aha/net/dccp/ccids/ccid3.c

1278 lines
36 KiB
C
Raw Normal View History

/*
* net/dccp/ccids/ccid3.c
*
* Copyright (c) 2005 The University of Waikato, Hamilton, New Zealand.
* Copyright (c) 2005-6 Ian McDonald <ian.mcdonald@jandi.co.nz>
*
* An implementation of the DCCP protocol
*
* This code has been developed by the University of Waikato WAND
* research group. For further information please see http://www.wand.net.nz/
*
* This code also uses code from Lulea University, rereleased as GPL by its
* authors:
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
*
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
* and to make it work as a loadable module in the DCCP stack written by
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
*
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "../ccid.h"
#include "../dccp.h"
#include "lib/packet_history.h"
#include "lib/loss_interval.h"
#include "lib/tfrc.h"
#include "ccid3.h"
/*
* Reason for maths here is to avoid 32 bit overflow when a is big.
* With this we get close to the limit.
*/
static u32 usecs_div(const u32 a, const u32 b)
{
const u32 div = a < (UINT_MAX / (USEC_PER_SEC / 10)) ? 10 :
a < (UINT_MAX / (USEC_PER_SEC / 50)) ? 50 :
a < (UINT_MAX / (USEC_PER_SEC / 100)) ? 100 :
a < (UINT_MAX / (USEC_PER_SEC / 500)) ? 500 :
a < (UINT_MAX / (USEC_PER_SEC / 1000)) ? 1000 :
a < (UINT_MAX / (USEC_PER_SEC / 5000)) ? 5000 :
a < (UINT_MAX / (USEC_PER_SEC / 10000)) ? 10000 :
a < (UINT_MAX / (USEC_PER_SEC / 50000)) ? 50000 :
100000;
const u32 tmp = a * (USEC_PER_SEC / div);
return (b >= 2 * div) ? tmp / (b / div) : tmp;
}
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
static int ccid3_debug;
#define ccid3_pr_debug(format, a...) DCCP_PR_DEBUG(ccid3_debug, format, ##a)
#else
#define ccid3_pr_debug(format, a...)
#endif
static struct dccp_tx_hist *ccid3_tx_hist;
static struct dccp_rx_hist *ccid3_rx_hist;
static struct dccp_li_hist *ccid3_li_hist;
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
static const char *ccid3_tx_state_name(enum ccid3_hc_tx_states state)
{
static char *ccid3_state_names[] = {
[TFRC_SSTATE_NO_SENT] = "NO_SENT",
[TFRC_SSTATE_NO_FBACK] = "NO_FBACK",
[TFRC_SSTATE_FBACK] = "FBACK",
[TFRC_SSTATE_TERM] = "TERM",
};
return ccid3_state_names[state];
}
#endif
static void ccid3_hc_tx_set_state(struct sock *sk,
enum ccid3_hc_tx_states state)
{
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
enum ccid3_hc_tx_states oldstate = hctx->ccid3hctx_state;
ccid3_pr_debug("%s(%p) %-8.8s -> %s\n",
dccp_role(sk), sk, ccid3_tx_state_name(oldstate),
ccid3_tx_state_name(state));
WARN_ON(state == oldstate);
hctx->ccid3hctx_state = state;
}
/*
* Recalculate scheduled nominal send time t_nom, inter-packet interval
* t_ipi, and delta value. Should be called after each change to X.
*/
static inline void ccid3_update_send_time(struct ccid3_hc_tx_sock *hctx)
{
timeval_sub_usecs(&hctx->ccid3hctx_t_nom, hctx->ccid3hctx_t_ipi);
/* Calculate new t_ipi (inter packet interval) by t_ipi = s / X_inst */
hctx->ccid3hctx_t_ipi = usecs_div(hctx->ccid3hctx_s, hctx->ccid3hctx_x);
/* Update nominal send time with regard to the new t_ipi */
timeval_add_usecs(&hctx->ccid3hctx_t_nom, hctx->ccid3hctx_t_ipi);
/* Calculate new delta by delta = min(t_ipi / 2, t_gran / 2) */
hctx->ccid3hctx_delta = min_t(u32, hctx->ccid3hctx_t_ipi / 2,
TFRC_OPSYS_HALF_TIME_GRAN);
}
/*
* Update X by
* If (p > 0)
* X_calc = calcX(s, R, p);
* X = max(min(X_calc, 2 * X_recv), s / t_mbi);
* Else
* If (now - tld >= R)
* X = max(min(2 * X, 2 * X_recv), s / R);
* tld = now;
*
* If X has changed, we also update the scheduled send time t_now,
* the inter-packet interval t_ipi, and the delta value.
*/
static void ccid3_hc_tx_update_x(struct sock *sk, struct timeval *now)
{
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
const __u32 old_x = hctx->ccid3hctx_x;
[DCCP] ccid3: Deprecate TFRC_SMALLEST_P This patch deprecates the existing use of an arbitrary value TFRC_SMALLEST_P for low-threshold values of p. This avoids masking low-resolution errors. Instead, the code now checks against real boundaries (implemented by preceding patch) and provides warnings whenever a real value falls below the threshold. If such messages are observed, it is a better solution to take this as an indication that the lookup table needs to be re-engineered. Changelog: ---------- This patch * makes handling all TFRC resolution errors local to the TFRC library * removes unnecessary test whether X_calc is 'infinity' due to p==0 -- this condition is already caught by tfrc_calc_x() * removes setting ccid3hctx_p = TFRC_SMALLEST_P in ccid3_hc_tx_packet_recv since this is now done by the TFRC library * updates BUG_ON test in ccid3_hc_tx_no_feedback_timer to take into account that p now is either 0 (and then X_calc is irrelevant), or it is > 0; since the handling of TFRC_SMALLEST_P is now taken care of in the tfrc library Justification: -------------- The TFRC code uses a lookup table which has a bounded resolution. The lowest possible value of the loss event rate `p' which can be resolved is currently 0.0001. Substituting this lower threshold for p when p is less than 0.0001 results in a huge, exponentially-growing error. The error can be computed by the following formula: (f(0.0001) - f(p))/f(p) * 100 for p < 0.0001 Currently the solution is to use an (arbitrary) value TFRC_SMALLEST_P = 40 * 1E-6 = 0.00004 and to consider all values below this value as `virtually zero'. Due to the exponentially growing resolution error, this is not a good idea, since it hides the fact that the table can not resolve practically occurring cases. Already at p == TFRC_SMALLEST_P, the error is as high as 58.19%! Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2006-12-03 16:53:07 +00:00
if (hctx->ccid3hctx_p > 0) {
hctx->ccid3hctx_x_calc = tfrc_calc_x(hctx->ccid3hctx_s,
hctx->ccid3hctx_rtt,
hctx->ccid3hctx_p);
hctx->ccid3hctx_x = max_t(u32, min(hctx->ccid3hctx_x_calc,
hctx->ccid3hctx_x_recv * 2),
hctx->ccid3hctx_s / TFRC_T_MBI);
} else if (timeval_delta(now, &hctx->ccid3hctx_t_ld) >=
hctx->ccid3hctx_rtt) {
hctx->ccid3hctx_x = max(min(hctx->ccid3hctx_x_recv,
hctx->ccid3hctx_x ) * 2,
usecs_div(hctx->ccid3hctx_s,
hctx->ccid3hctx_rtt) );
hctx->ccid3hctx_t_ld = *now;
} else
ccid3_pr_debug("Not changing X\n");
if (hctx->ccid3hctx_x != old_x)
ccid3_update_send_time(hctx);
}
/*
* Track the mean packet size `s' (cf. RFC 4342, 5.3 and RFC 3448, 4.1)
* @len: DCCP packet payload size in bytes
*/
static inline void ccid3_hc_tx_update_s(struct ccid3_hc_tx_sock *hctx, int len)
{
if (unlikely(len == 0))
ccid3_pr_debug("Packet payload length is 0 - not updating\n");
else
hctx->ccid3hctx_s = hctx->ccid3hctx_s == 0 ? len :
(9 * hctx->ccid3hctx_s + len) / 10;
/*
* Note: We could do a potential optimisation here - when `s' changes,
* recalculate sending rate and consequently t_ipi, t_delta, and
* t_now. This is however non-standard, and the benefits are not
* clear, so it is currently left out.
