[LIB] reed_solomon: Clean up trailing white spaces

This commit is contained in:
Thomas Gleixner 2005-11-07 11:15:37 +00:00 committed by Thomas Gleixner
parent 182ec4eee3
commit 03ead8427d
5 changed files with 72 additions and 72 deletions

View file

@ -1,15 +1,15 @@
/* /*
* include/linux/rslib.h * include/linux/rslib.h
* *
* Overview: * Overview:
* Generic Reed Solomon encoder / decoder library * Generic Reed Solomon encoder / decoder library
* *
* Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
* *
* RS code lifted from reed solomon library written by Phil Karn * RS code lifted from reed solomon library written by Phil Karn
* Copyright 2002 Phil Karn, KA9Q * Copyright 2002 Phil Karn, KA9Q
* *
* $Id: rslib.h,v 1.3 2004/10/05 22:08:22 gleixner Exp $ * $Id: rslib.h,v 1.4 2005/11/07 11:14:52 gleixner Exp $
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as * it under the terms of the GNU General Public License version 2 as
@ -21,20 +21,20 @@
#include <linux/list.h> #include <linux/list.h>
/** /**
* struct rs_control - rs control structure * struct rs_control - rs control structure
* *
* @mm: Bits per symbol * @mm: Bits per symbol
* @nn: Symbols per block (= (1<<mm)-1) * @nn: Symbols per block (= (1<<mm)-1)
* @alpha_to: log lookup table * @alpha_to: log lookup table
* @index_of: Antilog lookup table * @index_of: Antilog lookup table
* @genpoly: Generator polynomial * @genpoly: Generator polynomial
* @nroots: Number of generator roots = number of parity symbols * @nroots: Number of generator roots = number of parity symbols
* @fcr: First consecutive root, index form * @fcr: First consecutive root, index form
* @prim: Primitive element, index form * @prim: Primitive element, index form
* @iprim: prim-th root of 1, index form * @iprim: prim-th root of 1, index form
* @gfpoly: The primitive generator polynominal * @gfpoly: The primitive generator polynominal
* @users: Users of this structure * @users: Users of this structure
* @list: List entry for the rs control list * @list: List entry for the rs control list
*/ */
struct rs_control { struct rs_control {
@ -58,7 +58,7 @@ int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
uint16_t invmsk); uint16_t invmsk);
#endif #endif
#ifdef CONFIG_REED_SOLOMON_DEC8 #ifdef CONFIG_REED_SOLOMON_DEC8
int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
uint16_t *corr); uint16_t *corr);
#endif #endif
@ -75,7 +75,7 @@ int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
#endif #endif
/* Create or get a matching rs control structure */ /* Create or get a matching rs control structure */
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim, struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
int nroots); int nroots);
/* Release a rs control structure */ /* Release a rs control structure */
@ -87,9 +87,9 @@ void free_rs(struct rs_control *rs);
* @x: the value to reduce * @x: the value to reduce
* *
* where * where
* rs->mm = number of bits per symbol * rs->mm = number of bits per symbol
* rs->nn = (2^rs->mm) - 1 * rs->nn = (2^rs->mm) - 1
* *
* Simple arithmetic modulo would return a wrong result for values * Simple arithmetic modulo would return a wrong result for values
* >= 3 * rs->nn * >= 3 * rs->nn
*/ */

View file

@ -1,5 +1,5 @@
# #
# This is a modified version of reed solomon lib, # This is a modified version of reed solomon lib,
# #
obj-$(CONFIG_REED_SOLOMON) += reed_solomon.o obj-$(CONFIG_REED_SOLOMON) += reed_solomon.o

