows to schedule a work to be performed
|
||||
* on behalf of kernel thread. One does not operate with threads itself,
|
||||
* instead user provides setup and cleanup callbacks for thread pool itself,
|
||||
* and action and cleanup callbacks for each submitted work.
|
||||
*
|
||||
* Each worker has private data initialized at creation time and data,
|
||||
* provided by user at scheduling time.
|
||||
*
|
||||
* When action is being performed, thread can not be used by other users,
|
||||
* instead they will sleep until there is free thread to pick their work.
|
||||
*/
|
||||
struct thread_pool_worker {
|
||||
struct list_head worker_entry;
|
||||
|
||||
struct task_struct *thread;
|
||||
|
||||
struct thread_pool *pool;
|
||||
|
||||
int error;
|
||||
int has_data;
|
||||
int need_exit;
|
||||
unsigned int id;
|
||||
|
||||
wait_queue_head_t wait;
|
||||
|
||||
void *private;
|
||||
void *schedule_data;
|
||||
|
||||
int (*action)(void *private, void *schedule_data);
|
||||
void (*cleanup)(void *private);
|
||||
};
|
||||
|
||||
static void thread_pool_exit_worker(struct thread_pool_worker *w)
|
||||
{
|
||||
kthread_stop(w->thread);
|
||||
|
||||
w->cleanup(w->private);
|
||||
kfree(w);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called to mark thread as ready and allow users to schedule new work.
|
||||
*/
|
||||
static void thread_pool_worker_make_ready(struct thread_pool_worker *w)
|
||||
{
|
||||
struct thread_pool *p = w->pool;
|
||||
|
||||
mutex_lock(&p->thread_lock);
|
||||
|
||||
if (!w->need_exit) {
|
||||
list_move_tail(&w->worker_entry, &p->ready_list);
|
||||
w->has_data = 0;
|
||||
mutex_unlock(&p->thread_lock);
|
||||
|
||||
wake_up(&p->wait);
|
||||
} else {
|
||||
p->thread_num--;
|
||||
list_del(&w->worker_entry);
|
||||
mutex_unlock(&p->thread_lock);
|
||||
|
||||
thread_pool_exit_worker(w);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Thread action loop: waits until there is new work.
|
||||
*/
|
||||
static int thread_pool_worker_func(void *data)
|
||||
{
|
||||
struct thread_pool_worker *w = data;
|
||||
|
||||
while (!kthread_should_stop()) {
|
||||
wait_event_interruptible(w->wait,
|
||||
kthread_should_stop() || w->has_data);
|
||||
|
||||
if (kthread_should_stop())
|
||||
break;
|
||||
|
||||
if (!w->has_data)
|
||||
continue;
|
||||
|
||||
w->action(w->private, w->schedule_data);
|
||||
thread_pool_worker_make_ready(w);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove single worker without specifying which one.
|
||||
*/
|
||||
void thread_pool_del_worker(struct thread_pool *p)
|
||||
{
|
||||
struct thread_pool_worker *w = NULL;
|
||||
|
||||
while (!w && p->thread_num) {
|
||||
wait_event(p->wait, !list_empty(&p->ready_list) ||
|
||||
!p->thread_num);
|
||||
|
||||
dprintk("%s: locking list_empty: %d, thread_num: %d.\n",
|
||||
__func__, list_empty(&p->ready_list),
|
||||
p->thread_num);
|
||||
|
||||
mutex_lock(&p->thread_lock);
|
||||
if (!list_empty(&p->ready_list)) {
|
||||
w = list_first_entry(&p->ready_list,
|
||||
struct thread_pool_worker,
|
||||
worker_entry);
|
||||
|
||||
dprintk("%s: deleting w: %p, thread_num: %d, "
|
||||
"list: %p [%p.%p].\n", __func__,
|
||||
w, p->thread_num, &p->ready_list,
|
||||
p->ready_list.prev, p->ready_list.next);
|
||||
|
||||
p->thread_num--;
|
||||
list_del(&w->worker_entry);
|
||||
}
|
||||
mutex_unlock(&p->thread_lock);
|
||||
}
|
||||
|
||||
if (w)
|
||||
thread_pool_exit_worker(w);
|
||||
dprintk("%s: deleted w: %p, thread_num: %d.\n",
|
||||
__func__, w, p->thread_num);
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove a worker with given ID.
|
||||
*/
|
||||
void thread_pool_del_worker_id(struct thread_pool *p, unsigned int id)
|
||||
{
|
||||
struct thread_pool_worker *w;
|
||||
int found = 0;
|
||||
|
||||
mutex_lock(&p->thread_lock);
|
||||
list_for_each_entry(w, &p->ready_list, worker_entry) {
|
||||
if (w->id == id) {
|
||||
found = 1;
|
||||
p->thread_num--;
|
||||
list_del(&w->worker_entry);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!found) {
|
||||
list_for_each_entry(w, &p->active_list, worker_entry) {
|
||||
if (w->id == id) {
|
||||
w->need_exit = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
mutex_unlock(&p->thread_lock);
|
||||
|
||||
if (found)
|
||||
thread_pool_exit_worker(w);
|
||||
}
|
||||
|
||||
/*
|
||||
* Add new worker thread with given parameters.
|
||||
* If initialization callback fails, return error.
