aha/sound/oss/sonicvibes.c

2793 lines
80 KiB
C
Raw Normal View History

/*****************************************************************************/
/*
* sonicvibes.c -- S3 Sonic Vibes audio driver.
*
* Copyright (C) 1998-2001, 2003 Thomas Sailer (t.sailer@alumni.ethz.ch)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Special thanks to David C. Niemi
*
*
* Module command line parameters:
* none so far
*
*
* Supported devices:
* /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
* /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
* /dev/midi simple MIDI UART interface, no ioctl
*
* The card has both an FM and a Wavetable synth, but I have to figure
* out first how to drive them...
*
* Revision history
* 06.05.1998 0.1 Initial release
* 10.05.1998 0.2 Fixed many bugs, esp. ADC rate calculation
* First stab at a simple midi interface (no bells&whistles)
* 13.05.1998 0.3 Fix stupid cut&paste error: set_adc_rate was called instead of
* set_dac_rate in the FMODE_WRITE case in sv_open
* Fix hwptr out of bounds (now mpg123 works)
* 14.05.1998 0.4 Don't allow excessive interrupt rates
* 08.06.1998 0.5 First release using Alan Cox' soundcore instead of miscdevice
* 03.08.1998 0.6 Do not include modversions.h
* Now mixer behaviour can basically be selected between
* "OSS documented" and "OSS actual" behaviour
* 31.08.1998 0.7 Fix realplayer problems - dac.count issues
* 10.12.1998 0.8 Fix drain_dac trying to wait on not yet initialized DMA
* 16.12.1998 0.9 Fix a few f_file & FMODE_ bugs
* 06.01.1999 0.10 remove the silly SA_INTERRUPT flag.
* hopefully killed the egcs section type conflict
* 12.03.1999 0.11 cinfo.blocks should be reset after GETxPTR ioctl.
* reported by Johan Maes <joma@telindus.be>
* 22.03.1999 0.12 return EAGAIN instead of EBUSY when O_NONBLOCK
* read/write cannot be executed
* 05.04.1999 0.13 added code to sv_read and sv_write which should detect
* lockups of the sound chip and revive it. This is basically
* an ugly hack, but at least applications using this driver
* won't hang forever. I don't know why these lockups happen,
* it might well be the motherboard chipset (an early 486 PCI
* board with ALI chipset), since every busmastering 100MB
* ethernet card I've tried (Realtek 8139 and Macronix tulip clone)
* exhibit similar behaviour (they work for a couple of packets
* and then lock up and can be revived by ifconfig down/up).
* 07.04.1999 0.14 implemented the following ioctl's: SOUND_PCM_READ_RATE,
* SOUND_PCM_READ_CHANNELS, SOUND_PCM_READ_BITS;
* Alpha fixes reported by Peter Jones <pjones@redhat.com>
* Note: dmaio hack might still be wrong on archs other than i386
* 15.06.1999 0.15 Fix bad allocation bug.
* Thanks to Deti Fliegl <fliegl@in.tum.de>
* 28.06.1999 0.16 Add pci_set_master
* 03.08.1999 0.17 adapt to Linus' new __setup/__initcall
* added kernel command line options "sonicvibes=reverb" and "sonicvibesdmaio=dmaioaddr"
* 12.08.1999 0.18 module_init/__setup fixes
* 24.08.1999 0.19 get rid of the dmaio kludge, replace with allocate_resource
* 31.08.1999 0.20 add spin_lock_init
* use new resource allocation to allocate DDMA IO space
* replaced current->state = x with set_current_state(x)
* 03.09.1999 0.21 change read semantics for MIDI to match
* OSS more closely; remove possible wakeup race
* 28.10.1999 0.22 More waitqueue races fixed
* 01.12.1999 0.23 New argument to allocate_resource
* 07.12.1999 0.24 More allocate_resource semantics change
* 08.01.2000 0.25 Prevent some ioctl's from returning bad count values on underrun/overrun;
* Tim Janik's BSE (Bedevilled Sound Engine) found this
* use Martin Mares' pci_assign_resource
* 07.02.2000 0.26 Use pci_alloc_consistent and pci_register_driver
* 21.11.2000 0.27 Initialize dma buffers in poll, otherwise poll may return a bogus mask
* 12.12.2000 0.28 More dma buffer initializations, patch from
* Tjeerd Mulder <tjeerd.mulder@fujitsu-siemens.com>
* 31.01.2001 0.29 Register/Unregister gameport
* Fix SETTRIGGER non OSS API conformity
* 18.05.2001 0.30 PCI probing and error values cleaned up by Marcus
* Meissner <mm@caldera.de>
* 03.01.2003 0.31 open_mode fixes from Georg Acher <acher@in.tum.de>
*
*/
/*****************************************************************************/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/gameport.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "dm.h"
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif
/* --------------------------------------------------------------------- */
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
/* --------------------------------------------------------------------- */
#ifndef PCI_VENDOR_ID_S3
#define PCI_VENDOR_ID_S3 0x5333
#endif
#ifndef PCI_DEVICE_ID_S3_SONICVIBES
#define PCI_DEVICE_ID_S3_SONICVIBES 0xca00
#endif
#define SV_MAGIC ((PCI_VENDOR_ID_S3<<16)|PCI_DEVICE_ID_S3_SONICVIBES)
#define SV_EXTENT_SB 0x10
#define SV_EXTENT_ENH 0x10
#define SV_EXTENT_SYNTH 0x4
#define SV_EXTENT_MIDI 0x4
#define SV_EXTENT_GAME 0x8
#define SV_EXTENT_DMA 0x10
/*
* we are not a bridge and thus use a resource for DDMA that is used for bridges but
* left empty for normal devices
*/
#define RESOURCE_SB 0
#define RESOURCE_ENH 1
#define RESOURCE_SYNTH 2
#define RESOURCE_MIDI 3
#define RESOURCE_GAME 4
#define RESOURCE_DDMA 7
#define SV_MIDI_DATA 0
#define SV_MIDI_COMMAND 1
#define SV_MIDI_STATUS 1
#define SV_DMA_ADDR0 0
#define SV_DMA_ADDR1 1
#define SV_DMA_ADDR2 2
#define SV_DMA_ADDR3 3
#define SV_DMA_COUNT0 4
#define SV_DMA_COUNT1 5
#define SV_DMA_COUNT2 6
#define SV_DMA_MODE 0xb
#define SV_DMA_RESET 0xd
#define SV_DMA_MASK 0xf
/*
* DONT reset the DMA controllers unless you understand
* the reset semantics. Assuming reset semantics as in
* the 8237 does not work.