View file

@ -1,22 +1,22 @@
/* /*
* lib/reed_solomon/decode_rs.c * lib/reed_solomon/decode_rs.c
* *
* Overview: * Overview:
* Generic Reed Solomon encoder / decoder library * Generic Reed Solomon encoder / decoder library
* *
* Copyright 2002, Phil Karn, KA9Q * Copyright 2002, Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL) * May be used under the terms of the GNU General Public License (GPL)
* *
* Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
* *
* $Id: decode_rs.c,v 1.6 2004/10/22 15:41:47 gleixner Exp $ * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
* *
*/ */
/* Generic data width independent code which is included by the /* Generic data width independent code which is included by the
* wrappers. * wrappers.
*/ */
{ {
int deg_lambda, el, deg_omega; int deg_lambda, el, deg_omega;
int i, j, r, k, pad; int i, j, r, k, pad;
int nn = rs->nn; int nn = rs->nn;
@ -41,9 +41,9 @@
pad = nn - nroots - len; pad = nn - nroots - len;
if (pad < 0 || pad >= nn) if (pad < 0 || pad >= nn)
return -ERANGE; return -ERANGE;
/* Does the caller provide the syndrome ? */ /* Does the caller provide the syndrome ? */
if (s != NULL) if (s != NULL)
goto decode; goto decode;
/* form the syndromes; i.e., evaluate data(x) at roots of /* form the syndromes; i.e., evaluate data(x) at roots of
@ -54,11 +54,11 @@
for (j = 1; j < len; j++) { for (j = 1; j < len; j++) {
for (i = 0; i < nroots; i++) { for (i = 0; i < nroots; i++) {
if (syn[i] == 0) { if (syn[i] == 0) {
syn[i] = (((uint16_t) data[j]) ^ syn[i] = (((uint16_t) data[j]) ^
invmsk) & msk; invmsk) & msk;
} else { } else {
syn[i] = ((((uint16_t) data[j]) ^ syn[i] = ((((uint16_t) data[j]) ^
invmsk) & msk) ^ invmsk) & msk) ^
alpha_to[rs_modnn(rs, index_of[syn[i]] + alpha_to[rs_modnn(rs, index_of[syn[i]] +
(fcr + i) * prim)]; (fcr + i) * prim)];
} }
@ -70,7 +70,7 @@
if (syn[i] == 0) { if (syn[i] == 0) {
syn[i] = ((uint16_t) par[j]) & msk; syn[i] = ((uint16_t) par[j]) & msk;
} else { } else {
syn[i] = (((uint16_t) par[j]) & msk) ^ syn[i] = (((uint16_t) par[j]) & msk) ^
alpha_to[rs_modnn(rs, index_of[syn[i]] + alpha_to[rs_modnn(rs, index_of[syn[i]] +
(fcr+i)*prim)]; (fcr+i)*prim)];
} }
@ -99,14 +99,14 @@
if (no_eras > 0) { if (no_eras > 0) {
/* Init lambda to be the erasure locator polynomial */ /* Init lambda to be the erasure locator polynomial */
lambda[1] = alpha_to[rs_modnn(rs, lambda[1] = alpha_to[rs_modnn(rs,
prim * (nn - 1 - eras_pos[0]))]; prim * (nn - 1 - eras_pos[0]))];
for (i = 1; i < no_eras; i++) { for (i = 1; i < no_eras; i++) {
u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i])); u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
for (j = i + 1; j > 0; j--) { for (j = i + 1; j > 0; j--) {
tmp = index_of[lambda[j - 1]]; tmp = index_of[lambda[j - 1]];
if (tmp != nn) { if (tmp != nn) {
lambda[j] ^= lambda[j] ^=
alpha_to[rs_modnn(rs, u + tmp)]; alpha_to[rs_modnn(rs, u + tmp)];
} }
} }
@ -127,8 +127,8 @@
discr_r = 0; discr_r = 0;
for (i = 0; i < r; i++) { for (i = 0; i < r; i++) {
if ((lambda[i] != 0) && (s[r - i - 1] != nn)) { if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
discr_r ^= discr_r ^=
alpha_to[rs_modnn(rs, alpha_to[rs_modnn(rs,
index_of[lambda[i]] + index_of[lambda[i]] +
s[r - i - 1])]; s[r - i - 1])];
} }
@ -143,7 +143,7 @@
t[0] = lambda[0]; t[0] = lambda[0];
for (i = 0; i < nroots; i++) { for (i = 0; i < nroots; i++) {
if (b[i] != nn) { if (b[i] != nn) {
t[i + 1] = lambda[i + 1] ^ t[i + 1] = lambda[i + 1] ^
alpha_to[rs_modnn(rs, discr_r + alpha_to[rs_modnn(rs, discr_r +
b[i])]; b[i])];
} else } else
@ -229,7 +229,7 @@
num1 = 0; num1 = 0;
for (i = deg_omega; i >= 0; i--) { for (i = deg_omega; i >= 0; i--) {
if (omega[i] != nn) if (omega[i] != nn)
num1 ^= alpha_to[rs_modnn(rs, omega[i] + num1 ^= alpha_to[rs_modnn(rs, omega[i] +
i * root[j])]; i * root[j])];
} }
num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)]; num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
@ -239,13 +239,13 @@
* lambda_pr of lambda[i] */ * lambda_pr of lambda[i] */
for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) { for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
if (lambda[i + 1] != nn) { if (lambda[i + 1] != nn) {
den ^= alpha_to[rs_modnn(rs, lambda[i + 1] + den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
i * root[j])]; i * root[j])];
} }
} }
/* Apply error to data */ /* Apply error to data */
if (num1 != 0 && loc[j] >= pad) { if (num1 != 0 && loc[j] >= pad) {
uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] + uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
index_of[num2] + index_of[num2] +
nn - index_of[den])]; nn - index_of[den])];
/* Store the error correction pattern, if a /* Store the error correction pattern, if a