|
||||
*/
|
||||
int thread_pool_add_worker(struct thread_pool *p,
|
||||
char *name,
|
||||
unsigned int id,
|
||||
void *(*init)(void *private),
|
||||
void (*cleanup)(void *private),
|
||||
void *private)
|
||||
{
|
||||
struct thread_pool_worker *w;
|
||||
int err = -ENOMEM;
|
||||
|
||||
w = kzalloc(sizeof(struct thread_pool_worker), GFP_KERNEL);
|
||||
if (!w)
|
||||
goto err_out_exit;
|
||||
|
||||
w->pool = p;
|
||||
init_waitqueue_head(&w->wait);
|
||||
w->cleanup = cleanup;
|
||||
w->id = id;
|
||||
|
||||
w->thread = kthread_run(thread_pool_worker_func, w, "%s", name);
|
||||
if (IS_ERR(w->thread)) {
|
||||
err = PTR_ERR(w->thread);
|
||||
goto err_out_free;
|
||||
}
|
||||
|
||||
w->private = init(private);
|
||||
if (IS_ERR(w->private)) {
|
||||
err = PTR_ERR(w->private);
|
||||
goto err_out_stop_thread;
|
||||
}
|
||||
|
||||
mutex_lock(&p->thread_lock);
|
||||
list_add_tail(&w->worker_entry, &p->ready_list);
|
||||
p->thread_num++;
|
||||
mutex_unlock(&p->thread_lock);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_stop_thread:
|
||||
kthread_stop(w->thread);
|
||||
err_out_free:
|
||||
kfree(w);
|
||||
err_out_exit:
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Destroy the whole pool.
|
||||
*/
|
||||
void thread_pool_destroy(struct thread_pool *p)
|
||||
{
|
||||
while (p->thread_num) {
|
||||
dprintk("%s: num: %d.\n", __func__, p->thread_num);
|
||||
thread_pool_del_worker(p);
|
||||
}
|
||||
|
||||
kfree(p);
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a pool with given number of threads.
|
||||
* They will have sequential IDs started from zero.
|
||||
*/
|
||||
struct thread_pool *thread_pool_create(int num, char *name,
|
||||
void *(*init)(void *private),
|
||||
void (*cleanup)(void *private),
|
||||
void *private)
|
||||
{
|
||||
struct thread_pool_worker *w, *tmp;
|
||||
struct thread_pool *p;
|
||||
int err = -ENOMEM;
|
||||
int i;
|
||||
|
||||
p = kzalloc(sizeof(struct thread_pool), GFP_KERNEL);
|
||||
if (!p)
|
||||
goto err_out_exit;
|
||||
|
||||
init_waitqueue_head(&p->wait);
|
||||
mutex_init(&p->thread_lock);
|
||||
INIT_LIST_HEAD(&p->ready_list);
|
||||
INIT_LIST_HEAD(&p->active_list);
|
||||
p->thread_num = 0;
|
||||
|
||||
for (i = 0; i < num; ++i) {
|
||||
err = thread_pool_add_worker(p, name, i, init,
|
||||
cleanup, private);
|
||||
if (err)
|
||||
goto err_out_free_all;
|
||||
}
|
||||
|
||||
return p;
|
||||
|
||||
err_out_free_all:
|
||||
list_for_each_entry_safe(w, tmp, &p->ready_list, worker_entry) {
|
||||
list_del(&w->worker_entry);
|
||||
thread_pool_exit_worker(w);
|
||||
}
|
||||
kfree(p);
|
||||
err_out_exit:
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
/*
|
||||
* Schedule execution of the action on a given thread,
|
||||
* provided ID pointer has to match previously stored
|
||||
* private data.
|
||||
*/
|
||||
int thread_pool_schedule_private(struct thread_pool *p,
|
||||
int (*setup)(void *private, void *data),
|
||||
int (*action)(void *private, void *data),
|
||||
void *data, long timeout, void *id)
|
||||
{
|
||||
struct thread_pool_worker *w, *tmp, *worker = NULL;
|
||||
int err = 0;
|
||||
|
||||
while (!worker && !err) {
|
||||
timeout = wait_event_interruptible_timeout(p->wait,
|
||||
!list_empty(&p->ready_list),
|
||||
timeout);
|
||||
|
||||
if (!timeout) {
|
||||
err = -ETIMEDOUT;
|
||||
break;
|
||||
}
|
||||
|
||||
worker = NULL;
|
||||
mutex_lock(&p->thread_lock);
|
||||
list_for_each_entry_safe(w, tmp, &p->ready_list, worker_entry) {
|
||||
if (id && id != w->private)
|
||||
continue;
|
||||
|
||||
worker = w;
|
||||
|
||||
list_move_tail(&w->worker_entry, &p->active_list);
|
||||
|
||||
err = setup(w->private, data);
|
||||
if (!err) {
|
||||
w->schedule_data = data;
|
||||
w->action = action;
|
||||
w->has_data = 1;
|
||||
wake_up(&w->wait);
|
||||
} else {
|
||||
list_move_tail(&w->worker_entry,
|
||||
&p->ready_list);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
mutex_unlock(&p->thread_lock);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Schedule execution on arbitrary thread from the pool.
|
||||
*/
|
||||
int thread_pool_schedule(struct thread_pool *p,
|
||||
int (*setup)(void *private, void *data),
|
||||
int (*action)(void *private, void *data),
|
||||
void *data, long timeout)
|
||||
{
|
||||
return thread_pool_schedule_private(p, setup,
|
||||
action, data, timeout, NULL);
|
||||
}
|
|
@ -1,337 +0,0 @@
|
|||
/*
|
||||
* 2007+ Copyright (c) Evgeniy Polyakov <zbr@ioremap.net>
|
||||
* All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/bio.h>
|
||||
#include <linux/dst.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mempool.h>
|
||||
|
||||
/*
|
||||
* Transaction memory pool size.
