aha/drivers/scsi/libsas/sas_ata.c

818 lines
22 KiB
C
Raw Normal View History

/*
* Support for SATA devices on Serial Attached SCSI (SAS) controllers
*
* Copyright (C) 2006 IBM Corporation
*
* Written by: Darrick J. Wong <djwong@us.ibm.com>, IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include <linux/scatterlist.h>
#include <scsi/sas_ata.h>
#include "sas_internal.h"
#include <scsi/scsi_host.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "../scsi_sas_internal.h"
#include "../scsi_transport_api.h"
#include <scsi/scsi_eh.h>
static enum ata_completion_errors sas_to_ata_err(struct task_status_struct *ts)
{
/* Cheesy attempt to translate SAS errors into ATA. Hah! */
/* transport error */
if (ts->resp == SAS_TASK_UNDELIVERED)
return AC_ERR_ATA_BUS;
/* ts->resp == SAS_TASK_COMPLETE */
/* task delivered, what happened afterwards? */
switch (ts->stat) {
case SAS_DEV_NO_RESPONSE:
return AC_ERR_TIMEOUT;
case SAS_INTERRUPTED:
case SAS_PHY_DOWN:
case SAS_NAK_R_ERR:
return AC_ERR_ATA_BUS;
case SAS_DATA_UNDERRUN:
/*
* Some programs that use the taskfile interface
* (smartctl in particular) can cause underrun
* problems. Ignore these errors, perhaps at our
* peril.
*/
return 0;
case SAS_DATA_OVERRUN:
case SAS_QUEUE_FULL:
case SAS_DEVICE_UNKNOWN:
case SAS_SG_ERR:
return AC_ERR_INVALID;
case SAM_CHECK_COND:
case SAS_OPEN_TO:
case SAS_OPEN_REJECT:
SAS_DPRINTK("%s: Saw error %d. What to do?\n",
__FUNCTION__, ts->stat);
return AC_ERR_OTHER;
case SAS_ABORTED_TASK:
return AC_ERR_DEV;
case SAS_PROTO_RESPONSE:
/* This means the ending_fis has the error
* value; return 0 here to collect it */
return 0;
default:
return 0;
}
}
static void sas_ata_task_done(struct sas_task *task)
{
struct ata_queued_cmd *qc = task->uldd_task;
struct domain_device *dev;
struct task_status_struct *stat = &task->task_status;
struct ata_task_resp *resp = (struct ata_task_resp *)stat->buf;
struct sas_ha_struct *sas_ha;
enum ata_completion_errors ac;
unsigned long flags;
if (!qc)
goto qc_already_gone;
dev = qc->ap->private_data;
sas_ha = dev->port->ha;
spin_lock_irqsave(dev->sata_dev.ap->lock, flags);
if (stat->stat == SAS_PROTO_RESPONSE || stat->stat == SAM_GOOD) {
ata_tf_from_fis(resp->ending_fis, &dev->sata_dev.tf);
qc->err_mask |= ac_err_mask(dev->sata_dev.tf.command);
dev->sata_dev.sstatus = resp->sstatus;
dev->sata_dev.serror = resp->serror;
dev->sata_dev.scontrol = resp->scontrol;
} else if (stat->stat != SAM_STAT_GOOD) {
ac = sas_to_ata_err(stat);
if (ac) {
SAS_DPRINTK("%s: SAS error %x\n", __FUNCTION__,
stat->stat);
/* We saw a SAS error. Send a vague error. */
qc->err_mask = ac;
dev->sata_dev.tf.feature = 0x04; /* status err */
dev->sata_dev.tf.command = ATA_ERR;
}
}
qc->lldd_task = NULL;
if (qc->scsicmd)
ASSIGN_SAS_TASK(qc->scsicmd, NULL);
ata_qc_complete(qc);
spin_unlock_irqrestore(dev->sata_dev.ap->lock, flags);
/*
* If the sas_task has an ata qc, a scsi_cmnd and the aborted
* flag is set, then we must have come in via the libsas EH
* functions. When we exit this function, we need to put the
* scsi_cmnd on the list of finished errors. The ata_qc_complete
* call cleans up the libata side of things but we're protected
* from the scsi_cmnd going away because the scsi_cmnd is owned
* by the EH, making libata's call to scsi_done a NOP.