View file

@ -1,19 +1,19 @@
/* /*
* lib/reed_solomon/encode_rs.c * lib/reed_solomon/encode_rs.c
* *
* Overview: * Overview:
* Generic Reed Solomon encoder / decoder library * Generic Reed Solomon encoder / decoder library
* *
* Copyright 2002, Phil Karn, KA9Q * Copyright 2002, Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL) * May be used under the terms of the GNU General Public License (GPL)
* *
* Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
* *
* $Id: encode_rs.c,v 1.4 2004/10/22 15:41:47 gleixner Exp $ * $Id: encode_rs.c,v 1.5 2005/11/07 11:14:59 gleixner Exp $
* *
*/ */
/* Generic data width independent code which is included by the /* Generic data width independent code which is included by the
* wrappers. * wrappers.
* int encode_rsX (struct rs_control *rs, uintX_t *data, int len, uintY_t *par) * int encode_rsX (struct rs_control *rs, uintX_t *data, int len, uintY_t *par)
*/ */
@ -35,16 +35,16 @@
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
fb = index_of[((((uint16_t) data[i])^invmsk) & msk) ^ par[0]]; fb = index_of[((((uint16_t) data[i])^invmsk) & msk) ^ par[0]];
/* feedback term is non-zero */ /* feedback term is non-zero */
if (fb != nn) { if (fb != nn) {
for (j = 1; j < nroots; j++) { for (j = 1; j < nroots; j++) {
par[j] ^= alpha_to[rs_modnn(rs, fb + par[j] ^= alpha_to[rs_modnn(rs, fb +
genpoly[nroots - j])]; genpoly[nroots - j])];
} }
} }
/* Shift */ /* Shift */
memmove(&par[0], &par[1], sizeof(uint16_t) * (nroots - 1)); memmove(&par[0], &par[1], sizeof(uint16_t) * (nroots - 1));
if (fb != nn) { if (fb != nn) {
par[nroots - 1] = alpha_to[rs_modnn(rs, par[nroots - 1] = alpha_to[rs_modnn(rs,
fb + genpoly[0])]; fb + genpoly[0])];
} else { } else {
par[nroots - 1] = 0; par[nroots - 1] = 0;