*/
#define DMA_MODE_AUTOINIT 0x10
#define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
#define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
#define SV_CODEC_CONTROL 0
#define SV_CODEC_INTMASK 1
#define SV_CODEC_STATUS 2
#define SV_CODEC_IADDR 4
#define SV_CODEC_IDATA 5
#define SV_CCTRL_RESET 0x80
#define SV_CCTRL_INTADRIVE 0x20
#define SV_CCTRL_WAVETABLE 0x08
#define SV_CCTRL_REVERB 0x04
#define SV_CCTRL_ENHANCED 0x01
#define SV_CINTMASK_DMAA 0x01
#define SV_CINTMASK_DMAC 0x04
#define SV_CINTMASK_SPECIAL 0x08
#define SV_CINTMASK_UPDOWN 0x40
#define SV_CINTMASK_MIDI 0x80
#define SV_CSTAT_DMAA 0x01
#define SV_CSTAT_DMAC 0x04
#define SV_CSTAT_SPECIAL 0x08
#define SV_CSTAT_UPDOWN 0x40
#define SV_CSTAT_MIDI 0x80
#define SV_CIADDR_TRD 0x80
#define SV_CIADDR_MCE 0x40
/* codec indirect registers */
#define SV_CIMIX_ADCINL 0x00
#define SV_CIMIX_ADCINR 0x01
#define SV_CIMIX_AUX1INL 0x02
#define SV_CIMIX_AUX1INR 0x03
#define SV_CIMIX_CDINL 0x04
#define SV_CIMIX_CDINR 0x05
#define SV_CIMIX_LINEINL 0x06
#define SV_CIMIX_LINEINR 0x07
#define SV_CIMIX_MICIN 0x08
#define SV_CIMIX_SYNTHINL 0x0A
#define SV_CIMIX_SYNTHINR 0x0B
#define SV_CIMIX_AUX2INL 0x0C
#define SV_CIMIX_AUX2INR 0x0D
#define SV_CIMIX_ANALOGINL 0x0E
#define SV_CIMIX_ANALOGINR 0x0F
#define SV_CIMIX_PCMINL 0x10
#define SV_CIMIX_PCMINR 0x11
#define SV_CIGAMECONTROL 0x09
#define SV_CIDATAFMT 0x12
#define SV_CIENABLE 0x13
#define SV_CIUPDOWN 0x14
#define SV_CIREVISION 0x15
#define SV_CIADCOUTPUT 0x16
#define SV_CIDMAABASECOUNT1 0x18
#define SV_CIDMAABASECOUNT0 0x19
#define SV_CIDMACBASECOUNT1 0x1c
#define SV_CIDMACBASECOUNT0 0x1d
#define SV_CIPCMSR0 0x1e
#define SV_CIPCMSR1 0x1f
#define SV_CISYNTHSR0 0x20
#define SV_CISYNTHSR1 0x21
#define SV_CIADCCLKSOURCE 0x22
#define SV_CIADCALTSR 0x23
#define SV_CIADCPLLM 0x24
#define SV_CIADCPLLN 0x25
#define SV_CISYNTHPLLM 0x26
#define SV_CISYNTHPLLN 0x27
#define SV_CIUARTCONTROL 0x2a
#define SV_CIDRIVECONTROL 0x2b
#define SV_CISRSSPACE 0x2c
#define SV_CISRSCENTER 0x2d
#define SV_CIWAVETABLESRC 0x2e
#define SV_CIANALOGPWRDOWN 0x30
#define SV_CIDIGITALPWRDOWN 0x31
#define SV_CIMIX_ADCSRC_CD 0x20
#define SV_CIMIX_ADCSRC_DAC 0x40
#define SV_CIMIX_ADCSRC_AUX2 0x60
#define SV_CIMIX_ADCSRC_LINE 0x80
#define SV_CIMIX_ADCSRC_AUX1 0xa0
#define SV_CIMIX_ADCSRC_MIC 0xc0
#define SV_CIMIX_ADCSRC_MIXOUT 0xe0
#define SV_CIMIX_ADCSRC_MASK 0xe0
#define SV_CFMT_STEREO 0x01
#define SV_CFMT_16BIT 0x02
#define SV_CFMT_MASK 0x03
#define SV_CFMT_ASHIFT 0
#define SV_CFMT_CSHIFT 4
static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[] = { 0, 1, 1, 2 };
#define SV_CENABLE_PPE 0x4
#define SV_CENABLE_RE 0x2
#define SV_CENABLE_PE 0x1
/* MIDI buffer sizes */
#define MIDIINBUF 256
#define MIDIOUTBUF 256
#define FMODE_MIDI_SHIFT 2
#define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT)
#define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)
#define FMODE_DMFM 0x10
/* --------------------------------------------------------------------- */
struct sv_state {
/* magic */
unsigned int magic;
/* list of sonicvibes devices */
struct list_head devs;
/* the corresponding pci_dev structure */
struct pci_dev *dev;
/* soundcore stuff */
int dev_audio;
int dev_mixer;
int dev_midi;
int dev_dmfm;
/* hardware resources */
unsigned long iosb, ioenh, iosynth, iomidi; /* long for SPARC */
unsigned int iodmaa, iodmac, irq;
/* mixer stuff */
struct {
unsigned int modcnt;
#ifndef OSS_DOCUMENTED_MIXER_SEMANTICS
unsigned short vol[13];
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
} mix;
/* wave stuff */
unsigned int rateadc, ratedac;
unsigned char fmt, enable;
spinlock_t lock;
struct mutex open_mutex;
mode_t open_mode;
wait_queue_head_t open_wait;
struct dmabuf {
void *rawbuf;
dma_addr_t dmaaddr;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
unsigned hwptr, swptr;
unsigned total_bytes;
int count;
unsigned error; /* over/underrun */
wait_queue_head_t wait;
/* redundant, but makes calculations easier */
unsigned fragsize;
unsigned dmasize;
unsigned fragsamples;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned endcleared:1;
unsigned enabled:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} dma_dac, dma_adc;
/* midi stuff */
struct {
unsigned ird, iwr, icnt;
unsigned ord, owr, ocnt;
wait_queue_head_t iwait;
wait_queue_head_t owait;
struct timer_list timer;
unsigned char ibuf[MIDIINBUF];
unsigned char obuf[MIDIOUTBUF];
} midi;
#if SUPPORT_JOYSTICK
struct gameport *gameport;
#endif
};
/* --------------------------------------------------------------------- */
static LIST_HEAD(devs);
static unsigned long wavetable_mem;
/* --------------------------------------------------------------------- */
static inline unsigned ld2(unsigned int x)
{
unsigned r = 0;
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 4) {
x >>= 2;
r += 2;
}
if (x >= 2)
r++;
return r;
}
/* --------------------------------------------------------------------- */
/*
* Why use byte IO? Nobody knows, but S3 does it also in their Windows driver.
