aha/net/sunrpc/xprtrdma/transport.c

814 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* transport.c
*
* This file contains the top-level implementation of an RPC RDMA
* transport.
*
* Naming convention: functions beginning with xprt_ are part of the
* transport switch. All others are RPC RDMA internal.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include "xprt_rdma.h"
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
MODULE_AUTHOR("Network Appliance, Inc.");
/*
* tunables
*/
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_inline_write_padding;
#if !RPCRDMA_PERSISTENT_REGISTRATION
static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_REGISTER; /* FMR? */
#else
static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_ALLPHYSICAL;
#endif
#ifdef RPC_DEBUG
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
static unsigned int zero;
static unsigned int max_padding = PAGE_SIZE;
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
static unsigned int max_memreg = RPCRDMA_LAST - 1;
static struct ctl_table_header *sunrpc_table_header;
static ctl_table xr_tunables_table[] = {
{
.ctl_name = CTL_UNNUMBERED,
.procname = "rdma_slot_table_entries",
.data = &xprt_rdma_slot_table_entries,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.strategy = &sysctl_intvec,
.extra1 = &min_slot_table_size,
.extra2 = &max_slot_table_size
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "rdma_max_inline_read",
.data = &xprt_rdma_max_inline_read,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec,
.strategy = &sysctl_intvec,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "rdma_max_inline_write",
.data = &xprt_rdma_max_inline_write,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec,
.strategy = &sysctl_intvec,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "rdma_inline_write_padding",
.data = &xprt_rdma_inline_write_padding,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.strategy = &sysctl_intvec,
.extra1 = &zero,
.extra2 = &max_padding,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "rdma_memreg_strategy",
.data = &xprt_rdma_memreg_strategy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.strategy = &sysctl_intvec,
.extra1 = &min_memreg,
.extra2 = &max_memreg,
},
{
.ctl_name = 0,
},
};
static ctl_table sunrpc_table[] = {
{
.ctl_name = CTL_SUNRPC,
.procname = "sunrpc",
.mode = 0555,
.child = xr_tunables_table
},
{
.ctl_name = 0,
},
};
#endif
static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
static void
xprt_rdma_format_addresses(struct rpc_xprt *xprt)
{
struct sockaddr_in *addr = (struct sockaddr_in *)
&rpcx_to_rdmad(xprt).addr;
char *buf;
buf = kzalloc(20, GFP_KERNEL);
if (buf)
snprintf(buf, 20, NIPQUAD_FMT, NIPQUAD(addr->sin_addr.s_addr));
xprt->address_strings[RPC_DISPLAY_ADDR] = buf;
buf = kzalloc(8, GFP_KERNEL);
if (buf)
snprintf(buf, 8, "%u", ntohs(addr->sin_port));
xprt->address_strings[RPC_DISPLAY_PORT] = buf;
xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
buf = kzalloc(48, GFP_KERNEL);
if (buf)
snprintf(buf, 48, "addr="NIPQUAD_FMT" port=%u proto=%s",
NIPQUAD(addr->sin_addr.s_addr),
ntohs(addr->sin_port), "rdma");
xprt->address_strings[RPC_DISPLAY_ALL] = buf;
buf = kzalloc(10, GFP_KERNEL);
if (buf)
snprintf(buf, 10, "%02x%02x%02x%02x",
NIPQUAD(addr->sin_addr.s_addr));
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = buf;
buf = kzalloc(8, GFP_KERNEL);
if (buf)
snprintf(buf, 8, "%4hx", ntohs(addr->sin_port));
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = buf;
buf = kzalloc(30, GFP_KERNEL);
if (buf)
snprintf(buf, 30, NIPQUAD_FMT".%u.%u",
NIPQUAD(addr->sin_addr.s_addr),
ntohs(addr->sin_port) >> 8,
ntohs(addr->sin_port) & 0xff);
xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR] = buf;
/* netid */
xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
}
static void
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
{
unsigned int i;
for (i = 0; i < RPC_DISPLAY_MAX; i++)
switch (i) {
case RPC_DISPLAY_PROTO:
case RPC_DISPLAY_NETID:
continue;
default:
kfree(xprt->address_strings[i]);
}
}
static void
xprt_rdma_connect_worker(struct work_struct *work)
{
struct rpcrdma_xprt *r_xprt =
container_of(work, struct rpcrdma_xprt, rdma_connect.work);
struct rpc_xprt *xprt = &r_xprt->xprt;
int rc = 0;
if (!xprt->shutdown) {
xprt_clear_connected(xprt);
dprintk("RPC: %s: %sconnect\n", __func__,
r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
if (rc)
goto out;
}
goto out_clear;
out:
xprt_wake_pending_tasks(xprt, rc);
out_clear:
dprintk("RPC: %s: exit\n", __func__);
xprt_clear_connecting(xprt);
}
/*
* xprt_rdma_destroy
*
* Destroy the xprt.