*/
}
static void ccid3_hc_tx_no_feedback_timer(unsigned long data)
{
struct sock *sk = (struct sock *)data;
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
unsigned long t_nfb = USEC_PER_SEC / 5;
bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
/* Try again later. */
/* XXX: set some sensible MIB */
goto restart_timer;
}
ccid3_pr_debug("%s, sk=%p, state=%s\n", dccp_role(sk), sk,
ccid3_tx_state_name(hctx->ccid3hctx_state));
switch (hctx->ccid3hctx_state) {
case TFRC_SSTATE_NO_FBACK:
/* RFC 3448, 4.4: Halve send rate directly */
hctx->ccid3hctx_x = min_t(u32, hctx->ccid3hctx_x / 2,
hctx->ccid3hctx_s / TFRC_T_MBI);
ccid3_pr_debug("%s, sk=%p, state=%s, updated tx rate to %d "
"bytes/s\n",
dccp_role(sk), sk,
ccid3_tx_state_name(hctx->ccid3hctx_state),
hctx->ccid3hctx_x);
/* The value of R is still undefined and so we can not recompute
* the timout value. Keep initial value as per [RFC 4342, 5]. */
t_nfb = TFRC_INITIAL_TIMEOUT;
ccid3_update_send_time(hctx);
break;
case TFRC_SSTATE_FBACK:
/*
* Check if IDLE since last timeout and recv rate is less than
* 4 packets per RTT
*/
if (!hctx->ccid3hctx_idle ||
(hctx->ccid3hctx_x_recv >=
4 * usecs_div(hctx->ccid3hctx_s, hctx->ccid3hctx_rtt))) {
struct timeval now;
ccid3_pr_debug("%s, sk=%p, state=%s, not idle\n",
dccp_role(sk), sk,
ccid3_tx_state_name(hctx->ccid3hctx_state));
/* Halve sending rate */
[DCCP] ccid3: Deprecate TFRC_SMALLEST_P This patch deprecates the existing use of an arbitrary value TFRC_SMALLEST_P for low-threshold values of p. This avoids masking low-resolution errors. Instead, the code now checks against real boundaries (implemented by preceding patch) and provides warnings whenever a real value falls below the threshold. If such messages are observed, it is a better solution to take this as an indication that the lookup table needs to be re-engineered. Changelog: ---------- This patch * makes handling all TFRC resolution errors local to the TFRC library * removes unnecessary test whether X_calc is 'infinity' due to p==0 -- this condition is already caught by tfrc_calc_x() * removes setting ccid3hctx_p = TFRC_SMALLEST_P in ccid3_hc_tx_packet_recv since this is now done by the TFRC library * updates BUG_ON test in ccid3_hc_tx_no_feedback_timer to take into account that p now is either 0 (and then X_calc is irrelevant), or it is > 0; since the handling of TFRC_SMALLEST_P is now taken care of in the tfrc library Justification: -------------- The TFRC code uses a lookup table which has a bounded resolution. The lowest possible value of the loss event rate `p' which can be resolved is currently 0.0001. Substituting this lower threshold for p when p is less than 0.0001 results in a huge, exponentially-growing error. The error can be computed by the following formula: (f(0.0001) - f(p))/f(p) * 100 for p < 0.0001 Currently the solution is to use an (arbitrary) value TFRC_SMALLEST_P = 40 * 1E-6 = 0.00004 and to consider all values below this value as `virtually zero'. Due to the exponentially growing resolution error, this is not a good idea, since it hides the fact that the table can not resolve practically occurring cases. Already at p == TFRC_SMALLEST_P, the error is as high as 58.19%! Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2006-12-03 16:53:07 +00:00
/* If (p == 0 || X_calc > 2 * X_recv)
* X_recv = max(X_recv / 2, s / (2 * t_mbi));
* Else
* X_recv = X_calc / 4;
*/
[DCCP] ccid3: Deprecate TFRC_SMALLEST_P This patch deprecates the existing use of an arbitrary value TFRC_SMALLEST_P for low-threshold values of p. This avoids masking low-resolution errors. Instead, the code now checks against real boundaries (implemented by preceding patch) and provides warnings whenever a real value falls below the threshold. If such messages are observed, it is a better solution to take this as an indication that the lookup table needs to be re-engineered. Changelog: ---------- This patch * makes handling all TFRC resolution errors local to the TFRC library * removes unnecessary test whether X_calc is 'infinity' due to p==0 -- this condition is already caught by tfrc_calc_x() * removes setting ccid3hctx_p = TFRC_SMALLEST_P in ccid3_hc_tx_packet_recv since this is now done by the TFRC library * updates BUG_ON test in ccid3_hc_tx_no_feedback_timer to take into account that p now is either 0 (and then X_calc is irrelevant), or it is > 0; since the handling of TFRC_SMALLEST_P is now taken care of in the tfrc library Justification: -------------- The TFRC code uses a lookup table which has a bounded resolution. The lowest possible value of the loss event rate `p' which can be resolved is currently 0.0001. Substituting this lower threshold for p when p is less than 0.0001 results in a huge, exponentially-growing error. The error can be computed by the following formula: (f(0.0001) - f(p))/f(p) * 100 for p < 0.0001 Currently the solution is to use an (arbitrary) value TFRC_SMALLEST_P = 40 * 1E-6 = 0.00004 and to consider all values below this value as `virtually zero'. Due to the exponentially growing resolution error, this is not a good idea, since it hides the fact that the table can not resolve practically occurring cases. Already at p == TFRC_SMALLEST_P, the error is as high as 58.19%! Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2006-12-03 16:53:07 +00:00
BUG_ON(hctx->ccid3hctx_p && !hctx->ccid3hctx_x_calc);