|
||||
*/
|
||||
static int dst_mempool_num = 32;
|
||||
module_param(dst_mempool_num, int, 0644);
|
||||
|
||||
/*
|
||||
* Transaction tree management.
|
||||
*/
|
||||
static inline int dst_trans_cmp(dst_gen_t gen, dst_gen_t new)
|
||||
{
|
||||
if (gen < new)
|
||||
return 1;
|
||||
if (gen > new)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct dst_trans *dst_trans_search(struct dst_node *node, dst_gen_t gen)
|
||||
{
|
||||
struct rb_root *root = &node->trans_root;
|
||||
struct rb_node *n = root->rb_node;
|
||||
struct dst_trans *t, *ret = NULL;
|
||||
int cmp;
|
||||
|
||||
while (n) {
|
||||
t = rb_entry(n, struct dst_trans, trans_entry);
|
||||
|
||||
cmp = dst_trans_cmp(t->gen, gen);
|
||||
if (cmp < 0)
|
||||
n = n->rb_left;
|
||||
else if (cmp > 0)
|
||||
n = n->rb_right;
|
||||
else {
|
||||
ret = t;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
dprintk("%s: %s transaction: id: %llu.\n", __func__,
|
||||
(ret) ? "found" : "not found", gen);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int dst_trans_insert(struct dst_trans *new)
|
||||
{
|
||||
struct rb_root *root = &new->n->trans_root;
|
||||
struct rb_node **n = &root->rb_node, *parent = NULL;
|
||||
struct dst_trans *ret = NULL, *t;
|
||||
int cmp;
|
||||
|
||||
while (*n) {
|
||||
parent = *n;
|
||||
|
||||
t = rb_entry(parent, struct dst_trans, trans_entry);
|
||||
|
||||
cmp = dst_trans_cmp(t->gen, new->gen);
|
||||
if (cmp < 0)
|
||||
n = &parent->rb_left;
|
||||
else if (cmp > 0)
|
||||
n = &parent->rb_right;
|
||||
else {
|
||||
ret = t;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
new->send_time = jiffies;
|
||||
if (ret) {
|
||||
printk(KERN_DEBUG "%s: exist: old: gen: %llu, bio: %llu/%u, "
|
||||
"send_time: %lu, new: gen: %llu, bio: %llu/%u, "
|
||||
"send_time: %lu.\n", __func__,
|
||||
ret->gen, (u64)ret->bio->bi_sector,
|
||||
ret->bio->bi_size, ret->send_time,
|
||||
new->gen, (u64)new->bio->bi_sector,
|
||||
new->bio->bi_size, new->send_time);
|
||||
return -EEXIST;
|
||||
}
|
||||
|
||||
rb_link_node(&new->trans_entry, parent, n);
|
||||
rb_insert_color(&new->trans_entry, root);
|
||||
|
||||
dprintk("%s: inserted: gen: %llu, bio: %llu/%u, send_time: %lu.\n",
|
||||
__func__, new->gen, (u64)new->bio->bi_sector,
|
||||
new->bio->bi_size, new->send_time);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int dst_trans_remove_nolock(struct dst_trans *t)
|
||||
{
|
||||
struct dst_node *n = t->n;
|
||||
|
||||
if (t->trans_entry.rb_parent_color) {
|
||||
rb_erase(&t->trans_entry, &n->trans_root);
|
||||
t->trans_entry.rb_parent_color = 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int dst_trans_remove(struct dst_trans *t)
|
||||
{
|
||||
int ret;
|
||||
struct dst_node *n = t->n;
|
||||
|
||||
mutex_lock(&n->trans_lock);
|
||||
ret = dst_trans_remove_nolock(t);
|
||||
mutex_unlock(&n->trans_lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* When transaction is completed and there are no more users,
|
||||
* we complete appriate block IO request with given error status.
|
||||
*/
|
||||
void dst_trans_put(struct dst_trans *t)
|
||||
{
|
||||
if (atomic_dec_and_test(&t->refcnt)) {
|
||||
struct bio *bio = t->bio;
|
||||
|
||||
dprintk("%s: completed t: %p, gen: %llu, bio: %p.\n",
|
||||
__func__, t, t->gen, bio);
|
||||
|
||||
bio_endio(bio, t->error);
|
||||
bio_put(bio);
|
||||
|
||||
dst_node_put(t->n);
|
||||
mempool_free(t, t->n->trans_pool);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Process given block IO request: allocate transaction, insert it into the tree
|
||||
* and send/schedule crypto processing.
|
||||
*/
|
||||
int dst_process_bio(struct dst_node *n, struct bio *bio)
|
||||
{
|
||||
struct dst_trans *t;
|
||||
int err = -ENOMEM;
|
||||
|
||||
t = mempool_alloc(n->trans_pool, GFP_NOFS);
|
||||
if (!t)
|
||||
goto err_out_exit;
|
||||
|
||||
t->n = dst_node_get(n);
|
||||
t->bio = bio;
|
||||
t->error = 0;
|
||||
t->retries = 0;
|
||||
atomic_set(&t->refcnt, 1);
|
||||
t->gen = atomic_long_inc_return(&n->gen);
|
||||
|
||||
t->enc = bio_data_dir(bio);
|
||||
dst_bio_to_cmd(bio, &t->cmd, DST_IO, t->gen);
|
||||
|
||||
mutex_lock(&n->trans_lock);
|
||||
err = dst_trans_insert(t);
|
||||
mutex_unlock(&n->trans_lock);
|
||||
if (err)
|
||||
goto err_out_free;
|
||||
|
||||
dprintk("%s: gen: %llu, bio: %llu/%u, dir/enc: %d, need_crypto: %d.\n",
|
||||
__func__, t->gen, (u64)bio->bi_sector,
|
||||
bio->bi_size, t->enc, dst_need_crypto(n));
|
||||
|
||||
if (dst_need_crypto(n) && t->enc)
|
||||
dst_trans_crypto(t);
|
||||
else
|
||||
dst_trans_send(t);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_free:
|
||||
dst_node_put(n);
|
||||
mempool_free(t, n->trans_pool);
|
||||
err_out_exit:
|
||||
bio_endio(bio, err);
|
||||
bio_put(bio);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Scan for timeout/stale transactions.