*/
#undef DMABYTEIO
static void set_dmaa(struct sv_state *s, unsigned int addr, unsigned int count)
{
#ifdef DMABYTEIO
unsigned io = s->iodmaa, u;
count--;
for (u = 4; u > 0; u--, addr >>= 8, io++)
outb(addr & 0xff, io);
for (u = 3; u > 0; u--, count >>= 8, io++)
outb(count & 0xff, io);
#else /* DMABYTEIO */
count--;
outl(addr, s->iodmaa + SV_DMA_ADDR0);
outl(count, s->iodmaa + SV_DMA_COUNT0);
#endif /* DMABYTEIO */
outb(0x18, s->iodmaa + SV_DMA_MODE);
}
static void set_dmac(struct sv_state *s, unsigned int addr, unsigned int count)
{
#ifdef DMABYTEIO
unsigned io = s->iodmac, u;
count >>= 1;
count--;
for (u = 4; u > 0; u--, addr >>= 8, io++)
outb(addr & 0xff, io);
for (u = 3; u > 0; u--, count >>= 8, io++)
outb(count & 0xff, io);
#else /* DMABYTEIO */
count >>= 1;
count--;
outl(addr, s->iodmac + SV_DMA_ADDR0);
outl(count, s->iodmac + SV_DMA_COUNT0);
#endif /* DMABYTEIO */
outb(0x14, s->iodmac + SV_DMA_MODE);
}
static inline unsigned get_dmaa(struct sv_state *s)
{
#ifdef DMABYTEIO
unsigned io = s->iodmaa+6, v = 0, u;
for (u = 3; u > 0; u--, io--) {
v <<= 8;
v |= inb(io);
}
return v + 1;
#else /* DMABYTEIO */
return (inl(s->iodmaa + SV_DMA_COUNT0) & 0xffffff) + 1;
#endif /* DMABYTEIO */
}
static inline unsigned get_dmac(struct sv_state *s)
{
#ifdef DMABYTEIO
unsigned io = s->iodmac+6, v = 0, u;
for (u = 3; u > 0; u--, io--) {
v <<= 8;
v |= inb(io);
}
return (v + 1) << 1;
#else /* DMABYTEIO */
return ((inl(s->iodmac + SV_DMA_COUNT0) & 0xffffff) + 1) << 1;
#endif /* DMABYTEIO */
}
static void wrindir(struct sv_state *s, unsigned char idx, unsigned char data)
{
outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR);
udelay(10);
outb(data, s->ioenh + SV_CODEC_IDATA);
udelay(10);
}
static unsigned char rdindir(struct sv_state *s, unsigned char idx)
{
unsigned char v;
outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR);
udelay(10);
v = inb(s->ioenh + SV_CODEC_IDATA);
udelay(10);
return v;
}
static void set_fmt(struct sv_state *s, unsigned char mask, unsigned char data)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
outb(SV_CIDATAFMT | SV_CIADDR_MCE, s->ioenh + SV_CODEC_IADDR);
if (mask) {
s->fmt = inb(s->ioenh + SV_CODEC_IDATA);
udelay(10);
}
s->fmt = (s->fmt & mask) | data;
outb(s->fmt, s->ioenh + SV_CODEC_IDATA);
udelay(10);
outb(0, s->ioenh + SV_CODEC_IADDR);
spin_unlock_irqrestore(&s->lock, flags);
udelay(10);
}
static void frobindir(struct sv_state *s, unsigned char idx, unsigned char mask, unsigned char data)
{
outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR);
udelay(10);
outb((inb(s->ioenh + SV_CODEC_IDATA) & mask) ^ data, s->ioenh + SV_CODEC_IDATA);
udelay(10);
}
#define REFFREQUENCY 24576000
#define ADCMULT 512
#define FULLRATE 48000
static unsigned setpll(struct sv_state *s, unsigned char reg, unsigned rate)
{
unsigned long flags;
unsigned char r, m=0, n=0;
unsigned xm, xn, xr, xd, metric = ~0U;
/* the warnings about m and n used uninitialized are bogus and may safely be ignored */
if (rate < 625000/ADCMULT)
rate = 625000/ADCMULT;
if (rate > 150000000/ADCMULT)
rate = 150000000/ADCMULT;
/* slight violation of specs, needed for continuous sampling rates */
for (r = 0; rate < 75000000/ADCMULT; r += 0x20, rate <<= 1);
for (xn = 3; xn < 35; xn++)
for (xm = 3; xm < 130; xm++) {
xr = REFFREQUENCY/ADCMULT * xm / xn;
xd = abs((signed)(xr - rate));
if (xd < metric) {
metric = xd;
m = xm - 2;
n = xn - 2;
}
}
reg &= 0x3f;
spin_lock_irqsave(&s->lock, flags);
outb(reg, s->ioenh + SV_CODEC_IADDR);
udelay(10);
outb(m, s->ioenh + SV_CODEC_IDATA);
udelay(10);
outb(reg+1, s->ioenh + SV_CODEC_IADDR);
udelay(10);
outb(r | n, s->ioenh + SV_CODEC_IDATA);
spin_unlock_irqrestore(&s->lock, flags);
udelay(10);
return (REFFREQUENCY/ADCMULT * (m + 2) / (n + 2)) >> ((r >> 5) & 7);
}
#if 0
static unsigned getpll(struct sv_state *s, unsigned char reg)
{
unsigned long flags;
unsigned char m, n;
reg &= 0x3f;
spin_lock_irqsave(&s->lock, flags);
outb(reg, s->ioenh + SV_CODEC_IADDR);
udelay(10);
m = inb(s->ioenh + SV_CODEC_IDATA);
udelay(10);
outb(reg+1, s->ioenh + SV_CODEC_IADDR);
udelay(10);
n = inb(s->ioenh + SV_CODEC_IDATA);
spin_unlock_irqrestore(&s->lock, flags);
udelay(10);
return (REFFREQUENCY/ADCMULT * (m + 2) / ((n & 0x1f) + 2)) >> ((n >> 5) & 7);
}
#endif
static void set_dac_rate(struct sv_state *s, unsigned rate)
{
unsigned div;
unsigned long flags;
if (rate > 48000)
rate = 48000;
if (rate < 4000)
rate = 4000;
div = (rate * 65536 + FULLRATE/2) / FULLRATE;
if (div > 65535)
div = 65535;
spin_lock_irqsave(&s->lock, flags);
wrindir(s, SV_CIPCMSR1, div >> 8);
wrindir(s, SV_CIPCMSR0, div);
spin_unlock_irqrestore(&s->lock, flags);
s->ratedac = (div * FULLRATE + 32768) / 65536;
}
static void set_adc_rate(struct sv_state *s, unsigned rate)
{
unsigned long flags;
unsigned rate1, rate2, div;
if (rate > 48000)
rate = 48000;
if (rate < 4000)
rate = 4000;
rate1 = setpll(s, SV_CIADCPLLM, rate);
div = (48000 + rate/2) / rate;
if (div > 8)
div = 8;
rate2 = (48000 + div/2) / div;
spin_lock_irqsave(&s->lock, flags);
wrindir(s, SV_CIADCALTSR, (div-1) << 4);
if (abs((signed)(rate-rate2)) <= abs((signed)(rate-rate1))) {
wrindir(s, SV_CIADCCLKSOURCE, 0x10);
s->rateadc = rate2;
} else {
wrindir(s, SV_CIADCCLKSOURCE, 0x00);
s->rateadc = rate1;
}
spin_unlock_irqrestore(&s->lock, flags);
}
/* --------------------------------------------------------------------- */
static inline void stop_adc(struct sv_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
s->enable &= ~SV_CENABLE_RE;
wrindir(s, SV_CIENABLE, s->enable);
spin_unlock_irqrestore(&s->lock, flags);
}
static inline void stop_dac(struct sv_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
s->enable &= ~(SV_CENABLE_PPE | SV_CENABLE_PE);
wrindir(s, SV_CIENABLE, s->enable);
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_dac(struct sv_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
s->enable = (s->enable & ~SV_CENABLE_PPE) | SV_CENABLE_PE;
wrindir(s, SV_CIENABLE, s->enable);
}
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_adc(struct sv_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
&& s->dma_adc.ready) {
s->enable |= SV_CENABLE_RE;
wrindir(s, SV_CIENABLE, s->enable);
}
spin_unlock_irqrestore(&s->lock, flags);
}
/* --------------------------------------------------------------------- */