[DCCP] ccid3: Deprecate TFRC_SMALLEST_P This patch deprecates the existing use of an arbitrary value TFRC_SMALLEST_P for low-threshold values of p. This avoids masking low-resolution errors. Instead, the code now checks against real boundaries (implemented by preceding patch) and provides warnings whenever a real value falls below the threshold. If such messages are observed, it is a better solution to take this as an indication that the lookup table needs to be re-engineered. Changelog: ---------- This patch * makes handling all TFRC resolution errors local to the TFRC library * removes unnecessary test whether X_calc is 'infinity' due to p==0 -- this condition is already caught by tfrc_calc_x() * removes setting ccid3hctx_p = TFRC_SMALLEST_P in ccid3_hc_tx_packet_recv since this is now done by the TFRC library * updates BUG_ON test in ccid3_hc_tx_no_feedback_timer to take into account that p now is either 0 (and then X_calc is irrelevant), or it is > 0; since the handling of TFRC_SMALLEST_P is now taken care of in the tfrc library Justification: -------------- The TFRC code uses a lookup table which has a bounded resolution. The lowest possible value of the loss event rate `p' which can be resolved is currently 0.0001. Substituting this lower threshold for p when p is less than 0.0001 results in a huge, exponentially-growing error. The error can be computed by the following formula: (f(0.0001) - f(p))/f(p) * 100 for p < 0.0001 Currently the solution is to use an (arbitrary) value TFRC_SMALLEST_P = 40 * 1E-6 = 0.00004 and to consider all values below this value as `virtually zero'. Due to the exponentially growing resolution error, this is not a good idea, since it hides the fact that the table can not resolve practically occurring cases. Already at p == TFRC_SMALLEST_P, the error is as high as 58.19%! Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2006-12-03 16:53:07 +00:00
if (hctx->ccid3hctx_p == 0 ||
hctx->ccid3hctx_x_calc > 2 * hctx->ccid3hctx_x_recv)
hctx->ccid3hctx_x_recv = max_t(u32, hctx->ccid3hctx_x_recv / 2,
hctx->ccid3hctx_s / (2 * TFRC_T_MBI));
else
hctx->ccid3hctx_x_recv = hctx->ccid3hctx_x_calc / 4;
/* Update sending rate */
dccp_timestamp(sk, &now);
ccid3_hc_tx_update_x(sk, &now);
}
/*
* Schedule no feedback timer to expire in
* max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
* See comments in packet_recv() regarding the value of t_RTO.
*/
t_nfb = max(hctx->ccid3hctx_t_rto, 2 * hctx->ccid3hctx_t_ipi);
break;
case TFRC_SSTATE_NO_SENT:
DCCP_BUG("Illegal %s state NO_SENT, sk=%p", dccp_role(sk), sk);
/* fall through */
case TFRC_SSTATE_TERM:
goto out;
}
hctx->ccid3hctx_idle = 1;
restart_timer:
sk_reset_timer(sk, &hctx->ccid3hctx_no_feedback_timer,
jiffies + usecs_to_jiffies(t_nfb));
out:
bh_unlock_sock(sk);
sock_put(sk);
}
/*
* returns
* > 0: delay (in msecs) that should pass before actually sending
* = 0: can send immediately
* < 0: error condition; do not send packet
*/
static int ccid3_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
struct dccp_tx_hist_entry *new_packet;
struct timeval now;
long delay;
BUG_ON(hctx == NULL);
/*
* This function is called only for Data and DataAck packets. Sending
* zero-sized Data(Ack)s is theoretically possible, but for congestion
* control this case is pathological - ignore it.
*/
if (unlikely(skb->len == 0))
return -EBADMSG;
/* See if last packet allocated was not sent */
new_packet = dccp_tx_hist_head(&hctx->ccid3hctx_hist);
if (new_packet == NULL || new_packet->dccphtx_sent) {
new_packet = dccp_tx_hist_entry_new(ccid3_tx_hist,
SLAB_ATOMIC);
if (unlikely(new_packet == NULL)) {
DCCP_WARN("%s, sk=%p, not enough mem to add to history,"
"send refused\n", dccp_role(sk), sk);
return -ENOBUFS;
}
dccp_tx_hist_add_entry(&hctx->ccid3hctx_hist, new_packet);
}
dccp_timestamp(sk, &now);
switch (hctx->ccid3hctx_state) {
case TFRC_SSTATE_NO_SENT:
sk_reset_timer(sk, &hctx->ccid3hctx_no_feedback_timer,
jiffies + usecs_to_jiffies(TFRC_INITIAL_TIMEOUT));
hctx->ccid3hctx_last_win_count = 0;
hctx->ccid3hctx_t_last_win_count = now;
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_NO_FBACK);
/* Set initial sending rate to 1 packet per second */
ccid3_hc_tx_update_s(hctx, skb->len);
hctx->ccid3hctx_x = hctx->ccid3hctx_s;
/* First timeout, according to [RFC 3448, 4.2], is 1 second */
hctx->ccid3hctx_t_ipi = USEC_PER_SEC;
/* Initial delta: minimum of 0.5 sec and t_gran/2 */
hctx->ccid3hctx_delta = TFRC_OPSYS_HALF_TIME_GRAN;
/* Set t_0 for initial packet */
hctx->ccid3hctx_t_nom = now;
break;
case TFRC_SSTATE_NO_FBACK:
case TFRC_SSTATE_FBACK:
delay = timeval_delta(&hctx->ccid3hctx_t_nom, &now);
/*
* Scheduling of packet transmissions [RFC 3448, 4.6]
*
* if (t_now > t_nom - delta)
* // send the packet now
* else
* // send the packet in (t_nom - t_now) milliseconds.
*/
if (delay - (long)hctx->ccid3hctx_delta >= 0)
return delay / 1000L;
break;
case TFRC_SSTATE_TERM:
DCCP_BUG("Illegal %s state TERM, sk=%p", dccp_role(sk), sk);
return -EINVAL;
}
/* prepare to send now (add options etc.) */
dp->dccps_hc_tx_insert_options = 1;
new_packet->dccphtx_ccval = DCCP_SKB_CB(skb)->dccpd_ccval =
hctx->ccid3hctx_last_win_count;
timeval_add_usecs(&hctx->ccid3hctx_t_nom, hctx->ccid3hctx_t_ipi);
return 0;
}
static void ccid3_hc_tx_packet_sent(struct sock *sk, int more, unsigned int len)
{
const struct dccp_sock *dp = dccp_sk(sk);
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
struct timeval now;
unsigned long quarter_rtt;
struct dccp_tx_hist_entry *packet;
BUG_ON(hctx == NULL);
dccp_timestamp(sk, &now);
ccid3_hc_tx_update_s(hctx, len);
packet = dccp_tx_hist_head(&hctx->ccid3hctx_hist);
if (unlikely(packet == NULL)) {
DCCP_WARN("packet doesn't exist in history!\n");
return;
}
if (unlikely(packet->dccphtx_sent)) {
DCCP_WARN("no unsent packet in history!\n");
return;
}
packet->dccphtx_tstamp = now;
packet->dccphtx_seqno = dp->dccps_gss;
/*
* Check if win_count have changed
* Algorithm in "8.1. Window Counter Value" in RFC 4342.