|
||||
* Each transaction is being resent multiple times before error completion.
|
||||
*/
|
||||
static void dst_trans_scan(struct work_struct *work)
|
||||
{
|
||||
struct dst_node *n = container_of(work, struct dst_node,
|
||||
trans_work.work);
|
||||
struct rb_node *rb_node;
|
||||
struct dst_trans *t;
|
||||
unsigned long timeout = n->trans_scan_timeout;
|
||||
int num = 10 * n->trans_max_retries;
|
||||
|
||||
mutex_lock(&n->trans_lock);
|
||||
|
||||
for (rb_node = rb_first(&n->trans_root); rb_node; ) {
|
||||
t = rb_entry(rb_node, struct dst_trans, trans_entry);
|
||||
|
||||
if (timeout && time_after(t->send_time + timeout, jiffies)
|
||||
&& t->retries == 0)
|
||||
break;
|
||||
#if 0
|
||||
dprintk("%s: t: %p, gen: %llu, n: %s, retries: %u, max: %u.\n",
|
||||
__func__, t, t->gen, n->name,
|
||||
t->retries, n->trans_max_retries);
|
||||
#endif
|
||||
if (--num == 0)
|
||||
break;
|
||||
|
||||
dst_trans_get(t);
|
||||
|
||||
rb_node = rb_next(rb_node);
|
||||
|
||||
if (timeout && (++t->retries < n->trans_max_retries)) {
|
||||
dst_trans_send(t);
|
||||
} else {
|
||||
t->error = -ETIMEDOUT;
|
||||
dst_trans_remove_nolock(t);
|
||||
dst_trans_put(t);
|
||||
}
|
||||
|
||||
dst_trans_put(t);
|
||||
}
|
||||
|
||||
mutex_unlock(&n->trans_lock);
|
||||
|
||||
/*
|
||||
* If no timeout specified then system is in the middle of exiting
|
||||
* process, so no need to reschedule scanning process again.
|
||||
*/
|
||||
if (timeout) {
|
||||
if (!num)
|
||||
timeout = HZ;
|
||||
schedule_delayed_work(&n->trans_work, timeout);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush all transactions and mark them as timed out.
|
||||
* Destroy transaction pools.
|
||||
*/
|
||||
void dst_node_trans_exit(struct dst_node *n)
|
||||
{
|
||||
struct dst_trans *t;
|
||||
struct rb_node *rb_node;
|
||||
|
||||
if (!n->trans_cache)
|
||||
return;
|
||||
|
||||
dprintk("%s: n: %p, cancelling the work.\n", __func__, n);
|
||||
cancel_delayed_work_sync(&n->trans_work);
|
||||
flush_scheduled_work();
|
||||
dprintk("%s: n: %p, work has been cancelled.\n", __func__, n);
|
||||
|
||||
for (rb_node = rb_first(&n->trans_root); rb_node; ) {
|
||||
t = rb_entry(rb_node, struct dst_trans, trans_entry);
|
||||
|
||||
dprintk("%s: t: %p, gen: %llu, n: %s.\n",
|
||||
__func__, t, t->gen, n->name);
|
||||
|
||||
rb_node = rb_next(rb_node);
|
||||
|
||||
t->error = -ETIMEDOUT;
|
||||
dst_trans_remove_nolock(t);
|
||||
dst_trans_put(t);
|
||||
}
|
||||
|
||||
mempool_destroy(n->trans_pool);
|
||||
kmem_cache_destroy(n->trans_cache);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize transaction storage for given node.
|
||||
* Transaction stores not only control information,
|
||||
* but also network command and crypto data (if needed)
|
||||
* to reduce number of allocations. Thus transaction size
|
||||
* differs from node to node.
|
||||
*/
|
||||
int dst_node_trans_init(struct dst_node *n, unsigned int size)
|
||||
{
|
||||
/*
|
||||
* We need this, since node with given name can be dropped from the
|
||||
* hash table, but be still alive, so subsequent creation of the node
|
||||
* with the same name may collide with existing cache name.