*/
spin_lock_irqsave(&task->task_state_lock, flags);
if (qc->scsicmd && task->task_state_flags & SAS_TASK_STATE_ABORTED)
scsi_eh_finish_cmd(qc->scsicmd, &sas_ha->eh_done_q);
spin_unlock_irqrestore(&task->task_state_lock, flags);
qc_already_gone:
list_del_init(&task->list);
sas_free_task(task);
}
static unsigned int sas_ata_qc_issue(struct ata_queued_cmd *qc)
{
int res;
struct sas_task *task;
struct domain_device *dev = qc->ap->private_data;
struct sas_ha_struct *sas_ha = dev->port->ha;
struct Scsi_Host *host = sas_ha->core.shost;
struct sas_internal *i = to_sas_internal(host->transportt);
struct scatterlist *sg;
unsigned int num = 0;
unsigned int xfer = 0;
task = sas_alloc_task(GFP_ATOMIC);
if (!task)
return AC_ERR_SYSTEM;
task->dev = dev;
task->task_proto = SAS_PROTOCOL_STP;
task->task_done = sas_ata_task_done;
if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
qc->tf.command == ATA_CMD_FPDMA_READ) {
/* Need to zero out the tag libata assigned us */
qc->tf.nsect = 0;
}
ata_tf_to_fis(&qc->tf, 1, 0, (u8*)&task->ata_task.fis);
task->uldd_task = qc;
if (is_atapi_taskfile(&qc->tf)) {
memcpy(task->ata_task.atapi_packet, qc->cdb, qc->dev->cdb_len);
task->total_xfer_len = qc->nbytes + qc->pad_len;
task->num_scatter = qc->pad_len ? qc->n_elem + 1 : qc->n_elem;
} else {
ata_for_each_sg(sg, qc) {
num++;
xfer += sg->length;
}
task->total_xfer_len = xfer;
task->num_scatter = num;
}
task->data_dir = qc->dma_dir;
task->scatter = qc->__sg;
task->ata_task.retry_count = 1;
task->task_state_flags = SAS_TASK_STATE_PENDING;
qc->lldd_task = task;
switch (qc->tf.protocol) {
case ATA_PROT_NCQ:
task->ata_task.use_ncq = 1;
/* fall through */
case ATA_PROT_ATAPI_DMA:
case ATA_PROT_DMA:
task->ata_task.dma_xfer = 1;
break;
}
if (qc->scsicmd)
ASSIGN_SAS_TASK(qc->scsicmd, task);
if (sas_ha->lldd_max_execute_num < 2)
res = i->dft->lldd_execute_task(task, 1, GFP_ATOMIC);
else
res = sas_queue_up(task);
/* Examine */
if (res) {
SAS_DPRINTK("lldd_execute_task returned: %d\n", res);
if (qc->scsicmd)
ASSIGN_SAS_TASK(qc->scsicmd, NULL);
sas_free_task(task);
return AC_ERR_SYSTEM;
}
return 0;
}
static u8 sas_ata_check_status(struct ata_port *ap)
{
struct domain_device *dev = ap->private_data;
return dev->sata_dev.tf.command;
}
static void sas_ata_phy_reset(struct ata_port *ap)
{
struct domain_device *dev = ap->private_data;
struct sas_internal *i =
to_sas_internal(dev->port->ha->core.shost->transportt);
int res = 0;
if (i->dft->lldd_I_T_nexus_reset)
res = i->dft->lldd_I_T_nexus_reset(dev);
if (res)
SAS_DPRINTK("%s: Unable to reset I T nexus?\n", __FUNCTION__);
switch (dev->sata_dev.command_set) {
case ATA_COMMAND_SET:
SAS_DPRINTK("%s: Found ATA device.\n", __FUNCTION__);
ap->device[0].class = ATA_DEV_ATA;
break;
case ATAPI_COMMAND_SET:
SAS_DPRINTK("%s: Found ATAPI device.\n", __FUNCTION__);
ap->device[0].class = ATA_DEV_ATAPI;
break;
default:
SAS_DPRINTK("%s: Unknown SATA command set: %d.\n",
__FUNCTION__,
dev->sata_dev.command_set);
ap->device[0].class = ATA_DEV_UNKNOWN;
break;
}
ap->cbl = ATA_CBL_SATA;
}
static void sas_ata_post_internal(struct ata_queued_cmd *qc)
{
if (qc->flags & ATA_QCFLAG_FAILED)
qc->err_mask |= AC_ERR_OTHER;
if (qc->err_mask) {
/*
* Find the sas_task and kill it. By this point,
* libata has decided to kill the qc, so we needn't
* bother with sas_ata_task_done. But we still
* ought to abort the task.