*/
quarter_rtt = timeval_delta(&now, &hctx->ccid3hctx_t_last_win_count);
if (likely(hctx->ccid3hctx_rtt > 8))
quarter_rtt /= hctx->ccid3hctx_rtt / 4;
if (quarter_rtt > 0) {
hctx->ccid3hctx_t_last_win_count = now;
hctx->ccid3hctx_last_win_count = (hctx->ccid3hctx_last_win_count +
min_t(unsigned long, quarter_rtt, 5)) % 16;
ccid3_pr_debug("%s, sk=%p, window changed from "
"%u to %u!\n",
dccp_role(sk), sk,
packet->dccphtx_ccval,
hctx->ccid3hctx_last_win_count);
}
hctx->ccid3hctx_idle = 0;
packet->dccphtx_rtt = hctx->ccid3hctx_rtt;
packet->dccphtx_sent = 1;
}
static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
{
const struct dccp_sock *dp = dccp_sk(sk);
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
struct ccid3_options_received *opt_recv;
struct dccp_tx_hist_entry *packet;
struct timeval now;
unsigned long t_nfb;
u32 pinv;
long r_sample, t_elapsed;
BUG_ON(hctx == NULL);
/* we are only interested in ACKs */
if (!(DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_ACK ||
DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_DATAACK))
return;
opt_recv = &hctx->ccid3hctx_options_received;
switch (hctx->ccid3hctx_state) {
case TFRC_SSTATE_NO_FBACK:
case TFRC_SSTATE_FBACK:
/* get packet from history to look up t_recvdata */
packet = dccp_tx_hist_find_entry(&hctx->ccid3hctx_hist,
DCCP_SKB_CB(skb)->dccpd_ack_seq);
if (unlikely(packet == NULL)) {
DCCP_WARN("%s(%p), seqno %llu(%s) doesn't exist "
"in history!\n", dccp_role(sk), sk,
(unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq,
dccp_packet_name(DCCP_SKB_CB(skb)->dccpd_type));
return;
}
/* Update receive rate */
hctx->ccid3hctx_x_recv = opt_recv->ccid3or_receive_rate;
/* Update loss event rate */
pinv = opt_recv->ccid3or_loss_event_rate;
if (pinv == ~0U || pinv == 0)
hctx->ccid3hctx_p = 0;
[DCCP] ccid3: Deprecate TFRC_SMALLEST_P This patch deprecates the existing use of an arbitrary value TFRC_SMALLEST_P for low-threshold values of p. This avoids masking low-resolution errors. Instead, the code now checks against real boundaries (implemented by preceding patch) and provides warnings whenever a real value falls below the threshold. If such messages are observed, it is a better solution to take this as an indication that the lookup table needs to be re-engineered. Changelog: ---------- This patch * makes handling all TFRC resolution errors local to the TFRC library * removes unnecessary test whether X_calc is 'infinity' due to p==0 -- this condition is already caught by tfrc_calc_x() * removes setting ccid3hctx_p = TFRC_SMALLEST_P in ccid3_hc_tx_packet_recv since this is now done by the TFRC library * updates BUG_ON test in ccid3_hc_tx_no_feedback_timer to take into account that p now is either 0 (and then X_calc is irrelevant), or it is > 0; since the handling of TFRC_SMALLEST_P is now taken care of in the tfrc library Justification: -------------- The TFRC code uses a lookup table which has a bounded resolution. The lowest possible value of the loss event rate `p' which can be resolved is currently 0.0001. Substituting this lower threshold for p when p is less than 0.0001 results in a huge, exponentially-growing error. The error can be computed by the following formula: (f(0.0001) - f(p))/f(p) * 100 for p < 0.0001 Currently the solution is to use an (arbitrary) value TFRC_SMALLEST_P = 40 * 1E-6 = 0.00004 and to consider all values below this value as `virtually zero'. Due to the exponentially growing resolution error, this is not a good idea, since it hides the fact that the table can not resolve practically occurring cases. Already at p == TFRC_SMALLEST_P, the error is as high as 58.19%! Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2006-12-03 16:53:07 +00:00
else
hctx->ccid3hctx_p = 1000000 / pinv;
dccp_timestamp(sk, &now);
/*
* Calculate new round trip sample as per [RFC 3448, 4.3] by
* R_sample = (now - t_recvdata) - t_elapsed
*/
r_sample = timeval_delta(&now, &packet->dccphtx_tstamp);
t_elapsed = dp->dccps_options_received.dccpor_elapsed_time * 10;
if (unlikely(r_sample <= 0)) {
DCCP_WARN("WARNING: R_sample (%ld) <= 0!\n", r_sample);
r_sample = 0;
} else if (unlikely(r_sample <= t_elapsed))
DCCP_WARN("WARNING: r_sample=%ldus <= t_elapsed=%ldus\n",
r_sample, t_elapsed);
else
r_sample -= t_elapsed;
/* Update RTT estimate by
* If (No feedback recv)
* R = R_sample;
* Else
* R = q * R + (1 - q) * R_sample;
*
* q is a constant, RFC 3448 recomments 0.9
*/
if (hctx->ccid3hctx_state == TFRC_SSTATE_NO_FBACK) {
/* Use Larger Initial Windows [RFC 4342, sec. 5]
* We deviate in that we use `s' instead of `MSS'. */
u16 w_init = max( 4 * hctx->ccid3hctx_s,
max(2 * hctx->ccid3hctx_s, 4380));
hctx->ccid3hctx_rtt = r_sample;
hctx->ccid3hctx_x = usecs_div(w_init, r_sample);
hctx->ccid3hctx_t_ld = now;
ccid3_update_send_time(hctx);
ccid3_pr_debug("%s(%p), s=%u, w_init=%u, "
"R_sample=%ldus, X=%u\n", dccp_role(sk),
sk, hctx->ccid3hctx_s, w_init, r_sample,
hctx->ccid3hctx_x);
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_FBACK);
} else {
hctx->ccid3hctx_rtt = (9 * hctx->ccid3hctx_rtt +
(u32)r_sample ) / 10;
ccid3_hc_tx_update_x(sk, &now);
ccid3_pr_debug("%s(%p), RTT=%uus (sample=%ldus), s=%u, "
"p=%u, X_calc=%u, X=%u\n", dccp_role(sk),
sk, hctx->ccid3hctx_rtt, r_sample,
hctx->ccid3hctx_s, hctx->ccid3hctx_p,
hctx->ccid3hctx_x_calc,
hctx->ccid3hctx_x);
}
/* unschedule no feedback timer */
sk_stop_timer(sk, &hctx->ccid3hctx_no_feedback_timer);
/* remove all packets older than the one acked from history */
dccp_tx_hist_purge_older(ccid3_tx_hist,
&hctx->ccid3hctx_hist, packet);
/*
* As we have calculated new ipi, delta, t_nom it is possible that
* we now can send a packet, so wake up dccp_wait_for_ccid
*/
sk->sk_write_space(sk);
/*
* Update timeout interval for the nofeedback timer.