|
||||
*/
|
||||
|
||||
snprintf(n->cache_name, sizeof(n->cache_name), "%s-%p", n->name, n);
|
||||
|
||||
n->trans_cache = kmem_cache_create(n->cache_name,
|
||||
size + n->crypto.crypto_attached_size,
|
||||
0, 0, NULL);
|
||||
if (!n->trans_cache)
|
||||
goto err_out_exit;
|
||||
|
||||
n->trans_pool = mempool_create_slab_pool(dst_mempool_num,
|
||||
n->trans_cache);
|
||||
if (!n->trans_pool)
|
||||
goto err_out_cache_destroy;
|
||||
|
||||
mutex_init(&n->trans_lock);
|
||||
n->trans_root = RB_ROOT;
|
||||
|
||||
INIT_DELAYED_WORK(&n->trans_work, dst_trans_scan);
|
||||
schedule_delayed_work(&n->trans_work, n->trans_scan_timeout);
|
||||
|
||||
dprintk("%s: n: %p, size: %u, crypto: %u.\n",
|
||||
__func__, n, size, n->crypto.crypto_attached_size);
|
||||
|
||||
return 0;
|
||||
|
||||
err_out_cache_destroy:
|
||||
kmem_cache_destroy(n->trans_cache);
|
||||
err_out_exit:
|
||||
return -ENOMEM;
|
||||
}
|
|
@ -1,587 +0,0 @@
|
|||
/*
|
||||
* 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
|
||||
* All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#ifndef __DST_H
|
||||
#define __DST_H
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/connector.h>
|
||||
|
||||
#define DST_NAMELEN 32
|
||||
#define DST_NAME "dst"
|
||||
|
||||
enum {
|
||||
/* Remove node with given id from storage */
|
||||
DST_DEL_NODE = 0,
|
||||
/* Add remote node with given id to the storage */
|
||||
DST_ADD_REMOTE,
|
||||
/* Add local node with given id to the storage to be exported and used by remote peers */
|
||||
DST_ADD_EXPORT,
|
||||
/* Crypto initialization command (hash/cipher used to protect the connection) */
|
||||
DST_CRYPTO,
|
||||
/* Security attributes for given connection (permissions for example) */
|
||||
DST_SECURITY,
|
||||
/* Register given node in the block layer subsystem */
|
||||
DST_START,
|
||||
DST_CMD_MAX
|
||||
};
|
||||
|
||||
struct dst_ctl
|
||||
{
|
||||
/* Storage name */
|
||||
char name[DST_NAMELEN];
|
||||
/* Command flags */
|
||||
__u32 flags;
|
||||
/* Command itself (see above) */
|
||||
__u32 cmd;
|
||||
/* Maximum number of pages per single request in this device */
|
||||
__u32 max_pages;
|
||||
/* Stale/error transaction scanning timeout in milliseconds */
|
||||
__u32 trans_scan_timeout;
|
||||
/* Maximum number of retry sends before completing transaction as broken */
|
||||
__u32 trans_max_retries;
|
||||
/* Storage size */
|
||||
__u64 size;
|
||||
};
|
||||
|
||||
/* Reply command carries completion status */
|
||||
struct dst_ctl_ack
|
||||
{
|
||||
struct cn_msg msg;
|
||||
int error;
|
||||
int unused[3];
|
||||
};
|
||||
|
||||
/*
|
||||
* Unfortunaltely socket address structure is not exported to userspace
|
||||
* and is redefined there.
|
||||
*/
|
||||
#define SADDR_MAX_DATA 128
|
||||
|
||||
struct saddr {
|
||||
/* address family, AF_xxx */
|
||||
unsigned short sa_family;
|
||||
/* 14 bytes of protocol address */
|
||||
char sa_data[SADDR_MAX_DATA];
|
||||
/* Number of bytes used in sa_data */
|
||||
unsigned short sa_data_len;
|
||||
};
|
||||
|
||||
/* Address structure */
|
||||
struct dst_network_ctl
|
||||
{
|
||||
/* Socket type: datagram, stream...*/
|
||||
unsigned int type;
|
||||
/* Let me guess, is it a Jupiter diameter? */
|
||||
unsigned int proto;
|
||||
/* Peer's address */
|
||||
struct saddr addr;
|
||||
};
|
||||
|
||||
struct dst_crypto_ctl
|
||||
{
|
||||
/* Cipher and hash names */
|
||||
char cipher_algo[DST_NAMELEN];
|
||||
char hash_algo[DST_NAMELEN];
|
||||
|
||||
/* Key sizes. Can be zero for digest for example */
|
||||
unsigned int cipher_keysize, hash_keysize;
|
||||
/* Alignment. Calculated by the DST itself. */
|
||||
unsigned int crypto_attached_size;
|
||||
/* Number of threads to perform crypto operations */
|
||||
int thread_num;
|
||||
};
|
||||
|
||||
/* Export security attributes have this bits checked in when client connects */
|
||||
#define DST_PERM_READ (1<<0)
|
||||
#define DST_PERM_WRITE (1<<1)
|
||||
|
||||
/*
|
||||
* Right now it is simple model, where each remote address
|
||||
* is assigned to set of permissions it is allowed to perform.
|
||||
* In real world block device does not know anything but
|
||||
* reading and writing, so it should be more than enough.
|
||||
*/
|
||||
struct dst_secure_user
|
||||
{
|
||||
unsigned int permissions;
|
||||
struct saddr addr;
|
||||
};
|
||||
|
||||
/*
|
||||
* Export control command: device to export and network address to accept
|
||||
* clients to work with given device
|
||||
*/
|
||||
struct dst_export_ctl
|
||||
{
|
||||
char device[DST_NAMELEN];
|
||||
struct dst_network_ctl ctl;
|
||||
};
|
||||
|
||||
enum {
|
||||
DST_CFG = 1, /* Request remote configuration */
|
||||
DST_IO, /* IO command */
|
||||
DST_IO_RESPONSE, /* IO response */
|
||||
DST_PING, /* Keepalive message */
|
||||
DST_NCMD_MAX,
|
||||
};
|
||||
|
||||
struct dst_cmd
|
||||
{
|
||||
/* Network command itself, see above */
|
||||
__u32 cmd;
|
||||
/*
|
||||
* Size of the attached data
|
||||
* (in most cases, for READ command it means how many bytes were requested)
|
||||
*/
|
||||
__u32 size;
|
||||
/* Crypto size: number of attached bytes with digest/hmac */
|
||||
__u32 csize;
|
||||
/* Here we can carry secret data */
|
||||
__u32 reserved;
|
||||
/* Read/write bits, see how they are encoded in bio structure */
|
||||
__u64 rw;
|
||||
/* BIO flags */
|
||||
__u64 flags;
|
||||
/* Unique command id (like transaction ID) */
|
||||
__u64 id;
|
||||
/* Sector to start IO from */
|
||||
__u64 sector;
|
||||
/* Hash data is placed after this header */
|
||||
__u8 hash[0];
|
||||
};
|
||||
|
||||
/*
|
||||
* Convert command to/from network byte order.