* Free all memory associated with the object, including its own.
* NOTE: none of the *destroy methods free memory for their top-level
* objects, even though they may have allocated it (they do free
* private memory). It's up to the caller to handle it. In this
* case (RDMA transport), all structure memory is inlined with the
* struct rpcrdma_xprt.
*/
static void
xprt_rdma_destroy(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int rc;
dprintk("RPC: %s: called\n", __func__);
cancel_delayed_work(&r_xprt->rdma_connect);
flush_scheduled_work();
xprt_clear_connected(xprt);
rpcrdma_buffer_destroy(&r_xprt->rx_buf);
rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
if (rc)
dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
__func__, rc);
rpcrdma_ia_close(&r_xprt->rx_ia);
xprt_rdma_free_addresses(xprt);
kfree(xprt->slot);
xprt->slot = NULL;
kfree(xprt);
dprintk("RPC: %s: returning\n", __func__);
module_put(THIS_MODULE);
}
static const struct rpc_timeout xprt_rdma_default_timeout = {
.to_initval = 60 * HZ,
.to_maxval = 60 * HZ,
};
/**
* xprt_setup_rdma - Set up transport to use RDMA
*
* @args: rpc transport arguments
*/
static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create *args)
{
struct rpcrdma_create_data_internal cdata;
struct rpc_xprt *xprt;
struct rpcrdma_xprt *new_xprt;
struct rpcrdma_ep *new_ep;
struct sockaddr_in *sin;
int rc;
if (args->addrlen > sizeof(xprt->addr)) {
dprintk("RPC: %s: address too large\n", __func__);
return ERR_PTR(-EBADF);
}
xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
if (xprt == NULL) {
dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
__func__);
return ERR_PTR(-ENOMEM);
}
xprt->max_reqs = xprt_rdma_slot_table_entries;
xprt->slot = kcalloc(xprt->max_reqs,
sizeof(struct rpc_rqst), GFP_KERNEL);
if (xprt->slot == NULL) {
dprintk("RPC: %s: couldn't allocate %d slots\n",
__func__, xprt->max_reqs);
kfree(xprt);
return ERR_PTR(-ENOMEM);
}
/* 60 second timeout, no retries */
xprt->timeout = &xprt_rdma_default_timeout;
xprt->bind_timeout = (60U * HZ);
xprt->connect_timeout = (60U * HZ);
xprt->reestablish_timeout = (5U * HZ);
xprt->idle_timeout = (5U * 60 * HZ);
xprt->resvport = 0; /* privileged port not needed */
xprt->tsh_size = 0; /* RPC-RDMA handles framing */
xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
xprt->ops = &xprt_rdma_procs;
/*
* Set up RDMA-specific connect data.
