aha/kernel/trace/trace_output.c

366 lines
7.4 KiB
C
Raw Normal View History

/*
* trace_output.c
*
* Copyright (C) 2008 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
*
*/
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/ftrace.h>
#include "trace_output.h"
/* must be a power of 2 */
#define EVENT_HASHSIZE 128
static DEFINE_MUTEX(trace_event_mutex);
static struct hlist_head event_hash[EVENT_HASHSIZE] __read_mostly;
static int next_event_type = __TRACE_LAST_TYPE + 1;
/**
* trace_seq_printf - sequence printing of trace information
* @s: trace sequence descriptor
* @fmt: printf format string
*
* The tracer may use either sequence operations or its own
* copy to user routines. To simplify formating of a trace
* trace_seq_printf is used to store strings into a special
* buffer (@s). Then the output may be either used by
* the sequencer or pulled into another buffer.
*/
int
trace_seq_printf(struct trace_seq *s, const char *fmt, ...)
{
int len = (PAGE_SIZE - 1) - s->len;
va_list ap;
int ret;
if (!len)
return 0;
va_start(ap, fmt);
ret = vsnprintf(s->buffer + s->len, len, fmt, ap);
va_end(ap);
/* If we can't write it all, don't bother writing anything */
if (ret >= len)
return 0;
s->len += ret;
return len;
}
/**
* trace_seq_puts - trace sequence printing of simple string
* @s: trace sequence descriptor
* @str: simple string to record
*
* The tracer may use either the sequence operations or its own
* copy to user routines. This function records a simple string
* into a special buffer (@s) for later retrieval by a sequencer
* or other mechanism.
*/
int trace_seq_puts(struct trace_seq *s, const char *str)
{
int len = strlen(str);
if (len > ((PAGE_SIZE - 1) - s->len))
return 0;
memcpy(s->buffer + s->len, str, len);
s->len += len;
return len;
}
int trace_seq_putc(struct trace_seq *s, unsigned char c)
{
if (s->len >= (PAGE_SIZE - 1))
return 0;
s->buffer[s->len++] = c;
return 1;
}
int trace_seq_putmem(struct trace_seq *s, void *mem, size_t len)
{
if (len > ((PAGE_SIZE - 1) - s->len))
return 0;
memcpy(s->buffer + s->len, mem, len);
s->len += len;
return len;
}
int trace_seq_putmem_hex(struct trace_seq *s, void *mem, size_t len)
{
unsigned char hex[HEX_CHARS];
unsigned char *data = mem;
int i, j;
#ifdef __BIG_ENDIAN
for (i = 0, j = 0; i < len; i++) {
#else
for (i = len-1, j = 0; i >= 0; i--) {
#endif
hex[j++] = hex_asc_hi(data[i]);
hex[j++] = hex_asc_lo(data[i]);
}
hex[j++] = ' ';
return trace_seq_putmem(s, hex, j);
}
int trace_seq_path(struct trace_seq *s, struct path *path)
{
unsigned char *p;
if (s->len >= (PAGE_SIZE - 1))
return 0;
p = d_path(path, s->buffer + s->len, PAGE_SIZE - s->len);
if (!IS_ERR(p)) {
p = mangle_path(s->buffer + s->len, p, "\n");
if (p) {
s->len = p - s->buffer;
return 1;
}
} else {
s->buffer[s->len++] = '?';
return 1;
}
return 0;
}
#ifdef CONFIG_KRETPROBES
static inline const char *kretprobed(const char *name)
{
static const char tramp_name[] = "kretprobe_trampoline";
int size = sizeof(tramp_name);
if (strncmp(tramp_name, name, size) == 0)
return "[unknown/kretprobe'd]";
return name;
}
#else
static inline const char *kretprobed(const char *name)
{
return name;
}
#endif /* CONFIG_KRETPROBES */
static int
seq_print_sym_short(struct trace_seq *s, const char *fmt, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
char str[KSYM_SYMBOL_LEN];
const char *name;
kallsyms_lookup(address, NULL, NULL, NULL, str);
name = kretprobed(str);
return trace_seq_printf(s, fmt, name);
#endif
return 1;
}
static int
seq_print_sym_offset(struct trace_seq *s, const char *fmt,
unsigned long address)
{
#ifdef CONFIG_KALLSYMS
char str[KSYM_SYMBOL_LEN];