#define DMABUF_DEFAULTORDER (17-PAGE_SHIFT)
#define DMABUF_MINORDER 1
static void dealloc_dmabuf(struct sv_state *s, struct dmabuf *db)
{
struct page *page, *pend;
if (db->rawbuf) {
/* undo marking the pages as reserved */
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
ClearPageReserved(page);
pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
}
db->rawbuf = NULL;
db->mapped = db->ready = 0;
}
/* DMAA is used for playback, DMAC is used for recording */
static int prog_dmabuf(struct sv_state *s, unsigned rec)
{
struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
unsigned rate = rec ? s->rateadc : s->ratedac;
int order;
unsigned bytepersec;
unsigned bufs;
struct page *page, *pend;
unsigned char fmt;
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
fmt = s->fmt;
if (rec) {
s->enable &= ~SV_CENABLE_RE;
fmt >>= SV_CFMT_CSHIFT;
} else {
s->enable &= ~SV_CENABLE_PE;
fmt >>= SV_CFMT_ASHIFT;
}
wrindir(s, SV_CIENABLE, s->enable);
spin_unlock_irqrestore(&s->lock, flags);
fmt &= SV_CFMT_MASK;
db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
if (!db->rawbuf) {
db->ready = db->mapped = 0;
for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
break;
if (!db->rawbuf)
return -ENOMEM;
db->buforder = order;
if ((virt_to_bus(db->rawbuf) ^ (virt_to_bus(db->rawbuf) + (PAGE_SIZE << db->buforder) - 1)) & ~0xffff)
printk(KERN_DEBUG "sv: DMA buffer crosses 64k boundary: busaddr 0x%lx size %ld\n",
virt_to_bus(db->rawbuf), PAGE_SIZE << db->buforder);
if ((virt_to_bus(db->rawbuf) + (PAGE_SIZE << db->buforder) - 1) & ~0xffffff)
printk(KERN_DEBUG "sv: DMA buffer beyond 16MB: busaddr 0x%lx size %ld\n",
virt_to_bus(db->rawbuf), PAGE_SIZE << db->buforder);
/* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
SetPageReserved(page);
}
bytepersec = rate << sample_shift[fmt];
bufs = PAGE_SIZE << db->buforder;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < bytepersec)
db->fragshift = ld2(bytepersec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->numfrag = bufs >> db->fragshift;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->numfrag = bufs >> db->fragshift;
}
db->fragsize = 1 << db->fragshift;
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
db->fragsamples = db->fragsize >> sample_shift[fmt];
db->dmasize = db->numfrag << db->fragshift;
memset(db->rawbuf, (fmt & SV_CFMT_16BIT) ? 0 : 0x80, db->dmasize);
spin_lock_irqsave(&s->lock, flags);
if (rec) {
set_dmac(s, db->dmaaddr, db->numfrag << db->fragshift);
/* program enhanced mode registers */
wrindir(s, SV_CIDMACBASECOUNT1, (db->fragsamples-1) >> 8);
wrindir(s, SV_CIDMACBASECOUNT0, db->fragsamples-1);
} else {
set_dmaa(s, db->dmaaddr, db->numfrag << db->fragshift);
/* program enhanced mode registers */
wrindir(s, SV_CIDMAABASECOUNT1, (db->fragsamples-1) >> 8);
wrindir(s, SV_CIDMAABASECOUNT0, db->fragsamples-1);
}
spin_unlock_irqrestore(&s->lock, flags);
db->enabled = 1;
db->ready = 1;
return 0;
}
static inline void clear_advance(struct sv_state *s)
{
unsigned char c = (s->fmt & (SV_CFMT_16BIT << SV_CFMT_ASHIFT)) ? 0 : 0x80;
unsigned char *buf = s->dma_dac.rawbuf;
unsigned bsize = s->dma_dac.dmasize;
unsigned bptr = s->dma_dac.swptr;
unsigned len = s->dma_dac.fragsize;
if (bptr + len > bsize) {
unsigned x = bsize - bptr;
memset(buf + bptr, c, x);
bptr = 0;
len -= x;
}
memset(buf + bptr, c, len);
}
/* call with spinlock held! */
static void sv_update_ptr(struct sv_state *s)
{
unsigned hwptr;
int diff;
/* update ADC pointer */
if (s->dma_adc.ready) {
hwptr = (s->dma_adc.dmasize - get_dmac(s)) % s->dma_adc.dmasize;
diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
s->dma_adc.hwptr = hwptr;
s->dma_adc.total_bytes += diff;
s->dma_adc.count += diff;
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
wake_up(&s->dma_adc.wait);
if (!s->dma_adc.mapped) {
if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
s->enable &= ~SV_CENABLE_RE;
wrindir(s, SV_CIENABLE, s->enable);
s->dma_adc.error++;
}
}
}
/* update DAC pointer */
if (s->dma_dac.ready) {
hwptr = (s->dma_dac.dmasize - get_dmaa(s)) % s->dma_dac.dmasize;
diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
s->dma_dac.hwptr = hwptr;
s->dma_dac.total_bytes += diff;
if (s->dma_dac.mapped) {
s->dma_dac.count += diff;
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
wake_up(&s->dma_dac.wait);
} else {
s->dma_dac.count -= diff;
if (s->dma_dac.count <= 0) {
s->enable &= ~SV_CENABLE_PE;
wrindir(s, SV_CIENABLE, s->enable);
s->dma_dac.error++;
} else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
clear_advance(s);
s->dma_dac.endcleared = 1;
}
if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
wake_up(&s->dma_dac.wait);
}
}
}
/* hold spinlock for the following! */
static void sv_handle_midi(struct sv_state *s)
{
unsigned char ch;
int wake;
wake = 0;
while (!(inb(s->iomidi+1) & 0x80)) {
ch = inb(s->iomidi);
if (s->midi.icnt < MIDIINBUF) {
s->midi.ibuf[s->midi.iwr] = ch;
s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
s->midi.icnt++;
}
wake = 1;
}
if (wake)
wake_up(&s->midi.iwait);
wake = 0;
while (!(inb(s->iomidi+1) & 0x40) && s->midi.ocnt > 0) {
outb(s->midi.obuf[s->midi.ord], s->iomidi);
s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
s->midi.ocnt--;
if (s->midi.ocnt < MIDIOUTBUF-16)
wake = 1;
}
if (wake)
wake_up(&s->midi.owait);
}
static irqreturn_t sv_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct sv_state *s = (struct sv_state *)dev_id;
unsigned int intsrc;
/* fastpath out, to ease interrupt sharing */
intsrc = inb(s->ioenh + SV_CODEC_STATUS);
if (!(intsrc & (SV_CSTAT_DMAA | SV_CSTAT_DMAC | SV_CSTAT_MIDI)))
return IRQ_NONE;
spin_lock(&s->lock);
sv_update_ptr(s);
sv_handle_midi(s);
spin_unlock(&s->lock);
return IRQ_HANDLED;
}
static void sv_midi_timer(unsigned long data)
{
struct sv_state *s = (struct sv_state *)data;
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
sv_handle_midi(s);
spin_unlock_irqrestore(&s->lock, flags);
s->midi.timer.expires = jiffies+1;
add_timer(&s->midi.timer);
}
/* --------------------------------------------------------------------- */
static const char invalid_magic[] = KERN_CRIT "sv: invalid magic value\n";
#define VALIDATE_STATE(s) \
({ \
if (!(s) || (s)->magic != SV_MAGIC) { \
printk(invalid_magic); \
return -ENXIO; \
} \
})