|
||||
* We do not use hton*() functions, since there is
|
||||
* no 64-bit implementation.
|
||||
*/
|
||||
static inline void dst_convert_cmd(struct dst_cmd *c)
|
||||
{
|
||||
c->cmd = __cpu_to_be32(c->cmd);
|
||||
c->csize = __cpu_to_be32(c->csize);
|
||||
c->size = __cpu_to_be32(c->size);
|
||||
c->sector = __cpu_to_be64(c->sector);
|
||||
c->id = __cpu_to_be64(c->id);
|
||||
c->flags = __cpu_to_be64(c->flags);
|
||||
c->rw = __cpu_to_be64(c->rw);
|
||||
}
|
||||
|
||||
/* Transaction id */
|
||||
typedef __u64 dst_gen_t;
|
||||
|
||||
#ifdef __KERNEL__
|
||||
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/mempool.h>
|
||||
#include <linux/net.h>
|
||||
#include <linux/poll.h>
|
||||
#include <linux/rbtree.h>
|
||||
|
||||
#ifdef CONFIG_DST_DEBUG
|
||||
#define dprintk(f, a...) printk(KERN_NOTICE f, ##a)
|
||||
#else
|
||||
static inline void __attribute__ ((format (printf, 1, 2)))
|
||||
dprintk(const char *fmt, ...) {}
|
||||
#endif
|
||||
|
||||
struct dst_node;
|
||||
|
||||
struct dst_trans
|
||||
{
|
||||
/* DST node we are working with */
|
||||
struct dst_node *n;
|
||||
|
||||
/* Entry inside transaction tree */
|
||||
struct rb_node trans_entry;
|
||||
|
||||
/* Merlin kills this transaction when this memory cell equals zero */
|
||||
atomic_t refcnt;
|
||||
|
||||
/* How this transaction should be processed by crypto engine */
|
||||
short enc;
|
||||
/* How many times this transaction was resent */
|
||||
short retries;
|
||||
/* Completion status */
|
||||
int error;
|
||||
|
||||
/* When did we send it to the remote peer */
|
||||
long send_time;
|
||||
|
||||
/* My name is...
|
||||
* Well, computers does not speak, they have unique id instead */
|
||||
dst_gen_t gen;
|
||||
|
||||
/* Block IO we are working with */
|
||||
struct bio *bio;
|
||||
|
||||
/* Network command for above block IO request */
|
||||
struct dst_cmd cmd;
|
||||
};
|
||||
|
||||
struct dst_crypto_engine
|
||||
{
|
||||
/* What should we do with all block requests */
|
||||
struct crypto_hash *hash;
|
||||
struct crypto_ablkcipher *cipher;
|
||||
|
||||
/* Pool of pages used to encrypt data into before sending */
|
||||
int page_num;
|
||||
struct page **pages;
|
||||
|
||||
/* What to do with current request */
|
||||
int enc;
|
||||
/* Who we are and where do we go */
|
||||
struct scatterlist *src, *dst;
|
||||
|
||||
/* Maximum timeout waiting for encryption to be completed */
|
||||
long timeout;
|
||||
/* IV is a 64-bit sequential counter */
|
||||
u64 iv;
|
||||
|
||||
/* Secret data */
|
||||
void *private;
|
||||
|
||||
/* Cached temporary data lives here */
|
||||
int size;
|
||||
void *data;
|
||||
};
|
||||
|
||||
struct dst_state
|
||||
{
|
||||
/* The main state protection */
|
||||
struct mutex state_lock;
|
||||
|
||||
/* Polling machinery for sockets */
|
||||
wait_queue_t wait;
|
||||
wait_queue_head_t *whead;
|
||||
/* Most of events are being waited here */
|
||||
wait_queue_head_t thread_wait;
|
||||
|
||||
/* Who owns this? */
|
||||
struct dst_node *node;
|
||||
|
||||
/* Network address for this state */
|
||||
struct dst_network_ctl ctl;
|
||||
|
||||
/* Permissions to work with: read-only or rw connection */
|
||||
u32 permissions;
|
||||
|
||||
/* Called when we need to clean private data */
|
||||
void (* cleanup)(struct dst_state *st);
|
||||
|
||||
/* Used by the server: BIO completion queues BIOs here */
|
||||
struct list_head request_list;
|
||||
spinlock_t request_lock;
|
||||
|
||||
/* Guess what? No, it is not number of planets */
|
||||
atomic_t refcnt;
|
||||
|
||||
/* This flags is set when connection should be dropped */
|
||||
int need_exit;
|
||||
|
||||
/*
|
||||
* Socket to work with. Second pointer is used for
|
||||
* lockless check if socket was changed before performing
|
||||
* next action (like working with cached polling result)
|
||||
*/
|
||||
struct socket *socket, *read_socket;
|
||||
|
||||
/* Cached preallocated data */
|
||||
void *data;
|
||||
unsigned int size;
|
||||
|
||||
/* Currently processed command */
|
||||
struct dst_cmd cmd;
|
||||
};
|
||||
|
||||
struct dst_info
|
||||
{
|
||||
/* Device size */
|
||||
u64 size;
|
||||
|
||||
/* Local device name for export devices */
|
||||
char local[DST_NAMELEN];
|
||||
|
||||
/* Network setup */
|
||||
struct dst_network_ctl net;
|
||||
|
||||
/* Sysfs bits use this */
|
||||
struct device device;
|
||||
};
|
||||
|
||||
struct dst_node
|
||||
{
|
||||
struct list_head node_entry;
|
||||
|
||||
/* Hi, my name is stored here */
|
||||
char name[DST_NAMELEN];
|
||||
/* My cache name is stored here */
|
||||
char cache_name[DST_NAMELEN];
|
||||
|
||||
/* Block device attached to given node.