*/
struct sas_task *task = qc->lldd_task;
unsigned long flags;
qc->lldd_task = NULL;
if (task) {
/* Should this be a AT(API) device reset? */
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
spin_unlock_irqrestore(&task->task_state_lock, flags);
task->uldd_task = NULL;
__sas_task_abort(task);
}
}
}
static void sas_ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct domain_device *dev = ap->private_data;
memcpy(tf, &dev->sata_dev.tf, sizeof (*tf));
}
static int sas_ata_scr_write(struct ata_port *ap, unsigned int sc_reg_in,
u32 val)
{
struct domain_device *dev = ap->private_data;
SAS_DPRINTK("STUB %s\n", __FUNCTION__);
switch (sc_reg_in) {
case SCR_STATUS:
dev->sata_dev.sstatus = val;
break;
case SCR_CONTROL:
dev->sata_dev.scontrol = val;
break;
case SCR_ERROR:
dev->sata_dev.serror = val;
break;
case SCR_ACTIVE:
dev->sata_dev.ap->sactive = val;
break;
default:
return -EINVAL;
}
return 0;
}
static int sas_ata_scr_read(struct ata_port *ap, unsigned int sc_reg_in,
u32 *val)
{
struct domain_device *dev = ap->private_data;
SAS_DPRINTK("STUB %s\n", __FUNCTION__);
switch (sc_reg_in) {
case SCR_STATUS:
*val = dev->sata_dev.sstatus;
return 0;
case SCR_CONTROL:
*val = dev->sata_dev.scontrol;
return 0;
case SCR_ERROR:
*val = dev->sata_dev.serror;
return 0;
case SCR_ACTIVE:
*val = dev->sata_dev.ap->sactive;
return 0;
default:
return -EINVAL;
}
}
static struct ata_port_operations sas_sata_ops = {
.port_disable = ata_port_disable,
.check_status = sas_ata_check_status,
.check_altstatus = sas_ata_check_status,
.dev_select = ata_noop_dev_select,
.phy_reset = sas_ata_phy_reset,
.post_internal_cmd = sas_ata_post_internal,
.tf_read = sas_ata_tf_read,
.qc_prep = ata_noop_qc_prep,
.qc_issue = sas_ata_qc_issue,
.port_start = ata_sas_port_start,
.port_stop = ata_sas_port_stop,
.scr_read = sas_ata_scr_read,
.scr_write = sas_ata_scr_write
};
static struct ata_port_info sata_port_info = {
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET |
ATA_FLAG_MMIO | ATA_FLAG_PIO_DMA | ATA_FLAG_NCQ,
.pio_mask = 0x1f, /* PIO0-4 */
.mwdma_mask = 0x07, /* MWDMA0-2 */
.udma_mask = ATA_UDMA6,
.port_ops = &sas_sata_ops
};
int sas_ata_init_host_and_port(struct domain_device *found_dev,
struct scsi_target *starget)
{
struct Scsi_Host *shost = dev_to_shost(&starget->dev);
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
struct ata_port *ap;
ata_host_init(&found_dev->sata_dev.ata_host,
&ha->pcidev->dev,
sata_port_info.flags,
&sas_sata_ops);
ap = ata_sas_port_alloc(&found_dev->sata_dev.ata_host,
&sata_port_info,
shost);
if (!ap) {
SAS_DPRINTK("ata_sas_port_alloc failed.\n");
return -ENODEV;
}
ap->private_data = found_dev;
ap->cbl = ATA_CBL_SATA;
ap->scsi_host = shost;
found_dev->sata_dev.ap = ap;
return 0;
}
void sas_ata_task_abort(struct sas_task *task)
{
struct ata_queued_cmd *qc = task->uldd_task;
struct completion *waiting;
/* Bounce SCSI-initiated commands to the SCSI EH */
if (qc->scsicmd) {
scsi_req_abort_cmd(qc->scsicmd);
scsi_schedule_eh(qc->scsicmd->device->host);
return;
}
/* Internal command, fake a timeout and complete. */
qc->flags &= ~ATA_QCFLAG_ACTIVE;
qc->flags |= ATA_QCFLAG_FAILED;
qc->err_mask |= AC_ERR_TIMEOUT;
waiting = qc->private_data;
complete(waiting);
}
static void sas_task_timedout(unsigned long _task)
{
struct sas_task *task = (void *) _task;
unsigned long flags;
spin_lock_irqsave(&task->task_state_lock, flags);
if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
spin_unlock_irqrestore(&task->task_state_lock, flags);
complete(&task->completion);
}
static void sas_disc_task_done(struct sas_task *task)
{
if (!del_timer(&task->timer))
return;
complete(&task->completion);
}
#define SAS_DEV_TIMEOUT 10
/**
* sas_execute_task -- Basic task processing for discovery
* @task: the task to be executed
* @buffer: pointer to buffer to do I/O
* @size: size of @buffer
* @pci_dma_dir: PCI_DMA_...