*/
/* Put server RDMA address in local cdata */
memcpy(&cdata.addr, args->dstaddr, args->addrlen);
/* Ensure xprt->addr holds valid server TCP (not RDMA)
* address, for any side protocols which peek at it */
xprt->prot = IPPROTO_TCP;
xprt->addrlen = args->addrlen;
memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
sin = (struct sockaddr_in *)&cdata.addr;
if (ntohs(sin->sin_port) != 0)
xprt_set_bound(xprt);
dprintk("RPC: %s: %u.%u.%u.%u:%u\n", __func__,
NIPQUAD(sin->sin_addr.s_addr), ntohs(sin->sin_port));
/* Set max requests */
cdata.max_requests = xprt->max_reqs;
/* Set some length limits */
cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
cdata.inline_wsize = xprt_rdma_max_inline_write;
if (cdata.inline_wsize > cdata.wsize)
cdata.inline_wsize = cdata.wsize;
cdata.inline_rsize = xprt_rdma_max_inline_read;
if (cdata.inline_rsize > cdata.rsize)
cdata.inline_rsize = cdata.rsize;
cdata.padding = xprt_rdma_inline_write_padding;
/*
* Create new transport instance, which includes initialized
* o ia
* o endpoint
* o buffers
*/
new_xprt = rpcx_to_rdmax(xprt);
rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
xprt_rdma_memreg_strategy);
if (rc)
goto out1;
/*
* initialize and create ep
*/
new_xprt->rx_data = cdata;
new_ep = &new_xprt->rx_ep;
new_ep->rep_remote_addr = cdata.addr;
rc = rpcrdma_ep_create(&new_xprt->rx_ep,
&new_xprt->rx_ia, &new_xprt->rx_data);
if (rc)
goto out2;
/*
* Allocate pre-registered send and receive buffers for headers and
* any inline data. Also specify any padding which will be provided
* from a preregistered zero buffer.
*/
rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
&new_xprt->rx_data);
if (rc)
goto out3;
/*
* Register a callback for connection events. This is necessary because
* connection loss notification is async. We also catch connection loss
* when reaping receives.
*/
INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
new_ep->rep_func = rpcrdma_conn_func;
new_ep->rep_xprt = xprt;
xprt_rdma_format_addresses(xprt);
if (!try_module_get(THIS_MODULE))
goto out4;
return xprt;
out4:
xprt_rdma_free_addresses(xprt);
rc = -EINVAL;
out3:
(void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
out2:
rpcrdma_ia_close(&new_xprt->rx_ia);
out1:
kfree(xprt->slot);
kfree(xprt);
return ERR_PTR(rc);
}
/*
* Close a connection, during shutdown or timeout/reconnect
*/
static void
xprt_rdma_close(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
dprintk("RPC: %s: closing\n", __func__);
xprt_disconnect_done(xprt);
(void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
}
static void
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
{
struct sockaddr_in *sap;
sap = (struct sockaddr_in *)&xprt->addr;
sap->sin_port = htons(port);
sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
sap->sin_port = htons(port);
dprintk("RPC: %s: %u\n", __func__, port);
}
static void
xprt_rdma_connect(struct rpc_task *task)
{
struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
if (!xprt_test_and_set_connecting(xprt)) {
if (r_xprt->rx_ep.rep_connected != 0) {
/* Reconnect */
schedule_delayed_work(&r_xprt->rdma_connect,
xprt->reestablish_timeout);
} else {
schedule_delayed_work(&r_xprt->rdma_connect, 0);
if (!RPC_IS_ASYNC(task))
flush_scheduled_work();
}
}
}
static int
xprt_rdma_reserve_xprt(struct rpc_task *task)
{
struct rpc_xprt *xprt = task->tk_xprt;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
/* == RPC_CWNDSCALE @ init, but *after* setup */
if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
dprintk("RPC: %s: cwndscale %lu\n", __func__,
r_xprt->rx_buf.rb_cwndscale);
BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
}
xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
return xprt_reserve_xprt_cong(task);
}
/*
* The RDMA allocate/free functions need the task structure as a place
* to hide the struct rpcrdma_req, which is necessary for the actual send/recv
* sequence. For this reason, the recv buffers are attached to send
* buffers for portions of the RPC. Note that the RPC layer allocates
* both send and receive buffers in the same call. We may register
* the receive buffer portion when using reply chunks.