/* --------------------------------------------------------------------- */
#define MT_4 1
#define MT_5MUTE 2
#define MT_4MUTEMONO 3
#define MT_6MUTE 4
static const struct {
unsigned left:5;
unsigned right:5;
unsigned type:3;
unsigned rec:3;
} mixtable[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_RECLEV] = { SV_CIMIX_ADCINL, SV_CIMIX_ADCINR, MT_4, 0 },
[SOUND_MIXER_LINE1] = { SV_CIMIX_AUX1INL, SV_CIMIX_AUX1INR, MT_5MUTE, 5 },
[SOUND_MIXER_CD] = { SV_CIMIX_CDINL, SV_CIMIX_CDINR, MT_5MUTE, 1 },
[SOUND_MIXER_LINE] = { SV_CIMIX_LINEINL, SV_CIMIX_LINEINR, MT_5MUTE, 4 },
[SOUND_MIXER_MIC] = { SV_CIMIX_MICIN, SV_CIMIX_ADCINL, MT_4MUTEMONO, 6 },
[SOUND_MIXER_SYNTH] = { SV_CIMIX_SYNTHINL, SV_CIMIX_SYNTHINR, MT_5MUTE, 2 },
[SOUND_MIXER_LINE2] = { SV_CIMIX_AUX2INL, SV_CIMIX_AUX2INR, MT_5MUTE, 3 },
[SOUND_MIXER_VOLUME] = { SV_CIMIX_ANALOGINL, SV_CIMIX_ANALOGINR, MT_5MUTE, 7 },
[SOUND_MIXER_PCM] = { SV_CIMIX_PCMINL, SV_CIMIX_PCMINR, MT_6MUTE, 0 }
};
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
static int return_mixval(struct sv_state *s, unsigned i, int *arg)
{
unsigned long flags;
unsigned char l, r, rl, rr;
spin_lock_irqsave(&s->lock, flags);
l = rdindir(s, mixtable[i].left);
r = rdindir(s, mixtable[i].right);
spin_unlock_irqrestore(&s->lock, flags);
switch (mixtable[i].type) {
case MT_4:
r &= 0xf;
l &= 0xf;
rl = 10 + 6 * (l & 15);
rr = 10 + 6 * (r & 15);
break;
case MT_4MUTEMONO:
rl = 55 - 3 * (l & 15);
if (r & 0x10)
rl += 45;
rr = rl;
r = l;
break;
case MT_5MUTE:
default:
rl = 100 - 3 * (l & 31);
rr = 100 - 3 * (r & 31);
break;
case MT_6MUTE:
rl = 100 - 3 * (l & 63) / 2;
rr = 100 - 3 * (r & 63) / 2;
break;
}
if (l & 0x80)
rl = 0;
if (r & 0x80)
rr = 0;
return put_user((rr << 8) | rl, arg);
}
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
static const unsigned char volidx[SOUND_MIXER_NRDEVICES] =
{
[SOUND_MIXER_RECLEV] = 1,
[SOUND_MIXER_LINE1] = 2,
[SOUND_MIXER_CD] = 3,
[SOUND_MIXER_LINE] = 4,
[SOUND_MIXER_MIC] = 5,
[SOUND_MIXER_SYNTH] = 6,
[SOUND_MIXER_LINE2] = 7,
[SOUND_MIXER_VOLUME] = 8,
[SOUND_MIXER_PCM] = 9
};
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
static unsigned mixer_recmask(struct sv_state *s)
{
unsigned long flags;
int i, j;
spin_lock_irqsave(&s->lock, flags);
j = rdindir(s, SV_CIMIX_ADCINL) >> 5;
spin_unlock_irqrestore(&s->lock, flags);
j &= 7;
for (i = 0; i < SOUND_MIXER_NRDEVICES && mixtable[i].rec != j; i++);
return 1 << i;
}
static int mixer_ioctl(struct sv_state *s, unsigned int cmd, unsigned long arg)
{
unsigned long flags;
int i, val;
unsigned char l, r, rl, rr;
int __user *p = (int __user *)arg;
VALIDATE_STATE(s);
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, "SonicVibes", sizeof(info.id));
strlcpy(info.name, "S3 SonicVibes", sizeof(info.name));
info.modify_counter = s->mix.modcnt;
if (copy_to_user((void __user *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, "SonicVibes", sizeof(info.id));
strlcpy(info.name, "S3 SonicVibes", sizeof(info.name));
if (copy_to_user((void __user *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, p);
if (cmd == SOUND_MIXER_PRIVATE1) { /* SRS settings */
if (get_user(val, p))
return -EFAULT;
spin_lock_irqsave(&s->lock, flags);
if (val & 1) {
if (val & 2) {
l = 4 - ((val >> 2) & 7);
if (l & ~3)
l = 4;
r = 4 - ((val >> 5) & 7);
if (r & ~3)
r = 4;
wrindir(s, SV_CISRSSPACE, l);
wrindir(s, SV_CISRSCENTER, r);
} else
wrindir(s, SV_CISRSSPACE, 0x80);
}
l = rdindir(s, SV_CISRSSPACE);
r = rdindir(s, SV_CISRSCENTER);
spin_unlock_irqrestore(&s->lock, flags);
if (l & 0x80)
return put_user(0, p);
return put_user(((4 - (l & 7)) << 2) | ((4 - (r & 7)) << 5) | 2, p);
}
if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_SIOC_DIR(cmd) == _SIOC_READ) {
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
return put_user(mixer_recmask(s), p);
case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].type)
val |= 1 << i;
return put_user(val, p);
case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].rec)
val |= 1 << i;
return put_user(val, p);
case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO)
val |= 1 << i;
return put_user(val, p);
case SOUND_MIXER_CAPS:
return put_user(SOUND_CAP_EXCL_INPUT, p);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
return -EINVAL;
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
return return_mixval(s, i, p);
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
if (!volidx[i])
return -EINVAL;
return put_user(s->mix.vol[volidx[i]-1], p);
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
}
}
if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE))
return -EINVAL;
s->mix.modcnt++;
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
if (get_user(val, p))
return -EFAULT;
i = hweight32(val);
if (i == 0)
return 0; /*val = mixer_recmask(s);*/
else if (i > 1)
val &= ~mixer_recmask(s);
for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if (!(val & (1 << i)))
continue;
if (mixtable[i].rec)
break;
}
if (i == SOUND_MIXER_NRDEVICES)
return 0;
spin_lock_irqsave(&s->lock, flags);
frobindir(s, SV_CIMIX_ADCINL, 0x1f, mixtable[i].rec << 5);
frobindir(s, SV_CIMIX_ADCINR, 0x1f, mixtable[i].rec << 5);
spin_unlock_irqrestore(&s->lock, flags);
return 0;
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
l = val & 0xff;
r = (val >> 8) & 0xff;
if (mixtable[i].type == MT_4MUTEMONO)
l = (r + l) / 2;
if (l > 100)
l = 100;
if (r > 100)
r = 100;
spin_lock_irqsave(&s->lock, flags);
switch (mixtable[i].type) {
case MT_4:
if (l >= 10)
l -= 10;
if (r >= 10)
r -= 10;
frobindir(s, mixtable[i].left, 0xf0, l / 6);
frobindir(s, mixtable[i].right, 0xf0, l / 6);
break;
case MT_4MUTEMONO:
rr = 0;
if (l < 10)
rl = 0x80;
else {
if (l >= 55) {
rr = 0x10;
l -= 45;
}
rl = (55 - l) / 3;
}
wrindir(s, mixtable[i].left, rl);
frobindir(s, mixtable[i].right, ~0x10, rr);
break;
case MT_5MUTE:
if (l < 7)
rl = 0x80;
else
rl = (100 - l) / 3;
if (r < 7)
rr = 0x80;
else
rr = (100 - r) / 3;
wrindir(s, mixtable[i].left, rl);
wrindir(s, mixtable[i].right, rr);
break;
case MT_6MUTE:
if (l < 6)
rl = 0x80;
else
rl = (100 - l) * 2 / 3;
if (r < 6)
rr = 0x80;
else
rr = (100 - r) * 2 / 3;
wrindir(s, mixtable[i].left, rl);
wrindir(s, mixtable[i].right, rr);
break;
}
spin_unlock_irqrestore(&s->lock, flags);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
return return_mixval(s, i, p);