*/
static int sas_execute_task(struct sas_task *task, void *buffer, int size,
int pci_dma_dir)
{
int res = 0;
struct scatterlist *scatter = NULL;
struct task_status_struct *ts = &task->task_status;
int num_scatter = 0;
int retries = 0;
struct sas_internal *i =
to_sas_internal(task->dev->port->ha->core.shost->transportt);
if (pci_dma_dir != PCI_DMA_NONE) {
scatter = kzalloc(sizeof(*scatter), GFP_KERNEL);
if (!scatter)
goto out;
sg_init_one(scatter, buffer, size);
num_scatter = 1;
}
task->task_proto = task->dev->tproto;
task->scatter = scatter;
task->num_scatter = num_scatter;
task->total_xfer_len = size;
task->data_dir = pci_dma_dir;
task->task_done = sas_disc_task_done;
if (pci_dma_dir != PCI_DMA_NONE &&
sas_protocol_ata(task->task_proto)) {
task->num_scatter = pci_map_sg(task->dev->port->ha->pcidev,
task->scatter,
task->num_scatter,
task->data_dir);
}
for (retries = 0; retries < 5; retries++) {
task->task_state_flags = SAS_TASK_STATE_PENDING;
init_completion(&task->completion);
task->timer.data = (unsigned long) task;
task->timer.function = sas_task_timedout;
task->timer.expires = jiffies + SAS_DEV_TIMEOUT*HZ;
add_timer(&task->timer);
res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
if (res) {
del_timer(&task->timer);
SAS_DPRINTK("executing SAS discovery task failed:%d\n",
res);
goto ex_err;
}
wait_for_completion(&task->completion);
res = -ETASK;
if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
int res2;
SAS_DPRINTK("task aborted, flags:0x%x\n",
task->task_state_flags);
res2 = i->dft->lldd_abort_task(task);
SAS_DPRINTK("came back from abort task\n");
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
if (res2 == TMF_RESP_FUNC_COMPLETE)
continue; /* Retry the task */
else
goto ex_err;
}
}
if (task->task_status.stat == SAM_BUSY ||
task->task_status.stat == SAM_TASK_SET_FULL ||
task->task_status.stat == SAS_QUEUE_FULL) {
SAS_DPRINTK("task: q busy, sleeping...\n");
schedule_timeout_interruptible(HZ);
} else if (task->task_status.stat == SAM_CHECK_COND) {
struct scsi_sense_hdr shdr;
if (!scsi_normalize_sense(ts->buf, ts->buf_valid_size,
&shdr)) {
SAS_DPRINTK("couldn't normalize sense\n");
continue;
}
if ((shdr.sense_key == 6 && shdr.asc == 0x29) ||
(shdr.sense_key == 2 && shdr.asc == 4 &&
shdr.ascq == 1)) {
SAS_DPRINTK("device %016llx LUN: %016llx "
"powering up or not ready yet, "
"sleeping...\n",
SAS_ADDR(task->dev->sas_addr),
SAS_ADDR(task->ssp_task.LUN));
schedule_timeout_interruptible(5*HZ);
} else if (shdr.sense_key == 1) {
res = 0;
break;
} else if (shdr.sense_key == 5) {
break;
} else {
SAS_DPRINTK("dev %016llx LUN: %016llx "
"sense key:0x%x ASC:0x%x ASCQ:0x%x"
"\n",
SAS_ADDR(task->dev->sas_addr),
SAS_ADDR(task->ssp_task.LUN),
shdr.sense_key,
shdr.asc, shdr.ascq);
}
} else if (task->task_status.resp != SAS_TASK_COMPLETE ||
task->task_status.stat != SAM_GOOD) {
SAS_DPRINTK("task finished with resp:0x%x, "
"stat:0x%x\n",
task->task_status.resp,
task->task_status.stat);
goto ex_err;
} else {
res = 0;
break;
}
}
ex_err:
if (pci_dma_dir != PCI_DMA_NONE) {
if (sas_protocol_ata(task->task_proto))