* We use a configuration option to increase the lower bound.
* This can help avoid triggering the nofeedback timer too often
* ('spinning') on LANs with small RTTs.
*/
hctx->ccid3hctx_t_rto = max_t(u32, 4 * hctx->ccid3hctx_rtt,
CONFIG_IP_DCCP_CCID3_RTO *
(USEC_PER_SEC/1000) );
/*
* Schedule no feedback timer to expire in
* max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
*/
t_nfb = max(hctx->ccid3hctx_t_rto, 2 * hctx->ccid3hctx_t_ipi);
ccid3_pr_debug("%s, sk=%p, Scheduled no feedback timer to "
"expire in %lu jiffies (%luus)\n",
dccp_role(sk), sk,
usecs_to_jiffies(t_nfb), t_nfb);
sk_reset_timer(sk, &hctx->ccid3hctx_no_feedback_timer,
jiffies + usecs_to_jiffies(t_nfb));
/* set idle flag */
hctx->ccid3hctx_idle = 1;
break;
case TFRC_SSTATE_NO_SENT:
if (dccp_sk(sk)->dccps_role == DCCP_ROLE_CLIENT)
DCCP_WARN("Illegal ACK received - no packet sent\n");
/* fall through */
case TFRC_SSTATE_TERM: /* ignore feedback when closing */
break;
}
}
static int ccid3_hc_tx_insert_options(struct sock *sk, struct sk_buff *skb)
{
const struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
BUG_ON(hctx == NULL);
if (sk->sk_state == DCCP_OPEN || sk->sk_state == DCCP_PARTOPEN)
DCCP_SKB_CB(skb)->dccpd_ccval = hctx->ccid3hctx_last_win_count;
return 0;
}
static int ccid3_hc_tx_parse_options(struct sock *sk, unsigned char option,
unsigned char len, u16 idx,
unsigned char *value)
{
int rc = 0;
const struct dccp_sock *dp = dccp_sk(sk);
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
struct ccid3_options_received *opt_recv;
BUG_ON(hctx == NULL);
opt_recv = &hctx->ccid3hctx_options_received;
if (opt_recv->ccid3or_seqno != dp->dccps_gsr) {
opt_recv->ccid3or_seqno = dp->dccps_gsr;
opt_recv->ccid3or_loss_event_rate = ~0;
opt_recv->ccid3or_loss_intervals_idx = 0;
opt_recv->ccid3or_loss_intervals_len = 0;
opt_recv->ccid3or_receive_rate = 0;
}
switch (option) {
case TFRC_OPT_LOSS_EVENT_RATE:
if (unlikely(len != 4)) {
DCCP_WARN("%s, sk=%p, invalid len %d "
"for TFRC_OPT_LOSS_EVENT_RATE\n",
dccp_role(sk), sk, len);
rc = -EINVAL;
} else {
opt_recv->ccid3or_loss_event_rate = ntohl(*(__be32 *)value);
ccid3_pr_debug("%s, sk=%p, LOSS_EVENT_RATE=%u\n",
dccp_role(sk), sk,
opt_recv->ccid3or_loss_event_rate);
}
break;
case TFRC_OPT_LOSS_INTERVALS:
opt_recv->ccid3or_loss_intervals_idx = idx;
opt_recv->ccid3or_loss_intervals_len = len;
ccid3_pr_debug("%s, sk=%p, LOSS_INTERVALS=(%u, %u)\n",
dccp_role(sk), sk,
opt_recv->ccid3or_loss_intervals_idx,
opt_recv->ccid3or_loss_intervals_len);
break;
case TFRC_OPT_RECEIVE_RATE:
if (unlikely(len != 4)) {
DCCP_WARN("%s, sk=%p, invalid len %d "
"for TFRC_OPT_RECEIVE_RATE\n",
dccp_role(sk), sk, len);
rc = -EINVAL;
} else {
opt_recv->ccid3or_receive_rate = ntohl(*(__be32 *)value);
ccid3_pr_debug("%s, sk=%p, RECEIVE_RATE=%u\n",
dccp_role(sk), sk,
opt_recv->ccid3or_receive_rate);
}
break;
}
return rc;
}
static int ccid3_hc_tx_init(struct ccid *ccid, struct sock *sk)
{
struct ccid3_hc_tx_sock *hctx = ccid_priv(ccid);
hctx->ccid3hctx_s = 0;
hctx->ccid3hctx_state = TFRC_SSTATE_NO_SENT;
INIT_LIST_HEAD(&hctx->ccid3hctx_hist);
hctx->ccid3hctx_no_feedback_timer.function = ccid3_hc_tx_no_feedback_timer;
hctx->ccid3hctx_no_feedback_timer.data = (unsigned long)sk;
init_timer(&hctx->ccid3hctx_no_feedback_timer);
return 0;
}
static void ccid3_hc_tx_exit(struct sock *sk)
{
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
BUG_ON(hctx == NULL);
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_TERM);
sk_stop_timer(sk, &hctx->ccid3hctx_no_feedback_timer);
/* Empty packet history */
dccp_tx_hist_purge(ccid3_tx_hist, &hctx->ccid3hctx_hist);
}
/*
* RX Half Connection methods
*/
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
static const char *ccid3_rx_state_name(enum ccid3_hc_rx_states state)
{
static char *ccid3_rx_state_names[] = {
[TFRC_RSTATE_NO_DATA] = "NO_DATA",
[TFRC_RSTATE_DATA] = "DATA",
[TFRC_RSTATE_TERM] = "TERM",
};
return ccid3_rx_state_names[state];
}
#endif
static void ccid3_hc_rx_set_state(struct sock *sk,
enum ccid3_hc_rx_states state)
{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
enum ccid3_hc_rx_states oldstate = hcrx->ccid3hcrx_state;
ccid3_pr_debug("%s(%p) %-8.8s -> %s\n",
dccp_role(sk), sk, ccid3_rx_state_name(oldstate),
ccid3_rx_state_name(state));
WARN_ON(state == oldstate);
hcrx->ccid3hcrx_state = state;
}
static inline void ccid3_hc_rx_update_s(struct ccid3_hc_rx_sock *hcrx, int len)
{
if (unlikely(len == 0)) /* don't update on empty packets (e.g. ACKs) */
ccid3_pr_debug("Packet payload length is 0 - not updating\n");
else
hcrx->ccid3hcrx_s = hcrx->ccid3hcrx_s == 0 ? len :
(9 * hcrx->ccid3hcrx_s + len) / 10;
}
static void ccid3_hc_rx_send_feedback(struct sock *sk)
{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_rx_hist_entry *packet;
struct timeval now;
ccid3_pr_debug("%s, sk=%p\n", dccp_role(sk), sk);
dccp_timestamp(sk, &now);
switch (hcrx->ccid3hcrx_state) {
