sundance fixes

* all places where we assign ->addr get cpu_to_le32(pci_map_single(....)), so
we ought to convert back to host-endian before doing pci_unmap_single() et.al.
* poisoning addresses in netdev_close() should be done _after_ unmapping them,
not before it...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
This commit is contained in:
Al Viro 2007-12-09 16:50:47 +00:00 committed by Jeff Garzik
parent 798fdd07fc
commit 14c9d9b03b

View file

@ -340,9 +340,9 @@ enum mac_ctrl1_bits {
/* Note that using only 32 bit fields simplifies conversion to big-endian
architectures. */
struct netdev_desc {
u32 next_desc;
u32 status;
struct desc_frag { u32 addr, length; } frag[1];
__le32 next_desc;
__le32 status;
struct desc_frag { __le32 addr, length; } frag[1];
};
/* Bits in netdev_desc.status */
@ -495,8 +495,8 @@ static int __devinit sundance_probe1 (struct pci_dev *pdev,
goto err_out_res;
for (i = 0; i < 3; i++)
((u16 *)dev->dev_addr)[i] =
le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
((__le16 *)dev->dev_addr)[i] =
cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
dev->base_addr = (unsigned long)ioaddr;
@ -1090,8 +1090,8 @@ reset_tx (struct net_device *dev)
skb = np->tx_skbuff[i];
if (skb) {
pci_unmap_single(np->pci_dev,
np->tx_ring[i].frag[0].addr, skb->len,
PCI_DMA_TODEVICE);
le32_to_cpu(np->tx_ring[i].frag[0].addr),
skb->len, PCI_DMA_TODEVICE);
if (irq)
dev_kfree_skb_irq (skb);
else
@ -1214,7 +1214,7 @@ static irqreturn_t intr_handler(int irq, void *dev_instance)
skb = np->tx_skbuff[entry];
/* Free the original skb. */
pci_unmap_single(np->pci_dev,
np->tx_ring[entry].frag[0].addr,
le32_to_cpu(np->tx_ring[entry].frag[0].addr),
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb_irq (np->tx_skbuff[entry]);
np->tx_skbuff[entry] = NULL;
@ -1233,7 +1233,7 @@ static irqreturn_t intr_handler(int irq, void *dev_instance)
skb = np->tx_skbuff[entry];
/* Free the original skb. */
pci_unmap_single(np->pci_dev,
np->tx_ring[entry].frag[0].addr,
le32_to_cpu(np->tx_ring[entry].frag[0].addr),
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb_irq (np->tx_skbuff[entry]);
np->tx_skbuff[entry] = NULL;
@ -1311,19 +1311,19 @@ static void rx_poll(unsigned long data)
&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
skb_reserve(skb, 2); /* 16 byte align the IP header */
pci_dma_sync_single_for_cpu(np->pci_dev,
desc->frag[0].addr,
le32_to_cpu(desc->frag[0].addr),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
pci_dma_sync_single_for_device(np->pci_dev,
desc->frag[0].addr,
le32_to_cpu(desc->frag[0].addr),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_put(skb, pkt_len);
} else {
pci_unmap_single(np->pci_dev,
desc->frag[0].addr,
le32_to_cpu(desc->frag[0].addr),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_put(skb = np->rx_skbuff[entry], pkt_len);
@ -1709,23 +1709,23 @@ static int netdev_close(struct net_device *dev)
/* Free all the skbuffs in the Rx queue. */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].status = 0;
np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
skb = np->rx_skbuff[i];
if (skb) {
pci_unmap_single(np->pci_dev,
np->rx_ring[i].frag[0].addr, np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
le32_to_cpu(np->rx_ring[i].frag[0].addr),
np->rx_buf_sz, PCI_DMA_FROMDEVICE);
dev_kfree_skb(skb);
np->rx_skbuff[i] = NULL;
}
np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
}
for (i = 0; i < TX_RING_SIZE; i++) {
np->tx_ring[i].next_desc = 0;
skb = np->tx_skbuff[i];
if (skb) {
pci_unmap_single(np->pci_dev,
np->tx_ring[i].frag[0].addr, skb->len,
PCI_DMA_TODEVICE);
le32_to_cpu(np->tx_ring[i].frag[0].addr),
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb(skb);
np->tx_skbuff[i] = NULL;
}