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
if (!volidx[i])
return -EINVAL;
s->mix.vol[volidx[i]-1] = val;
return put_user(s->mix.vol[volidx[i]-1], p);
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
}
}
/* --------------------------------------------------------------------- */
static int sv_open_mixdev(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct list_head *list;
struct sv_state *s;
for (list = devs.next; ; list = list->next) {
if (list == &devs)
return -ENODEV;
s = list_entry(list, struct sv_state, devs);
if (s->dev_mixer == minor)
break;
}
VALIDATE_STATE(s);
file->private_data = s;
return nonseekable_open(inode, file);
}
static int sv_release_mixdev(struct inode *inode, struct file *file)
{
struct sv_state *s = (struct sv_state *)file->private_data;
VALIDATE_STATE(s);
return 0;
}
static int sv_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
return mixer_ioctl((struct sv_state *)file->private_data, cmd, arg);
}
static /*const*/ struct file_operations sv_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = sv_ioctl_mixdev,
.open = sv_open_mixdev,
.release = sv_release_mixdev,
};
/* --------------------------------------------------------------------- */
static int drain_dac(struct sv_state *s, int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int count, tmo;
if (s->dma_dac.mapped || !s->dma_dac.ready)
return 0;
add_wait_queue(&s->dma_dac.wait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock) {
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
return -EBUSY;
}
tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac;
tmo >>= sample_shift[(s->fmt >> SV_CFMT_ASHIFT) & SV_CFMT_MASK];
if (!schedule_timeout(tmo + 1))
printk(KERN_DEBUG "sv: dma timed out??\n");
}
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
/* --------------------------------------------------------------------- */
static ssize_t sv_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct sv_state *s = (struct sv_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
#if 0
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
spin_unlock_irqrestore(&s->lock, flags);
#endif
add_wait_queue(&s->dma_adc.wait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
swptr = s->dma_adc.swptr;
cnt = s->dma_adc.dmasize-swptr;
if (s->dma_adc.count < cnt)
cnt = s->dma_adc.count;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (s->dma_adc.enabled)
start_adc(s);
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
if (!schedule_timeout(HZ)) {
printk(KERN_DEBUG "sv: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count,
s->dma_adc.hwptr, s->dma_adc.swptr);
stop_adc(s);
spin_lock_irqsave(&s->lock, flags);
set_dmac(s, virt_to_bus(s->dma_adc.rawbuf), s->dma_adc.numfrag << s->dma_adc.fragshift);
/* program enhanced mode registers */
wrindir(s, SV_CIDMACBASECOUNT1, (s->dma_adc.fragsamples-1) >> 8);
wrindir(s, SV_CIDMACBASECOUNT0, s->dma_adc.fragsamples-1);
s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
swptr = (swptr + cnt) % s->dma_adc.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_adc.swptr = swptr;
s->dma_adc.count -= cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
if (s->dma_adc.enabled)
start_adc(s);
}
remove_wait_queue(&s->dma_adc.wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
static ssize_t sv_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct sv_state *s = (struct sv_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_dac.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
#if 0
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
spin_unlock_irqrestore(&s->lock, flags);
#endif
add_wait_queue(&s->dma_dac.wait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
if (s->dma_dac.count < 0) {
s->dma_dac.count = 0;
s->dma_dac.swptr = s->dma_dac.hwptr;
}
swptr = s->dma_dac.swptr;
cnt = s->dma_dac.dmasize-swptr;
if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
cnt = s->dma_dac.dmasize - s->dma_dac.count;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (s->dma_dac.enabled)
start_dac(s);
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
if (!schedule_timeout(HZ)) {
printk(KERN_DEBUG "sv: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
s->dma_dac.hwptr, s->dma_dac.swptr);
stop_dac(s);
spin_lock_irqsave(&s->lock, flags);
set_dmaa(s, virt_to_bus(s->dma_dac.rawbuf), s->dma_dac.numfrag << s->dma_dac.fragshift);
/* program enhanced mode registers */
wrindir(s, SV_CIDMAABASECOUNT1, (s->dma_dac.fragsamples-1) >> 8);
wrindir(s, SV_CIDMAABASECOUNT0, s->dma_dac.fragsamples-1);
s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
swptr = (swptr + cnt) % s->dma_dac.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_dac.swptr = swptr;
s->dma_dac.count += cnt;
s->dma_dac.endcleared = 0;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
if (s->dma_dac.enabled)
start_dac(s);
}
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
/* No kernel lock - we have our own spinlock */
static unsigned int sv_poll(struct file *file, struct poll_table_struct *wait)
{
struct sv_state *s = (struct sv_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE) {
if (!s->dma_dac.ready && prog_dmabuf(s, 1))
return 0;
poll_wait(file, &s->dma_dac.wait, wait);
}
if (file->f_mode & FMODE_READ) {
if (!s->dma_adc.ready && prog_dmabuf(s, 0))
return 0;
poll_wait(file, &s->dma_adc.wait, wait);
}
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int sv_mmap(struct file *file, struct vm_area_struct *vma)
{
struct sv_state *s = (struct sv_state *)file->private_data;
struct dmabuf *db;
int ret = -EINVAL;
unsigned long size;
VALIDATE_STATE(s);
lock_kernel();
if (vma->vm_flags & VM_WRITE) {
if ((ret = prog_dmabuf(s, 1)) != 0)
goto out;
db = &s->dma_dac;
} else if (vma->vm_flags & VM_READ) {
if ((ret = prog_dmabuf(s, 0)) != 0)
goto out;
db = &s->dma_adc;
} else
goto out;
ret = -EINVAL;
if (vma->vm_pgoff != 0)
goto out;
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << db->buforder))
goto out;
ret = -EAGAIN;
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
size, vma->vm_page_prot))
goto out;
db->mapped = 1;
ret = 0;
out:
unlock_kernel();
return ret;
}
static int sv_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct sv_state *s = (struct sv_state *)file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int count;