const char *name;
sprint_symbol(str, address);
name = kretprobed(str);
return trace_seq_printf(s, fmt, name);
#endif
return 1;
}
#ifndef CONFIG_64BIT
# define IP_FMT "%08lx"
#else
# define IP_FMT "%016lx"
#endif
int seq_print_user_ip(struct trace_seq *s, struct mm_struct *mm,
unsigned long ip, unsigned long sym_flags)
{
struct file *file = NULL;
unsigned long vmstart = 0;
int ret = 1;
if (mm) {
const struct vm_area_struct *vma;
down_read(&mm->mmap_sem);
vma = find_vma(mm, ip);
if (vma) {
file = vma->vm_file;
vmstart = vma->vm_start;
}
if (file) {
ret = trace_seq_path(s, &file->f_path);
if (ret)
ret = trace_seq_printf(s, "[+0x%lx]",
ip - vmstart);
}
up_read(&mm->mmap_sem);
}
if (ret && ((sym_flags & TRACE_ITER_SYM_ADDR) || !file))
ret = trace_seq_printf(s, " <" IP_FMT ">", ip);
return ret;
}
int
seq_print_userip_objs(const struct userstack_entry *entry, struct trace_seq *s,
unsigned long sym_flags)
{
struct mm_struct *mm = NULL;
int ret = 1;
unsigned int i;
if (trace_flags & TRACE_ITER_SYM_USEROBJ) {
struct task_struct *task;
/*
* we do the lookup on the thread group leader,
* since individual threads might have already quit!
*/
rcu_read_lock();
task = find_task_by_vpid(entry->ent.tgid);
if (task)
mm = get_task_mm(task);
rcu_read_unlock();
}
for (i = 0; i < FTRACE_STACK_ENTRIES; i++) {
unsigned long ip = entry->caller[i];
if (ip == ULONG_MAX || !ret)
break;
if (i && ret)
ret = trace_seq_puts(s, " <- ");
if (!ip) {
if (ret)
ret = trace_seq_puts(s, "??");
continue;
}
if (!ret)
break;
if (ret)
ret = seq_print_user_ip(s, mm, ip, sym_flags);
}
if (mm)
mmput(mm);
return ret;
}
int
seq_print_ip_sym(struct trace_seq *s, unsigned long ip, unsigned long sym_flags)
{
int ret;
if (!ip)
return trace_seq_printf(s, "0");
if (sym_flags & TRACE_ITER_SYM_OFFSET)
ret = seq_print_sym_offset(s, "%s", ip);
else
ret = seq_print_sym_short(s, "%s", ip);
if (!ret)
return 0;
if (sym_flags & TRACE_ITER_SYM_ADDR)
ret = trace_seq_printf(s, " <" IP_FMT ">", ip);
return ret;
}
/**
* ftrace_find_event - find a registered event
* @type: the type of event to look for
*
* Returns an event of type @type otherwise NULL
*/
struct trace_event *ftrace_find_event(int type)
{
struct trace_event *event;
struct hlist_node *n;
unsigned key;
key = type & (EVENT_HASHSIZE - 1);
hlist_for_each_entry_rcu(event, n, &event_hash[key], node) {
if (event->type == type)
return event;
}
return NULL;
}
/**
* register_ftrace_event - register output for an event type
* @event: the event type to register
*
* Event types are stored in a hash and this hash is used to
* find a way to print an event. If the @event->type is set
* then it will use that type, otherwise it will assign a
* type to use.
*
* If you assign your own type, please make sure it is added
* to the trace_type enum in trace.h, to avoid collisions
* with the dynamic types.
*
* Returns the event type number or zero on error.
*/
int register_ftrace_event(struct trace_event *event)
{
unsigned key;
int ret = 0;
mutex_lock(&trace_event_mutex);
if (!event->type)
event->type = next_event_type++;
else if (event->type > __TRACE_LAST_TYPE) {
printk(KERN_WARNING "Need to add type to trace.h\n");
WARN_ON(1);
}
if (ftrace_find_event(event->type))
goto out;
key = event->type & (EVENT_HASHSIZE - 1);
hlist_add_head_rcu(&event->node, &event_hash[key]);
ret = event->type;
out:
mutex_unlock(&trace_event_mutex);
return ret;
}
/**
* unregister_ftrace_event - remove a no longer used event
* @event: the event to remove
*/
int unregister_ftrace_event(struct trace_event *event)
{
mutex_lock(&trace_event_mutex);
hlist_del(&event->node);
mutex_unlock(&trace_event_mutex);
return 0;
}