|
||||
* Only valid for exporting nodes */
|
||||
struct block_device *bdev;
|
||||
/* Network state machine for given peer */
|
||||
struct dst_state *state;
|
||||
|
||||
/* Block IO machinery */
|
||||
struct request_queue *queue;
|
||||
struct gendisk *disk;
|
||||
|
||||
/* Number of threads in processing pool */
|
||||
int thread_num;
|
||||
/* Maximum number of pages in single IO */
|
||||
int max_pages;
|
||||
|
||||
/* I'm that big in bytes */
|
||||
loff_t size;
|
||||
|
||||
/* Exported to userspace node information */
|
||||
struct dst_info *info;
|
||||
|
||||
/*
|
||||
* Security attribute list.
|
||||
* Used only by exporting node currently.
|
||||
*/
|
||||
struct list_head security_list;
|
||||
struct mutex security_lock;
|
||||
|
||||
/*
|
||||
* When this unerflows below zero, university collapses.
|
||||
* But this will not happen, since node will be freed,
|
||||
* when reference counter reaches zero.
|
||||
*/
|
||||
atomic_t refcnt;
|
||||
|
||||
/* How precisely should I be started? */
|
||||
int (*start)(struct dst_node *);
|
||||
|
||||
/* Crypto capabilities */
|
||||
struct dst_crypto_ctl crypto;
|
||||
u8 *hash_key;
|
||||
u8 *cipher_key;
|
||||
|
||||
/* Pool of processing thread */
|
||||
struct thread_pool *pool;
|
||||
|
||||
/* Transaction IDs live here */
|
||||
atomic_long_t gen;
|
||||
|
||||
/*
|
||||
* How frequently and how many times transaction
|
||||
* tree should be scanned to drop stale objects.
|
||||
*/
|
||||
long trans_scan_timeout;
|
||||
int trans_max_retries;
|
||||
|
||||
/* Small gnomes live here */
|
||||
struct rb_root trans_root;
|
||||
struct mutex trans_lock;
|
||||
|
||||
/*
|
||||
* Transaction cache/memory pool.
|
||||
* It is big enough to contain not only transaction
|
||||
* itself, but additional crypto data (digest/hmac).
|
||||
*/
|
||||
struct kmem_cache *trans_cache;
|
||||
mempool_t *trans_pool;
|
||||
|
||||
/* This entity scans transaction tree */
|
||||
struct delayed_work trans_work;
|
||||
|
||||
wait_queue_head_t wait;
|
||||
};
|
||||
|
||||
/* Kernel representation of the security attribute */
|
||||
struct dst_secure
|
||||
{
|
||||
struct list_head sec_entry;
|
||||
struct dst_secure_user sec;
|
||||
};
|
||||
|
||||
int dst_process_bio(struct dst_node *n, struct bio *bio);
|
||||
|
||||
int dst_node_init_connected(struct dst_node *n, struct dst_network_ctl *r);
|
||||
int dst_node_init_listened(struct dst_node *n, struct dst_export_ctl *le);
|
||||
|
||||
static inline struct dst_state *dst_state_get(struct dst_state *st)
|
||||
{
|
||||
BUG_ON(atomic_read(&st->refcnt) == 0);
|
||||
atomic_inc(&st->refcnt);
|
||||
return st;
|
||||
}
|
||||
|
||||
void dst_state_put(struct dst_state *st);
|
||||
|
||||
struct dst_state *dst_state_alloc(struct dst_node *n);
|
||||
int dst_state_socket_create(struct dst_state *st);
|
||||
void dst_state_socket_release(struct dst_state *st);
|
||||
|
||||
void dst_state_exit_connected(struct dst_state *st);
|
||||
|
||||
int dst_state_schedule_receiver(struct dst_state *st);
|
||||
|
||||
void dst_dump_addr(struct socket *sk, struct sockaddr *sa, char *str);
|
||||
|
||||
static inline void dst_state_lock(struct dst_state *st)
|
||||
{
|
||||
mutex_lock(&st->state_lock);
|
||||
}
|
||||
|
||||
static inline void dst_state_unlock(struct dst_state *st)
|
||||
{
|
||||
mutex_unlock(&st->state_lock);
|
||||
}
|
||||
|
||||
void dst_poll_exit(struct dst_state *st);
|
||||
int dst_poll_init(struct dst_state *st);
|
||||
|
||||
static inline unsigned int dst_state_poll(struct dst_state *st)
|
||||
{
|
||||
unsigned int revents = POLLHUP | POLLERR;
|
||||
|
||||
dst_state_lock(st);
|
||||
if (st->socket)
|
||||
revents = st->socket->ops->poll(NULL, st->socket, NULL);
|
||||
dst_state_unlock(st);
|
||||
|
||||
return revents;
|
||||
}
|
||||
|
||||
static inline int dst_thread_setup(void *private, void *data)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void dst_node_put(struct dst_node *n);
|
||||
|
||||