int val, mapped, ret;
unsigned char fmtm, fmtd;
void __user *argp = (void __user *)arg;
int __user *p = argp;
VALIDATE_STATE(s);
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, p);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq(s->irq);
s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq(s->irq);
s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, p))
return -EFAULT;
if (val >= 0) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
set_adc_rate(s, val);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
set_dac_rate(s, val);
}
}
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
case SNDCTL_DSP_STEREO:
if (get_user(val, p))
return -EFAULT;
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val)
fmtd |= SV_CFMT_STEREO << SV_CFMT_CSHIFT;
else
fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_CSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val)
fmtd |= SV_CFMT_STEREO << SV_CFMT_ASHIFT;
else
fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_ASHIFT);
}
set_fmt(s, fmtm, fmtd);
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, p))
return -EFAULT;
if (val != 0) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val >= 2)
fmtd |= SV_CFMT_STEREO << SV_CFMT_CSHIFT;
else
fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_CSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val >= 2)
fmtd |= SV_CFMT_STEREO << SV_CFMT_ASHIFT;
else
fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_ASHIFT);
}
set_fmt(s, fmtm, fmtd);
}
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_STEREO << SV_CFMT_CSHIFT)
: (SV_CFMT_STEREO << SV_CFMT_ASHIFT))) ? 2 : 1, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_S16_LE|AFMT_U8, p);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, p))
return -EFAULT;
if (val != AFMT_QUERY) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val == AFMT_S16_LE)
fmtd |= SV_CFMT_16BIT << SV_CFMT_CSHIFT;
else
fmtm &= ~(SV_CFMT_16BIT << SV_CFMT_CSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val == AFMT_S16_LE)
fmtd |= SV_CFMT_16BIT << SV_CFMT_ASHIFT;
else
fmtm &= ~(SV_CFMT_16BIT << SV_CFMT_ASHIFT);
}
set_fmt(s, fmtm, fmtd);
}
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_16BIT << SV_CFMT_CSHIFT)
: (SV_CFMT_16BIT << SV_CFMT_ASHIFT))) ? AFMT_S16_LE : AFMT_U8, p);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if (file->f_mode & FMODE_READ && s->enable & SV_CENABLE_RE)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & FMODE_WRITE && s->enable & SV_CENABLE_PE)
val |= PCM_ENABLE_OUTPUT;
return put_user(val, p);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
s->dma_adc.enabled = 1;
start_adc(s);
} else {
s->dma_adc.enabled = 0;
stop_adc(s);
}
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
s->dma_dac.enabled = 1;
start_dac(s);
} else {
s->dma_dac.enabled = 0;
stop_dac(s);
}
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!s->dma_dac.ready && (val = prog_dmabuf(s, 0)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
abinfo.fragsize = s->dma_dac.fragsize;
count = s->dma_dac.count;
if (count < 0)
count = 0;
abinfo.bytes = s->dma_dac.dmasize - count;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!s->dma_adc.ready && (val = prog_dmabuf(s, 1)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
abinfo.fragsize = s->dma_adc.fragsize;
count = s->dma_adc.count;
if (count < 0)
count = 0;
abinfo.bytes = count;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!s->dma_dac.ready && (val = prog_dmabuf(s, 0)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
return put_user(count, p);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!s->dma_adc.ready && (val = prog_dmabuf(s, 1)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
cinfo.bytes = s->dma_adc.total_bytes;
count = s->dma_adc.count;
if (count < 0)
count = 0;
cinfo.blocks = count >> s->dma_adc.fragshift;
cinfo.ptr = s->dma_adc.hwptr;
if (s->dma_adc.mapped)
s->dma_adc.count &= s->dma_adc.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!s->dma_dac.ready && (val = prog_dmabuf(s, 0)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
sv_update_ptr(s);
cinfo.bytes = s->dma_dac.total_bytes;
count = s->dma_dac.count;
if (count < 0)
count = 0;
cinfo.blocks = count >> s->dma_dac.fragshift;
cinfo.ptr = s->dma_dac.hwptr;
if (s->dma_dac.mapped)
s->dma_dac.count &= s->dma_dac.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf(s, 0)))
return val;
return put_user(s->dma_dac.fragsize, p);
}
if ((val = prog_dmabuf(s, 1)))
return val;
return put_user(s->dma_adc.fragsize, p);
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
s->dma_adc.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_adc.ossfragshift < 4)
s->dma_adc.ossfragshift = 4;
if (s->dma_adc.ossfragshift > 15)
s->dma_adc.ossfragshift = 15;
if (s->dma_adc.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags = 4;
}
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_dac.ossmaxfrags = 4;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
(file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ)
s->dma_adc.subdivision = val;
if (file->f_mode & FMODE_WRITE)
s->dma_dac.subdivision = val;
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
case SOUND_PCM_READ_CHANNELS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_STEREO << SV_CFMT_CSHIFT)
: (SV_CFMT_STEREO << SV_CFMT_ASHIFT))) ? 2 : 1, p);
case SOUND_PCM_READ_BITS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_16BIT << SV_CFMT_CSHIFT)
: (SV_CFMT_16BIT << SV_CFMT_ASHIFT))) ? 16 : 8, p);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
return mixer_ioctl(s, cmd, arg);
}
static int sv_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
unsigned char fmtm = ~0, fmts = 0;
struct list_head *list;
struct sv_state *s;
for (list = devs.next; ; list = list->next) {
if (list == &devs)
return -ENODEV;
s = list_entry(list, struct sv_state, devs);
if (!((s->dev_audio ^ minor) & ~0xf))
break;
}
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
mutex_lock(&s->open_mutex);
while (s->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_mutex);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
mutex_unlock(&s->open_mutex);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&s->open_mutex);
}
if (file->f_mode & FMODE_READ) {
