ieee802154: add documentation about our stack

Add MAINTAINERS entry and a small text describing our stack interfaces,
how to hook the drivers, etc.

Signed-off-by: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Signed-off-by: Sergey Lapin <slapin@ossfans.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Sergey Lapin 2009-06-08 12:18:50 +00:00 committed by David S. Miller
parent 2c21d11518
commit 02cf228639
2 changed files with 88 additions and 0 deletions

View file

@ -0,0 +1,76 @@
Linux IEEE 802.15.4 implementation
Introduction
============
The Linux-ZigBee project goal is to provide complete implementation
of IEEE 802.15.4 / ZigBee / 6LoWPAN protocols. IEEE 802.15.4 is a stack
of protocols for organizing Low-Rate Wireless Personal Area Networks.
Currently only IEEE 802.15.4 layer is implemented. We have choosen
to use plain Berkeley socket API, the generic Linux networking stack
to transfer IEEE 802.15.4 messages and a special protocol over genetlink
for configuration/management
Socket API
==========
int sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);
.....
The address family, socket addresses etc. are defined in the
include/net/ieee802154/af_ieee802154.h header or in the special header
in our userspace package (see either linux-zigbee sourceforge download page
or git tree at git://linux-zigbee.git.sourceforge.net/gitroot/linux-zigbee).
One can use SOCK_RAW for passing raw data towards device xmit function. YMMV.
MLME - MAC Level Management
============================
Most of IEEE 802.15.4 MLME interfaces are directly mapped on netlink commands.
See the include/net/ieee802154/nl802154.h header. Our userspace tools package
(see above) provides CLI configuration utility for radio interfaces and simple
coordinator for IEEE 802.15.4 networks as an example users of MLME protocol.
Kernel side
=============
Like with WiFi, there are several types of devices implementing IEEE 802.15.4.
1) 'HardMAC'. The MAC layer is implemented in the device itself, the device
exports MLME and data API.
2) 'SoftMAC' or just radio. These types of devices are just radio transceivers
possibly with some kinds of acceleration like automatic CRC computation and
comparation, automagic ACK handling, address matching, etc.
Those types of devices require different approach to be hooked into Linux kernel.
HardMAC
=======
See the header include/net/ieee802154/netdevice.h. You have to implement Linux
net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family
code via plain sk_buffs. The control block of sk_buffs will contain additional
info as described in the struct ieee802154_mac_cb.
To hook the MLME interface you have to populate the ml_priv field of your
net_device with a pointer to struct ieee802154_mlme_ops instance. All fields are
required.
We provide an example of simple HardMAC driver at drivers/ieee802154/fakehard.c
SoftMAC
=======
We are going to provide intermediate layer impelementing IEEE 802.15.4 MAC
in software. This is currently WIP.
See header include/net/ieee802154/mac802154.h and several drivers in
drivers/ieee802154/

View file

@ -2819,6 +2819,18 @@ L: linux1394-devel@lists.sourceforge.net
S: Maintained S: Maintained
F: drivers/ieee1394/raw1394* F: drivers/ieee1394/raw1394*
IEEE 802.15.4 SUBSYSTEM
P: Dmitry Eremin-Solenikov
M: dbaryshkov@gmail.com
P: Sergey Lapin
M: slapin@ossfans.org
L: linux-zigbee-devel@lists.sourceforge.net
W: http://apps.sourceforge.net/trac/linux-zigbee
T: git git://git.kernel.org/pub/scm/linux/kernel/git/lumag/lowpan.git
S: Maintained
F: net/ieee802154/
F: drivers/ieee801254/
INTEGRITY MEASUREMENT ARCHITECTURE (IMA) INTEGRITY MEASUREMENT ARCHITECTURE (IMA)
P: Mimi Zohar P: Mimi Zohar
M: zohar@us.ibm.com M: zohar@us.ibm.com