static inline struct dst_node *dst_node_get(struct dst_node *n)
|
||||
{
|
||||
atomic_inc(&n->refcnt);
|
||||
return n;
|
||||
}
|
||||
|
||||
int dst_data_recv(struct dst_state *st, void *data, unsigned int size);
|
||||
int dst_recv_cdata(struct dst_state *st, void *cdata);
|
||||
int dst_data_send_header(struct socket *sock,
|
||||
void *data, unsigned int size, int more);
|
||||
|
||||
int dst_send_bio(struct dst_state *st, struct dst_cmd *cmd, struct bio *bio);
|
||||
|
||||
int dst_process_io(struct dst_state *st);
|
||||
int dst_export_crypto(struct dst_node *n, struct bio *bio);
|
||||
int dst_export_send_bio(struct bio *bio);
|
||||
int dst_start_export(struct dst_node *n);
|
||||
|
||||
int __init dst_export_init(void);
|
||||
void dst_export_exit(void);
|
||||
|
||||
/* Private structure for export block IO requests */
|
||||
struct dst_export_priv
|
||||
{
|
||||
struct list_head request_entry;
|
||||
struct dst_state *state;
|
||||
struct bio *bio;
|
||||
struct dst_cmd cmd;
|
||||
};
|
||||
|
||||
static inline void dst_trans_get(struct dst_trans *t)
|
||||
{
|
||||
atomic_inc(&t->refcnt);
|
||||
}
|
||||
|
||||
struct dst_trans *dst_trans_search(struct dst_node *node, dst_gen_t gen);
|
||||
int dst_trans_remove(struct dst_trans *t);
|
||||
int dst_trans_remove_nolock(struct dst_trans *t);
|
||||
void dst_trans_put(struct dst_trans *t);
|
||||
|
||||
/*
|
||||
* Convert bio into network command.
|
||||
*/
|
||||
static inline void dst_bio_to_cmd(struct bio *bio, struct dst_cmd *cmd,
|
||||
u32 command, u64 id)
|
||||
{
|
||||
cmd->cmd = command;
|
||||
cmd->flags = (bio->bi_flags << BIO_POOL_BITS) >> BIO_POOL_BITS;
|
||||
cmd->rw = bio->bi_rw;
|
||||
cmd->size = bio->bi_size;
|
||||
cmd->csize = 0;
|
||||
cmd->id = id;
|
||||
cmd->sector = bio->bi_sector;
|
||||
};
|
||||
|
||||
int dst_trans_send(struct dst_trans *t);
|
||||
int dst_trans_crypto(struct dst_trans *t);
|
||||
|
||||
int dst_node_crypto_init(struct dst_node *n, struct dst_crypto_ctl *ctl);
|
||||
void dst_node_crypto_exit(struct dst_node *n);
|
||||
|
||||
static inline int dst_need_crypto(struct dst_node *n)
|
||||
{
|
||||
struct dst_crypto_ctl *c = &n->crypto;
|
||||
/*
|
||||
* Logical OR is appropriate here, but boolean one produces
|
||||
* more optimal code, so it is used instead.
|
||||
*/
|
||||
return (c->hash_algo[0] | c->cipher_algo[0]);
|
||||
}
|
||||
|
||||
int dst_node_trans_init(struct dst_node *n, unsigned int size);
|
||||
void dst_node_trans_exit(struct dst_node *n);
|
||||
|
||||
/*
|
||||
* Pool of threads.
|
||||
* Ready list contains threads currently free to be used,
|
||||
* active one contains threads with some work scheduled for them.
|
||||
* Caller can wait in given queue when thread is ready.
|
||||
*/
|
||||
struct thread_pool
|
||||
{
|
||||
int thread_num;
|
||||
struct mutex thread_lock;
|
||||
struct list_head ready_list, active_list;
|
||||
|
||||
wait_queue_head_t wait;
|
||||
};
|
||||
|
||||
void thread_pool_del_worker(struct thread_pool *p);
|
||||
void thread_pool_del_worker_id(struct thread_pool *p, unsigned int id);
|
||||
int thread_pool_add_worker(struct thread_pool *p,
|
||||
char *name,
|
||||
unsigned int id,
|
||||
void *(* init)(void *data),
|
||||
void (* cleanup)(void *data),
|
||||
void *data);
|
||||
|
||||
void thread_pool_destroy(struct thread_pool *p);
|
||||
struct thread_pool *thread_pool_create(int num, char *name,
|
||||
void *(* init)(void *data),
|
||||
void (* cleanup)(void *data),
|
||||
void *data);
|
||||
|
||||
int thread_pool_schedule(struct thread_pool *p,
|
||||
int (* setup)(void *stored_private, void *setup_data),
|
||||
int (* action)(void *stored_private, void *setup_data),
|
||||
void *setup_data, long timeout);
|
||||
int thread_pool_schedule_private(struct thread_pool *p,
|
||||
int (* setup)(void *private, void *data),
|
||||
int (* action)(void *private, void *data),
|
||||
void *data, long timeout, void *id);
|
||||
|
||||
#endif /* __KERNEL__ */
|
||||
#endif /* __DST_H */
|
Loading…
Reference in a new issue