case TFRC_RSTATE_NO_DATA:
hcrx->ccid3hcrx_x_recv = 0;
break;
case TFRC_RSTATE_DATA: {
const u32 delta = timeval_delta(&now,
&hcrx->ccid3hcrx_tstamp_last_feedback);
hcrx->ccid3hcrx_x_recv = usecs_div(hcrx->ccid3hcrx_bytes_recv,
delta);
}
break;
case TFRC_RSTATE_TERM:
DCCP_BUG("Illegal %s state TERM, sk=%p", dccp_role(sk), sk);
return;
}
packet = dccp_rx_hist_find_data_packet(&hcrx->ccid3hcrx_hist);
if (unlikely(packet == NULL)) {
DCCP_WARN("%s, sk=%p, no data packet in history!\n",
dccp_role(sk), sk);
return;
}
hcrx->ccid3hcrx_tstamp_last_feedback = now;
hcrx->ccid3hcrx_ccval_last_counter = packet->dccphrx_ccval;
hcrx->ccid3hcrx_bytes_recv = 0;
/* Convert to multiples of 10us */
hcrx->ccid3hcrx_elapsed_time =
timeval_delta(&now, &packet->dccphrx_tstamp) / 10;
if (hcrx->ccid3hcrx_p == 0)
hcrx->ccid3hcrx_pinv = ~0;
else
hcrx->ccid3hcrx_pinv = 1000000 / hcrx->ccid3hcrx_p;
dp->dccps_hc_rx_insert_options = 1;
dccp_send_ack(sk);
}
static int ccid3_hc_rx_insert_options(struct sock *sk, struct sk_buff *skb)
{
const struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
__be32 x_recv, pinv;
BUG_ON(hcrx == NULL);
if (!(sk->sk_state == DCCP_OPEN || sk->sk_state == DCCP_PARTOPEN))
return 0;
DCCP_SKB_CB(skb)->dccpd_ccval = hcrx->ccid3hcrx_ccval_last_counter;
if (dccp_packet_without_ack(skb))
return 0;
x_recv = htonl(hcrx->ccid3hcrx_x_recv);
pinv = htonl(hcrx->ccid3hcrx_pinv);
if ((hcrx->ccid3hcrx_elapsed_time != 0 &&
dccp_insert_option_elapsed_time(sk, skb,
hcrx->ccid3hcrx_elapsed_time)) ||
dccp_insert_option_timestamp(sk, skb) ||
dccp_insert_option(sk, skb, TFRC_OPT_LOSS_EVENT_RATE,
&pinv, sizeof(pinv)) ||
dccp_insert_option(sk, skb, TFRC_OPT_RECEIVE_RATE,
&x_recv, sizeof(x_recv)))
return -1;
return 0;
}
/* calculate first loss interval
*
* returns estimated loss interval in usecs */
static u32 ccid3_hc_rx_calc_first_li(struct sock *sk)
{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
struct dccp_rx_hist_entry *entry, *next, *tail = NULL;
u32 rtt, delta, x_recv, fval, p, tmp2;
struct timeval tstamp = { 0, };
int interval = 0;
int win_count = 0;
int step = 0;
u64 tmp1;
list_for_each_entry_safe(entry, next, &hcrx->ccid3hcrx_hist,
dccphrx_node) {
if (dccp_rx_hist_entry_data_packet(entry)) {
tail = entry;
switch (step) {
case 0:
tstamp = entry->dccphrx_tstamp;
win_count = entry->dccphrx_ccval;
step = 1;
break;
case 1:
interval = win_count - entry->dccphrx_ccval;
if (interval < 0)
interval += TFRC_WIN_COUNT_LIMIT;
if (interval > 4)
goto found;
break;
}
}
}
if (unlikely(step == 0)) {
DCCP_WARN("%s, sk=%p, packet history has no data packets!\n",
dccp_role(sk), sk);
return ~0;
}
if (unlikely(interval == 0)) {
DCCP_WARN("%s, sk=%p, Could not find a win_count interval > 0."
"Defaulting to 1\n", dccp_role(sk), sk);
interval = 1;
}
found:
if (!tail) {
DCCP_CRIT("tail is null\n");
return ~0;
}
rtt = timeval_delta(&tstamp, &tail->dccphrx_tstamp) * 4 / interval;
ccid3_pr_debug("%s, sk=%p, approximated RTT to %uus\n",
dccp_role(sk), sk, rtt);
if (rtt == 0) {
DCCP_WARN("RTT==0, setting to 1\n");
rtt = 1;
}
dccp_timestamp(sk, &tstamp);
delta = timeval_delta(&tstamp, &hcrx->ccid3hcrx_tstamp_last_feedback);
x_recv = usecs_div(hcrx->ccid3hcrx_bytes_recv, delta);
if (x_recv == 0)
x_recv = hcrx->ccid3hcrx_x_recv;
tmp1 = (u64)x_recv * (u64)rtt;
do_div(tmp1,10000000);
tmp2 = (u32)tmp1;
if (!tmp2) {
DCCP_CRIT("tmp2 = 0, x_recv = %u, rtt =%u\n", x_recv, rtt);
return ~0;
}
fval = (hcrx->ccid3hcrx_s * 100000) / tmp2;
/* do not alter order above or you will get overflow on 32 bit */
p = tfrc_calc_x_reverse_lookup(fval);
ccid3_pr_debug("%s, sk=%p, receive rate=%u bytes/s, implied "
"loss rate=%u\n", dccp_role(sk), sk, x_recv, p);
if (p == 0)
return ~0;
else
return 1000000 / p;
}
static void ccid3_hc_rx_update_li(struct sock *sk, u64 seq_loss, u8 win_loss)
{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
struct dccp_li_hist_entry *head;
u64 seq_temp;
if (list_empty(&hcrx->ccid3hcrx_li_hist)) {
if (!dccp_li_hist_interval_new(ccid3_li_hist,
&hcrx->ccid3hcrx_li_hist, seq_loss, win_loss))
return;
head = list_entry(hcrx->ccid3hcrx_li_hist.next,
struct dccp_li_hist_entry, dccplih_node);
head->dccplih_interval = ccid3_hc_rx_calc_first_li(sk);
} else {
struct dccp_li_hist_entry *entry;
struct list_head *tail;
head = list_entry(hcrx->ccid3hcrx_li_hist.next,
struct dccp_li_hist_entry, dccplih_node);
/* FIXME win count check removed as was wrong */
/* should make this check with receive history */
/* and compare there as per section 10.2 of RFC4342 */
/* new loss event detected */
/* calculate last interval length */
seq_temp = dccp_delta_seqno(head->dccplih_seqno, seq_loss);
entry = dccp_li_hist_entry_new(ccid3_li_hist, SLAB_ATOMIC);
if (entry == NULL) {
DCCP_BUG("out of memory - can not allocate entry");
return;
}
list_add(&entry->dccplih_node, &hcrx->ccid3hcrx_li_hist);
tail = hcrx->ccid3hcrx_li_hist.prev;