View file

@ -1,22 +1,22 @@
/* /*
* lib/reed_solomon/rslib.c * lib/reed_solomon/rslib.c
* *
* Overview: * Overview:
* Generic Reed Solomon encoder / decoder library * Generic Reed Solomon encoder / decoder library
* *
* Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
* *
* Reed Solomon code lifted from reed solomon library written by Phil Karn * Reed Solomon code lifted from reed solomon library written by Phil Karn
* Copyright 2002 Phil Karn, KA9Q * Copyright 2002 Phil Karn, KA9Q
* *
* $Id: rslib.c,v 1.5 2004/10/22 15:41:47 gleixner Exp $ * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as * it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. * published by the Free Software Foundation.
* *
* Description: * Description:
* *
* The generic Reed Solomon library provides runtime configurable * The generic Reed Solomon library provides runtime configurable
* encoding / decoding of RS codes. * encoding / decoding of RS codes.
* Each user must call init_rs to get a pointer to a rs_control * Each user must call init_rs to get a pointer to a rs_control
@ -25,11 +25,11 @@
* If a structure is generated then the polynomial arrays for * If a structure is generated then the polynomial arrays for
* fast encoding / decoding are built. This can take some time so * fast encoding / decoding are built. This can take some time so
* make sure not to call this function from a time critical path. * make sure not to call this function from a time critical path.
* Usually a module / driver should initialize the necessary * Usually a module / driver should initialize the necessary
* rs_control structure on module / driver init and release it * rs_control structure on module / driver init and release it
* on exit. * on exit.
* The encoding puts the calculated syndrome into a given syndrome * The encoding puts the calculated syndrome into a given syndrome
* buffer. * buffer.
* The decoding is a two step process. The first step calculates * The decoding is a two step process. The first step calculates
* the syndrome over the received (data + syndrome) and calls the * the syndrome over the received (data + syndrome) and calls the
* second stage, which does the decoding / error correction itself. * second stage, which does the decoding / error correction itself.
@ -51,7 +51,7 @@ static LIST_HEAD (rslist);
/* Protection for the list */ /* Protection for the list */
static DECLARE_MUTEX(rslistlock); static DECLARE_MUTEX(rslistlock);
/** /**
* rs_init - Initialize a Reed-Solomon codec * rs_init - Initialize a Reed-Solomon codec
* *
* @symsize: symbol size, bits (1-8) * @symsize: symbol size, bits (1-8)
@ -63,7 +63,7 @@ static DECLARE_MUTEX(rslistlock);
* Allocate a control structure and the polynom arrays for faster * Allocate a control structure and the polynom arrays for faster
* en/decoding. Fill the arrays according to the given parameters * en/decoding. Fill the arrays according to the given parameters
*/ */
static struct rs_control *rs_init(int symsize, int gfpoly, int fcr, static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
int prim, int nroots) int prim, int nroots)
{ {
struct rs_control *rs; struct rs_control *rs;
@ -124,15 +124,15 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
/* Multiply rs->genpoly[] by @**(root + x) */ /* Multiply rs->genpoly[] by @**(root + x) */
for (j = i; j > 0; j--) { for (j = i; j > 0; j--) {
if (rs->genpoly[j] != 0) { if (rs->genpoly[j] != 0) {
rs->genpoly[j] = rs->genpoly[j -1] ^ rs->genpoly[j] = rs->genpoly[j -1] ^
rs->alpha_to[rs_modnn(rs, rs->alpha_to[rs_modnn(rs,
rs->index_of[rs->genpoly[j]] + root)]; rs->index_of[rs->genpoly[j]] + root)];
} else } else
rs->genpoly[j] = rs->genpoly[j - 1]; rs->genpoly[j] = rs->genpoly[j - 1];
} }
/* rs->genpoly[0] can never be zero */ /* rs->genpoly[0] can never be zero */
rs->genpoly[0] = rs->genpoly[0] =
rs->alpha_to[rs_modnn(rs, rs->alpha_to[rs_modnn(rs,
rs->index_of[rs->genpoly[0]] + root)]; rs->index_of[rs->genpoly[0]] + root)];
} }
/* convert rs->genpoly[] to index form for quicker encoding */ /* convert rs->genpoly[] to index form for quicker encoding */
@ -153,7 +153,7 @@ errrs:
} }
/** /**
* free_rs - Free the rs control structure, if its not longer used * free_rs - Free the rs control structure, if its not longer used
* *
* @rs: the control structure which is not longer used by the * @rs: the control structure which is not longer used by the
@ -173,19 +173,19 @@ void free_rs(struct rs_control *rs)
up(&rslistlock); up(&rslistlock);
} }
/** /**
* init_rs - Find a matching or allocate a new rs control structure * init_rs - Find a matching or allocate a new rs control structure
* *
* @symsize: the symbol size (number of bits) * @symsize: the symbol size (number of bits)
* @gfpoly: the extended Galois field generator polynomial coefficients, * @gfpoly: the extended Galois field generator polynomial coefficients,
* with the 0th coefficient in the low order bit. The polynomial * with the 0th coefficient in the low order bit. The polynomial
* must be primitive; * must be primitive;
* @fcr: the first consecutive root of the rs code generator polynomial * @fcr: the first consecutive root of the rs code generator polynomial
* in index form * in index form