pci_unmap_sg(task->dev->port->ha->pcidev,
task->scatter, task->num_scatter,
task->data_dir);
kfree(scatter);
}
out:
return res;
}
/* ---------- SATA ---------- */
static void sas_get_ata_command_set(struct domain_device *dev)
{
struct dev_to_host_fis *fis =
(struct dev_to_host_fis *) dev->frame_rcvd;
if ((fis->sector_count == 1 && /* ATA */
fis->lbal == 1 &&
fis->lbam == 0 &&
fis->lbah == 0 &&
fis->device == 0)
||
(fis->sector_count == 0 && /* CE-ATA (mATA) */
fis->lbal == 0 &&
fis->lbam == 0xCE &&
fis->lbah == 0xAA &&
(fis->device & ~0x10) == 0))
dev->sata_dev.command_set = ATA_COMMAND_SET;
else if ((fis->interrupt_reason == 1 && /* ATAPI */
fis->lbal == 1 &&
fis->byte_count_low == 0x14 &&
fis->byte_count_high == 0xEB &&
(fis->device & ~0x10) == 0))
dev->sata_dev.command_set = ATAPI_COMMAND_SET;
else if ((fis->sector_count == 1 && /* SEMB */
fis->lbal == 1 &&
fis->lbam == 0x3C &&
fis->lbah == 0xC3 &&
fis->device == 0)
||
(fis->interrupt_reason == 1 && /* SATA PM */
fis->lbal == 1 &&
fis->byte_count_low == 0x69 &&
fis->byte_count_high == 0x96 &&
(fis->device & ~0x10) == 0))
/* Treat it as a superset? */
dev->sata_dev.command_set = ATAPI_COMMAND_SET;
}
/**
* sas_issue_ata_cmd -- Basic SATA command processing for discovery
* @dev: the device to send the command to
* @command: the command register
* @features: the features register
* @buffer: pointer to buffer to do I/O
* @size: size of @buffer
* @pci_dma_dir: PCI_DMA_...
*/
static int sas_issue_ata_cmd(struct domain_device *dev, u8 command,
u8 features, void *buffer, int size,
int pci_dma_dir)
{
int res = 0;
struct sas_task *task;
struct dev_to_host_fis *d2h_fis = (struct dev_to_host_fis *)
&dev->frame_rcvd[0];
res = -ENOMEM;
task = sas_alloc_task(GFP_KERNEL);
if (!task)
goto out;
task->dev = dev;
task->ata_task.fis.fis_type = 0x27;
task->ata_task.fis.command = command;
task->ata_task.fis.features = features;
task->ata_task.fis.device = d2h_fis->device;
task->ata_task.retry_count = 1;
res = sas_execute_task(task, buffer, size, pci_dma_dir);
sas_free_task(task);
out:
return res;
}
static void sas_sata_propagate_sas_addr(struct domain_device *dev)
{
unsigned long flags;
struct asd_sas_port *port = dev->port;
struct asd_sas_phy *phy;
BUG_ON(dev->parent);
memcpy(port->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE);
spin_lock_irqsave(&port->phy_list_lock, flags);
list_for_each_entry(phy, &port->phy_list, port_phy_el)
memcpy(phy->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE);
spin_unlock_irqrestore(&port->phy_list_lock, flags);
}
#define ATA_IDENTIFY_DEV 0xEC
#define ATA_IDENTIFY_PACKET_DEV 0xA1
#define ATA_SET_FEATURES 0xEF
#define ATA_FEATURE_PUP_STBY_SPIN_UP 0x07
/**
* sas_discover_sata_dev -- discover a STP/SATA device (SATA_DEV)
* @dev: STP/SATA device of interest (ATA/ATAPI)
*
* The LLDD has already been notified of this device, so that we can
* send FISes to it. Here we try to get IDENTIFY DEVICE or IDENTIFY
* PACKET DEVICE, if ATAPI device, so that the LLDD can fine-tune its
* performance for this device.