list_del(tail);
kmem_cache_free(ccid3_li_hist->dccplih_slab, tail);
/* Create the newest interval */
entry->dccplih_seqno = seq_loss;
entry->dccplih_interval = seq_temp;
entry->dccplih_win_count = win_loss;
}
}
static int ccid3_hc_rx_detect_loss(struct sock *sk,
struct dccp_rx_hist_entry *packet)
{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
struct dccp_rx_hist_entry *rx_hist = dccp_rx_hist_head(&hcrx->ccid3hcrx_hist);
u64 seqno = packet->dccphrx_seqno;
u64 tmp_seqno;
int loss = 0;
u8 ccval;
tmp_seqno = hcrx->ccid3hcrx_seqno_nonloss;
if (!rx_hist ||
follows48(packet->dccphrx_seqno, hcrx->ccid3hcrx_seqno_nonloss)) {
hcrx->ccid3hcrx_seqno_nonloss = seqno;
hcrx->ccid3hcrx_ccval_nonloss = packet->dccphrx_ccval;
goto detect_out;
}
while (dccp_delta_seqno(hcrx->ccid3hcrx_seqno_nonloss, seqno)
> TFRC_RECV_NUM_LATE_LOSS) {
loss = 1;
ccid3_hc_rx_update_li(sk, hcrx->ccid3hcrx_seqno_nonloss,
hcrx->ccid3hcrx_ccval_nonloss);
tmp_seqno = hcrx->ccid3hcrx_seqno_nonloss;
dccp_inc_seqno(&tmp_seqno);
hcrx->ccid3hcrx_seqno_nonloss = tmp_seqno;
dccp_inc_seqno(&tmp_seqno);
while (dccp_rx_hist_find_entry(&hcrx->ccid3hcrx_hist,
tmp_seqno, &ccval)) {
hcrx->ccid3hcrx_seqno_nonloss = tmp_seqno;
hcrx->ccid3hcrx_ccval_nonloss = ccval;
dccp_inc_seqno(&tmp_seqno);
}
}
/* FIXME - this code could be simplified with above while */
/* but works at moment */
if (follows48(packet->dccphrx_seqno, hcrx->ccid3hcrx_seqno_nonloss)) {
hcrx->ccid3hcrx_seqno_nonloss = seqno;
hcrx->ccid3hcrx_ccval_nonloss = packet->dccphrx_ccval;
}
detect_out:
dccp_rx_hist_add_packet(ccid3_rx_hist, &hcrx->ccid3hcrx_hist,
&hcrx->ccid3hcrx_li_hist, packet,
hcrx->ccid3hcrx_seqno_nonloss);
return loss;
}
static void ccid3_hc_rx_packet_recv(struct sock *sk, struct sk_buff *skb)
{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
const struct dccp_options_received *opt_recv;
struct dccp_rx_hist_entry *packet;
struct timeval now;
u32 p_prev, rtt_prev, r_sample, t_elapsed;
int loss, payload_size;
BUG_ON(hcrx == NULL);
opt_recv = &dccp_sk(sk)->dccps_options_received;
switch (DCCP_SKB_CB(skb)->dccpd_type) {
case DCCP_PKT_ACK:
if (hcrx->ccid3hcrx_state == TFRC_RSTATE_NO_DATA)
return;
case DCCP_PKT_DATAACK:
if (opt_recv->dccpor_timestamp_echo == 0)
break;
rtt_prev = hcrx->ccid3hcrx_rtt;
dccp_timestamp(sk, &now);
timeval_sub_usecs(&now, opt_recv->dccpor_timestamp_echo * 10);
r_sample = timeval_usecs(&now);
t_elapsed = opt_recv->dccpor_elapsed_time * 10;
if (unlikely(r_sample <= t_elapsed))
DCCP_WARN("r_sample=%uus, t_elapsed=%uus\n",
r_sample, t_elapsed);
else
r_sample -= t_elapsed;
if (hcrx->ccid3hcrx_state == TFRC_RSTATE_NO_DATA)
hcrx->ccid3hcrx_rtt = r_sample;
else
hcrx->ccid3hcrx_rtt = (hcrx->ccid3hcrx_rtt * 9) / 10 +
r_sample / 10;
if (rtt_prev != hcrx->ccid3hcrx_rtt)
ccid3_pr_debug("%s, New RTT=%uus, elapsed time=%u\n",
dccp_role(sk), hcrx->ccid3hcrx_rtt,
opt_recv->dccpor_elapsed_time);
break;
case DCCP_PKT_DATA:
break;
default: /* We're not interested in other packet types, move along */
return;
}
packet = dccp_rx_hist_entry_new(ccid3_rx_hist, sk, opt_recv->dccpor_ndp,
skb, SLAB_ATOMIC);
if (unlikely(packet == NULL)) {
DCCP_WARN("%s, sk=%p, Not enough mem to add rx packet "
"to history, consider it lost!\n", dccp_role(sk), sk);
return;
}
loss = ccid3_hc_rx_detect_loss(sk, packet);
if (DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_ACK)
return;
payload_size = skb->len - dccp_hdr(skb)->dccph_doff * 4;
ccid3_hc_rx_update_s(hcrx, payload_size);
switch (hcrx->ccid3hcrx_state) {
case TFRC_RSTATE_NO_DATA:
ccid3_pr_debug("%s, sk=%p(%s), skb=%p, sending initial "
"feedback\n",
dccp_role(sk), sk,
dccp_state_name(sk->sk_state), skb);
ccid3_hc_rx_send_feedback(sk);
ccid3_hc_rx_set_state(sk, TFRC_RSTATE_DATA);
return;
case TFRC_RSTATE_DATA:
hcrx->ccid3hcrx_bytes_recv += payload_size;
if (loss)
break;
dccp_timestamp(sk, &now);
if (timeval_delta(&now, &hcrx->ccid3hcrx_tstamp_last_ack) >=
hcrx->ccid3hcrx_rtt) {
hcrx->ccid3hcrx_tstamp_last_ack = now;
ccid3_hc_rx_send_feedback(sk);
}
return;
case TFRC_RSTATE_TERM:
DCCP_BUG("Illegal %s state TERM, sk=%p", dccp_role(sk), sk);
return;
}
/* Dealing with packet loss */
ccid3_pr_debug("%s, sk=%p(%s), data loss! Reacting...\n",
dccp_role(sk), sk, dccp_state_name(sk->sk_state));
p_prev = hcrx->ccid3hcrx_p;
/* Calculate loss event rate */
if (!list_empty(&hcrx->ccid3hcrx_li_hist)) {
u32 i_mean = dccp_li_hist_calc_i_mean(&hcrx->ccid3hcrx_li_hist);
/* Scaling up by 1000000 as fixed decimal */
if (i_mean != 0)
hcrx->ccid3hcrx_p = 1000000 / i_mean;
} else
DCCP_BUG("empty loss history");
if (hcrx->ccid3hcrx_p > p_prev) {
ccid3_hc_rx_send_feedback(sk);
return;
}
}
static int ccid3_hc_rx_init(struct ccid *ccid, struct sock *sk)
{
struct ccid3_hc_rx_sock *hcrx = ccid_priv(ccid);
ccid3_pr_debug("%s, sk=%p\n", dccp_role(sk), sk);
hcrx->ccid3hcrx_state = TFRC_RSTATE_NO_DATA;
INIT_LIST_HEAD(&hcrx->ccid3hcrx_hist);