* @prim: primitive element to generate polynomial roots * @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots) * @nroots: RS code generator polynomial degree (number of roots)
*/ */
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim, struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
int nroots) int nroots)
{ {
struct list_head *tmp; struct list_head *tmp;
@ -198,9 +198,9 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
return NULL; return NULL;
if (prim <= 0 || prim >= (1<<symsize)) if (prim <= 0 || prim >= (1<<symsize))
return NULL; return NULL;
if (nroots < 0 || nroots >= (1<<symsize) || nroots > 8) if (nroots < 0 || nroots >= (1<<symsize))
return NULL; return NULL;
down(&rslistlock); down(&rslistlock);
/* Walk through the list and look for a matching entry */ /* Walk through the list and look for a matching entry */
@ -211,9 +211,9 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
if (gfpoly != rs->gfpoly) if (gfpoly != rs->gfpoly)
continue; continue;
if (fcr != rs->fcr) if (fcr != rs->fcr)
continue; continue;
if (prim != rs->prim) if (prim != rs->prim)
continue; continue;
if (nroots != rs->nroots) if (nroots != rs->nroots)
continue; continue;
/* We have a matching one already */ /* We have a matching one already */
@ -227,18 +227,18 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
rs->users = 1; rs->users = 1;
list_add(&rs->list, &rslist); list_add(&rs->list, &rslist);
} }
out: out:
up(&rslistlock); up(&rslistlock);
return rs; return rs;
} }
#ifdef CONFIG_REED_SOLOMON_ENC8 #ifdef CONFIG_REED_SOLOMON_ENC8
/** /**
* encode_rs8 - Calculate the parity for data values (8bit data width) * encode_rs8 - Calculate the parity for data values (8bit data width)
* *
* @rs: the rs control structure * @rs: the rs control structure
* @data: data field of a given type * @data: data field of a given type
* @len: data length * @len: data length
* @par: parity data, must be initialized by caller (usually all 0) * @par: parity data, must be initialized by caller (usually all 0)
* @invmsk: invert data mask (will be xored on data) * @invmsk: invert data mask (will be xored on data)
* *
@ -246,7 +246,7 @@ out:
* symbol size > 8. The calling code must take care of encoding of the * symbol size > 8. The calling code must take care of encoding of the
* syndrome result for storage itself. * syndrome result for storage itself.
*/ */
int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par, int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
uint16_t invmsk) uint16_t invmsk)
{ {
#include "encode_rs.c" #include "encode_rs.c"
@ -255,7 +255,7 @@ EXPORT_SYMBOL_GPL(encode_rs8);
#endif #endif
#ifdef CONFIG_REED_SOLOMON_DEC8 #ifdef CONFIG_REED_SOLOMON_DEC8
/** /**
* decode_rs8 - Decode codeword (8bit data width) * decode_rs8 - Decode codeword (8bit data width)
* *
* @rs: the rs control structure * @rs: the rs control structure
@ -273,7 +273,7 @@ EXPORT_SYMBOL_GPL(encode_rs8);
* syndrome result and the received parity before calling this code. * syndrome result and the received parity before calling this code.
*/ */
int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
uint16_t *corr) uint16_t *corr)
{ {
#include "decode_rs.c" #include "decode_rs.c"
@ -287,13 +287,13 @@ EXPORT_SYMBOL_GPL(decode_rs8);
* *
* @rs: the rs control structure * @rs: the rs control structure
* @data: data field of a given type * @data: data field of a given type
* @len: data length * @len: data length
* @par: parity data, must be initialized by caller (usually all 0) * @par: parity data, must be initialized by caller (usually all 0)
* @invmsk: invert data mask (will be xored on data, not on parity!) * @invmsk: invert data mask (will be xored on data, not on parity!)
* *
* Each field in the data array contains up to symbol size bits of valid data. * Each field in the data array contains up to symbol size bits of valid data.
*/ */
int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par, int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
uint16_t invmsk) uint16_t invmsk)
{ {
#include "encode_rs.c" #include "encode_rs.c"
@ -302,7 +302,7 @@ EXPORT_SYMBOL_GPL(encode_rs16);
#endif #endif
#ifdef CONFIG_REED_SOLOMON_DEC16 #ifdef CONFIG_REED_SOLOMON_DEC16
/** /**
* decode_rs16 - Decode codeword (16bit data width) * decode_rs16 - Decode codeword (16bit data width)
* *
* @rs: the rs control structure * @rs: the rs control structure
@ -312,13 +312,13 @@ EXPORT_SYMBOL_GPL(encode_rs16);
* @s: syndrome data field (if NULL, syndrome is calculated) * @s: syndrome data field (if NULL, syndrome is calculated)
* @no_eras: number of erasures * @no_eras: number of erasures
* @eras_pos: position of erasures, can be NULL * @eras_pos: position of erasures, can be NULL
* @invmsk: invert data mask (will be xored on data, not on parity!) * @invmsk: invert data mask (will be xored on data, not on parity!)
* @corr: buffer to store correction bitmask on eras_pos * @corr: buffer to store correction bitmask on eras_pos
* *
* Each field in the data array contains up to symbol size bits of valid data. * Each field in the data array contains up to symbol size bits of valid data.
*/ */
int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len, int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
uint16_t *corr) uint16_t *corr)
{ {
#include "decode_rs.c" #include "decode_rs.c"