*/
static void *
xprt_rdma_allocate(struct rpc_task *task, size_t size)
{
struct rpc_xprt *xprt = task->tk_xprt;
struct rpcrdma_req *req, *nreq;
req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
BUG_ON(NULL == req);
if (size > req->rl_size) {
dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
"prog %d vers %d proc %d\n",
__func__, size, req->rl_size,
task->tk_client->cl_prog, task->tk_client->cl_vers,
task->tk_msg.rpc_proc->p_proc);
/*
* Outgoing length shortage. Our inline write max must have
* been configured to perform direct i/o.
*
* This is therefore a large metadata operation, and the
* allocate call was made on the maximum possible message,
* e.g. containing long filename(s) or symlink data. In
* fact, while these metadata operations *might* carry
* large outgoing payloads, they rarely *do*. However, we
* have to commit to the request here, so reallocate and
* register it now. The data path will never require this
* reallocation.
*
* If the allocation or registration fails, the RPC framework
* will (doggedly) retry.
*/
if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
RPCRDMA_BOUNCEBUFFERS) {
/* forced to "pure inline" */
dprintk("RPC: %s: too much data (%zd) for inline "
"(r/w max %d/%d)\n", __func__, size,
rpcx_to_rdmad(xprt).inline_rsize,
rpcx_to_rdmad(xprt).inline_wsize);
size = req->rl_size;
rpc_exit(task, -EIO); /* fail the operation */
rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
goto out;
}
if (task->tk_flags & RPC_TASK_SWAPPER)
nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
else
nreq = kmalloc(sizeof *req + size, GFP_NOFS);
if (nreq == NULL)
goto outfail;
if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
nreq->rl_base, size + sizeof(struct rpcrdma_req)
- offsetof(struct rpcrdma_req, rl_base),
&nreq->rl_handle, &nreq->rl_iov)) {
kfree(nreq);
goto outfail;
}
rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
nreq->rl_size = size;
nreq->rl_niovs = 0;
nreq->rl_nchunks = 0;
nreq->rl_buffer = (struct rpcrdma_buffer *)req;
nreq->rl_reply = req->rl_reply;
memcpy(nreq->rl_segments,
req->rl_segments, sizeof nreq->rl_segments);
/* flag the swap with an unused field */
nreq->rl_iov.length = 0;
req->rl_reply = NULL;
req = nreq;
}
dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
out:
return req->rl_xdr_buf;
outfail:
rpcrdma_buffer_put(req);
rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
return NULL;
}
/*
* This function returns all RDMA resources to the pool.
*/
static void
xprt_rdma_free(void *buffer)
{
struct rpcrdma_req *req;
struct rpcrdma_xprt *r_xprt;
struct rpcrdma_rep *rep;
int i;
if (buffer == NULL)
return;
req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
if (req->rl_iov.length == 0) { /* see allocate above */
r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
struct rpcrdma_xprt, rx_buf);
} else
r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
rep = req->rl_reply;
dprintk("RPC: %s: called on 0x%p%s\n",
__func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
/*
* Finish the deregistration. When using mw bind, this was
* begun in rpcrdma_reply_handler(). In all other modes, we
* do it here, in thread context. The process is considered
* complete when the rr_func vector becomes NULL - this
* was put in place during rpcrdma_reply_handler() - the wait
* call below will not block if the dereg is "done". If
* interrupted, our framework will clean up.
*/
for (i = 0; req->rl_nchunks;) {
--req->rl_nchunks;
i += rpcrdma_deregister_external(
&req->rl_segments[i], r_xprt, NULL);
}
if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
rep->rr_func = NULL; /* abandon the callback */
req->rl_reply = NULL;
}
if (req->rl_iov.length == 0) { /* see allocate above */
struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
oreq->rl_reply = req->rl_reply;
(void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
req->rl_handle,
&req->rl_iov);
kfree(req);
req = oreq;
}
/* Put back request+reply buffers */
rpcrdma_buffer_put(req);
}
/*
* send_request invokes the meat of RPC RDMA. It must do the following:
* 1. Marshal the RPC request into an RPC RDMA request, which means
* putting a header in front of data, and creating IOVs for RDMA
* from those in the request.