INIT_LIST_HEAD(&hcrx->ccid3hcrx_li_hist);
dccp_timestamp(sk, &hcrx->ccid3hcrx_tstamp_last_ack);
hcrx->ccid3hcrx_tstamp_last_feedback = hcrx->ccid3hcrx_tstamp_last_ack;
hcrx->ccid3hcrx_s = 0;
hcrx->ccid3hcrx_rtt = 5000; /* XXX 5ms for now... */
return 0;
}
static void ccid3_hc_rx_exit(struct sock *sk)
{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
BUG_ON(hcrx == NULL);
ccid3_hc_rx_set_state(sk, TFRC_RSTATE_TERM);
/* Empty packet history */
dccp_rx_hist_purge(ccid3_rx_hist, &hcrx->ccid3hcrx_hist);
/* Empty loss interval history */
dccp_li_hist_purge(ccid3_li_hist, &hcrx->ccid3hcrx_li_hist);
}
static void ccid3_hc_rx_get_info(struct sock *sk, struct tcp_info *info)
{
const struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
/* Listen socks doesn't have a private CCID block */
if (sk->sk_state == DCCP_LISTEN)
return;
BUG_ON(hcrx == NULL);
info->tcpi_ca_state = hcrx->ccid3hcrx_state;
info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
info->tcpi_rcv_rtt = hcrx->ccid3hcrx_rtt;
}
static void ccid3_hc_tx_get_info(struct sock *sk, struct tcp_info *info)
{
const struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
/* Listen socks doesn't have a private CCID block */
if (sk->sk_state == DCCP_LISTEN)
return;
BUG_ON(hctx == NULL);
info->tcpi_rto = hctx->ccid3hctx_t_rto;
info->tcpi_rtt = hctx->ccid3hctx_rtt;
}
static int ccid3_hc_rx_getsockopt(struct sock *sk, const int optname, int len,
u32 __user *optval, int __user *optlen)
{
const struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
const void *val;
/* Listen socks doesn't have a private CCID block */
if (sk->sk_state == DCCP_LISTEN)
return -EINVAL;
switch (optname) {
case DCCP_SOCKOPT_CCID_RX_INFO:
if (len < sizeof(hcrx->ccid3hcrx_tfrc))
return -EINVAL;
len = sizeof(hcrx->ccid3hcrx_tfrc);
val = &hcrx->ccid3hcrx_tfrc;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen) || copy_to_user(optval, val, len))
return -EFAULT;
return 0;
}
static int ccid3_hc_tx_getsockopt(struct sock *sk, const int optname, int len,
u32 __user *optval, int __user *optlen)
{
const struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
const void *val;
/* Listen socks doesn't have a private CCID block */
if (sk->sk_state == DCCP_LISTEN)
return -EINVAL;
switch (optname) {
case DCCP_SOCKOPT_CCID_TX_INFO:
if (len < sizeof(hctx->ccid3hctx_tfrc))
return -EINVAL;
len = sizeof(hctx->ccid3hctx_tfrc);
val = &hctx->ccid3hctx_tfrc;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen) || copy_to_user(optval, val, len))
return -EFAULT;
return 0;
}
static struct ccid_operations ccid3 = {
.ccid_id = DCCPC_CCID3,
.ccid_name = "ccid3",
.ccid_owner = THIS_MODULE,
.ccid_hc_tx_obj_size = sizeof(struct ccid3_hc_tx_sock),
.ccid_hc_tx_init = ccid3_hc_tx_init,
.ccid_hc_tx_exit = ccid3_hc_tx_exit,
.ccid_hc_tx_send_packet = ccid3_hc_tx_send_packet,
.ccid_hc_tx_packet_sent = ccid3_hc_tx_packet_sent,
.ccid_hc_tx_packet_recv = ccid3_hc_tx_packet_recv,
.ccid_hc_tx_insert_options = ccid3_hc_tx_insert_options,
.ccid_hc_tx_parse_options = ccid3_hc_tx_parse_options,
.ccid_hc_rx_obj_size = sizeof(struct ccid3_hc_rx_sock),
.ccid_hc_rx_init = ccid3_hc_rx_init,
.ccid_hc_rx_exit = ccid3_hc_rx_exit,
.ccid_hc_rx_insert_options = ccid3_hc_rx_insert_options,
.ccid_hc_rx_packet_recv = ccid3_hc_rx_packet_recv,
.ccid_hc_rx_get_info = ccid3_hc_rx_get_info,
.ccid_hc_tx_get_info = ccid3_hc_tx_get_info,
.ccid_hc_rx_getsockopt = ccid3_hc_rx_getsockopt,
.ccid_hc_tx_getsockopt = ccid3_hc_tx_getsockopt,
};
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
module_param(ccid3_debug, int, 0444);
MODULE_PARM_DESC(ccid3_debug, "Enable debug messages");
#endif
static __init int ccid3_module_init(void)
{
int rc = -ENOBUFS;
ccid3_rx_hist = dccp_rx_hist_new("ccid3");
if (ccid3_rx_hist == NULL)
goto out;
ccid3_tx_hist = dccp_tx_hist_new("ccid3");
if (ccid3_tx_hist == NULL)
goto out_free_rx;
ccid3_li_hist = dccp_li_hist_new("ccid3");
if (ccid3_li_hist == NULL)
goto out_free_tx;
rc = ccid_register(&ccid3);
if (rc != 0)
goto out_free_loss_interval_history;
out:
return rc;
out_free_loss_interval_history:
dccp_li_hist_delete(ccid3_li_hist);
ccid3_li_hist = NULL;
out_free_tx:
dccp_tx_hist_delete(ccid3_tx_hist);
ccid3_tx_hist = NULL;
out_free_rx:
dccp_rx_hist_delete(ccid3_rx_hist);
ccid3_rx_hist = NULL;
goto out;
}
module_init(ccid3_module_init);
static __exit void ccid3_module_exit(void)
{
ccid_unregister(&ccid3);
if (ccid3_tx_hist != NULL) {
dccp_tx_hist_delete(ccid3_tx_hist);
ccid3_tx_hist = NULL;
}
if (ccid3_rx_hist != NULL) {
dccp_rx_hist_delete(ccid3_rx_hist);
ccid3_rx_hist = NULL;
}
if (ccid3_li_hist != NULL) {
dccp_li_hist_delete(ccid3_li_hist);
ccid3_li_hist = NULL;
}
}
module_exit(ccid3_module_exit);
MODULE_AUTHOR("Ian McDonald <ian.mcdonald@jandi.co.nz>, "
"Arnaldo Carvalho de Melo <acme@ghostprotocols.net>");
MODULE_DESCRIPTION("DCCP TFRC CCID3 CCID");
MODULE_LICENSE("GPL");
MODULE_ALIAS("net-dccp-ccid-3");