*/
static int sas_discover_sata_dev(struct domain_device *dev)
{
int res;
__le16 *identify_x;
u8 command;
identify_x = kzalloc(512, GFP_KERNEL);
if (!identify_x)
return -ENOMEM;
if (dev->sata_dev.command_set == ATA_COMMAND_SET) {
dev->sata_dev.identify_device = identify_x;
command = ATA_IDENTIFY_DEV;
} else {
dev->sata_dev.identify_packet_device = identify_x;
command = ATA_IDENTIFY_PACKET_DEV;
}
res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512,
PCI_DMA_FROMDEVICE);
if (res)
goto out_err;
/* lives on the media? */
if (le16_to_cpu(identify_x[0]) & 4) {
/* incomplete response */
SAS_DPRINTK("sending SET FEATURE/PUP_STBY_SPIN_UP to "
"dev %llx\n", SAS_ADDR(dev->sas_addr));
if (!le16_to_cpu(identify_x[83] & (1<<6)))
goto cont1;
res = sas_issue_ata_cmd(dev, ATA_SET_FEATURES,
ATA_FEATURE_PUP_STBY_SPIN_UP,
NULL, 0, PCI_DMA_NONE);
if (res)
goto cont1;
schedule_timeout_interruptible(5*HZ); /* More time? */
res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512,
PCI_DMA_FROMDEVICE);
if (res)
goto out_err;
}
cont1:
/* Get WWN */
if (dev->port->oob_mode != SATA_OOB_MODE) {
memcpy(dev->sas_addr, dev->sata_dev.rps_resp.rps.stp_sas_addr,
SAS_ADDR_SIZE);
} else if (dev->sata_dev.command_set == ATA_COMMAND_SET &&
(le16_to_cpu(dev->sata_dev.identify_device[108]) & 0xF000)
== 0x5000) {
int i;
for (i = 0; i < 4; i++) {
dev->sas_addr[2*i] =
(le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0xFF00) >> 8;
dev->sas_addr[2*i+1] =
le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0x00FF;
}
}
sas_hash_addr(dev->hashed_sas_addr, dev->sas_addr);
if (!dev->parent)
sas_sata_propagate_sas_addr(dev);
/* XXX Hint: register this SATA device with SATL.
When this returns, dev->sata_dev->lu is alive and
present.
sas_satl_register_dev(dev);
*/
sas_fill_in_rphy(dev, dev->rphy);
return 0;
out_err:
dev->sata_dev.identify_packet_device = NULL;
dev->sata_dev.identify_device = NULL;
kfree(identify_x);
return res;
}
static int sas_discover_sata_pm(struct domain_device *dev)
{
return -ENODEV;
}
/**
* sas_discover_sata -- discover an STP/SATA domain device
* @dev: pointer to struct domain_device of interest
*
* First we notify the LLDD of this device, so we can send frames to
* it. Then depending on the type of device we call the appropriate
* discover functions. Once device discover is done, we notify the
* LLDD so that it can fine-tune its parameters for the device, by
* removing it and then adding it. That is, the second time around,
* the driver would have certain fields, that it is looking at, set.
* Finally we initialize the kobj so that the device can be added to
* the system at registration time. Devices directly attached to a HA
* port, have no parents. All other devices do, and should have their
* "parent" pointer set appropriately before calling this function.
*/
int sas_discover_sata(struct domain_device *dev)
{
int res;
sas_get_ata_command_set(dev);
res = sas_notify_lldd_dev_found(dev);
if (res)
return res;
switch (dev->dev_type) {
case SATA_DEV:
res = sas_discover_sata_dev(dev);
break;
case SATA_PM:
res = sas_discover_sata_pm(dev);
break;
default:
break;
}
sas_notify_lldd_dev_gone(dev);
if (!res) {
sas_notify_lldd_dev_found(dev);
res = sas_rphy_add(dev->rphy);
}
return res;
}