* 2. In marshaling, detect opportunities for RDMA, and use them.
* 3. Post a recv message to set up asynch completion, then send
* the request (rpcrdma_ep_post).
* 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
*/
static int
xprt_rdma_send_request(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpc_xprt *xprt = task->tk_xprt;
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
/* marshal the send itself */
if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
r_xprt->rx_stats.failed_marshal_count++;
dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
__func__);
return -EIO;
}
if (req->rl_reply == NULL) /* e.g. reconnection */
rpcrdma_recv_buffer_get(req);
if (req->rl_reply) {
req->rl_reply->rr_func = rpcrdma_reply_handler;
/* this need only be done once, but... */
req->rl_reply->rr_xprt = xprt;
}
if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) {
xprt_disconnect_done(xprt);
return -ENOTCONN; /* implies disconnect */
}
rqst->rq_bytes_sent = 0;
return 0;
}
static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
long idle_time = 0;
if (xprt_connected(xprt))
idle_time = (long)(jiffies - xprt->last_used) / HZ;
seq_printf(seq,
"\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
"%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
0, /* need a local port? */
xprt->stat.bind_count,
xprt->stat.connect_count,
xprt->stat.connect_time,
idle_time,
xprt->stat.sends,
xprt->stat.recvs,
xprt->stat.bad_xids,
xprt->stat.req_u,
xprt->stat.bklog_u,
r_xprt->rx_stats.read_chunk_count,
r_xprt->rx_stats.write_chunk_count,
r_xprt->rx_stats.reply_chunk_count,
r_xprt->rx_stats.total_rdma_request,
r_xprt->rx_stats.total_rdma_reply,
r_xprt->rx_stats.pullup_copy_count,
r_xprt->rx_stats.fixup_copy_count,
r_xprt->rx_stats.hardway_register_count,
r_xprt->rx_stats.failed_marshal_count,
r_xprt->rx_stats.bad_reply_count);
}
/*
* Plumbing for rpc transport switch and kernel module
*/
static struct rpc_xprt_ops xprt_rdma_procs = {
.reserve_xprt = xprt_rdma_reserve_xprt,
.release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
.release_request = xprt_release_rqst_cong, /* ditto */
.set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
.rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
.set_port = xprt_rdma_set_port,
.connect = xprt_rdma_connect,
.buf_alloc = xprt_rdma_allocate,
.buf_free = xprt_rdma_free,
.send_request = xprt_rdma_send_request,
.close = xprt_rdma_close,
.destroy = xprt_rdma_destroy,
.print_stats = xprt_rdma_print_stats
};
static struct xprt_class xprt_rdma = {
.list = LIST_HEAD_INIT(xprt_rdma.list),
.name = "rdma",
.owner = THIS_MODULE,
.ident = XPRT_TRANSPORT_RDMA,
.setup = xprt_setup_rdma,
};
static void __exit xprt_rdma_cleanup(void)
{
int rc;
dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
#ifdef RPC_DEBUG
if (sunrpc_table_header) {
unregister_sysctl_table(sunrpc_table_header);
sunrpc_table_header = NULL;
}
#endif
rc = xprt_unregister_transport(&xprt_rdma);
if (rc)
dprintk("RPC: %s: xprt_unregister returned %i\n",
__func__, rc);
}
static int __init xprt_rdma_init(void)
{
int rc;
rc = xprt_register_transport(&xprt_rdma);
if (rc)
return rc;
dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
dprintk(KERN_INFO "Defaults:\n");
dprintk(KERN_INFO "\tSlots %d\n"
"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
xprt_rdma_slot_table_entries,
xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
#ifdef RPC_DEBUG
if (!sunrpc_table_header)
sunrpc_table_header = register_sysctl_table(sunrpc_table);
#endif
return 0;
}
module_init(xprt_rdma_init);
module_exit(xprt_rdma_cleanup);