fmtm &= ~((SV_CFMT_STEREO | SV_CFMT_16BIT) << SV_CFMT_CSHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= SV_CFMT_16BIT << SV_CFMT_CSHIFT;
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
s->dma_adc.enabled = 1;
set_adc_rate(s, 8000);
}
if (file->f_mode & FMODE_WRITE) {
fmtm &= ~((SV_CFMT_STEREO | SV_CFMT_16BIT) << SV_CFMT_ASHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= SV_CFMT_16BIT << SV_CFMT_ASHIFT;
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
s->dma_dac.enabled = 1;
set_dac_rate(s, 8000);
}
set_fmt(s, fmtm, fmts);
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
mutex_unlock(&s->open_mutex);
return nonseekable_open(inode, file);
}
static int sv_release(struct inode *inode, struct file *file)
{
struct sv_state *s = (struct sv_state *)file->private_data;
VALIDATE_STATE(s);
lock_kernel();
if (file->f_mode & FMODE_WRITE)
drain_dac(s, file->f_flags & O_NONBLOCK);
mutex_lock(&s->open_mutex);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
dealloc_dmabuf(s, &s->dma_dac);
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
dealloc_dmabuf(s, &s->dma_adc);
}
s->open_mode &= ~(file->f_mode & (FMODE_READ|FMODE_WRITE));
wake_up(&s->open_wait);
mutex_unlock(&s->open_mutex);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations sv_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = sv_read,
.write = sv_write,
.poll = sv_poll,
.ioctl = sv_ioctl,
.mmap = sv_mmap,
.open = sv_open,
.release = sv_release,
};
/* --------------------------------------------------------------------- */
static ssize_t sv_midi_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct sv_state *s = (struct sv_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
VALIDATE_STATE(s);
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
if (count == 0)
return 0;
ret = 0;
add_wait_queue(&s->midi.iwait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
ptr = s->midi.ird;
cnt = MIDIINBUF - ptr;
if (s->midi.icnt < cnt)
cnt = s->midi.icnt;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
ptr = (ptr + cnt) % MIDIINBUF;
spin_lock_irqsave(&s->lock, flags);
s->midi.ird = ptr;
s->midi.icnt -= cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
break;
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&s->midi.iwait, &wait);
return ret;
}
static ssize_t sv_midi_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct sv_state *s = (struct sv_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
VALIDATE_STATE(s);
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
if (count == 0)
return 0;
ret = 0;
add_wait_queue(&s->midi.owait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
ptr = s->midi.owr;
cnt = MIDIOUTBUF - ptr;
if (s->midi.ocnt + cnt > MIDIOUTBUF)
cnt = MIDIOUTBUF - s->midi.ocnt;
if (cnt <= 0) {
__set_current_state(TASK_INTERRUPTIBLE);
sv_handle_midi(s);
}
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
ptr = (ptr + cnt) % MIDIOUTBUF;
spin_lock_irqsave(&s->lock, flags);
s->midi.owr = ptr;
s->midi.ocnt += cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
spin_lock_irqsave(&s->lock, flags);
sv_handle_midi(s);
spin_unlock_irqrestore(&s->lock, flags);
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&s->midi.owait, &wait);
return ret;
}
/* No kernel lock - we have our own spinlock */
static unsigned int sv_midi_poll(struct file *file, struct poll_table_struct *wait)
{
struct sv_state *s = (struct sv_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
poll_wait(file, &s->midi.owait, wait);
if (file->f_mode & FMODE_READ)
poll_wait(file, &s->midi.iwait, wait);
spin_lock_irqsave(&s->lock, flags);
if (file->f_mode & FMODE_READ) {
if (s->midi.icnt > 0)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->midi.ocnt < MIDIOUTBUF)
mask |= POLLOUT | POLLWRNORM;
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int sv_midi_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
struct list_head *list;
struct sv_state *s;
for (list = devs.next; ; list = list->next) {
if (list == &devs)
return -ENODEV;
s = list_entry(list, struct sv_state, devs);
if (s->dev_midi == minor)
break;
}
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
mutex_lock(&s->open_mutex);
while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_mutex);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
mutex_unlock(&s->open_mutex);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&s->open_mutex);
}
spin_lock_irqsave(&s->lock, flags);
if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
//outb(inb(s->ioenh + SV_CODEC_CONTROL) | SV_CCTRL_WAVETABLE, s->ioenh + SV_CODEC_CONTROL);
outb(inb(s->ioenh + SV_CODEC_INTMASK) | SV_CINTMASK_MIDI, s->ioenh + SV_CODEC_INTMASK);
wrindir(s, SV_CIUARTCONTROL, 5); /* output MIDI data to external and internal synth */
wrindir(s, SV_CIWAVETABLESRC, 1); /* Wavetable in PC RAM */
outb(0xff, s->iomidi+1); /* reset command */
outb(0x3f, s->iomidi+1); /* uart command */
if (!(inb(s->iomidi+1) & 0x80))
inb(s->iomidi);
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
init_timer(&s->midi.timer);
s->midi.timer.expires = jiffies+1;
s->midi.timer.data = (unsigned long)s;
s->midi.timer.function = sv_midi_timer;
add_timer(&s->midi.timer);
}
if (file->f_mode & FMODE_READ) {
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
}
if (file->f_mode & FMODE_WRITE) {
s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
}
spin_unlock_irqrestore(&s->lock, flags);
s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE);
mutex_unlock(&s->open_mutex);
return nonseekable_open(inode, file);
}
static int sv_midi_release(struct inode *inode, struct file *file)
{
struct sv_state *s = (struct sv_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
unsigned count, tmo;
VALIDATE_STATE(s);
lock_kernel();
if (file->f_mode & FMODE_WRITE) {
add_wait_queue(&s->midi.owait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&s->lock, flags);
count = s->midi.ocnt;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (file->f_flags & O_NONBLOCK) {
remove_wait_queue(&s->midi.owait, &wait);
set_current_state(TASK_RUNNING);
unlock_kernel();
return -EBUSY;
}
tmo = (count * HZ) / 3100;
if (!schedule_timeout(tmo ? : 1) && tmo)
printk(KERN_DEBUG "sv: midi timed out??\n");
}
remove_wait_queue(&s->midi.owait, &wait);
set_current_state(TASK_RUNNING);
}
mutex_lock(&s->open_mutex);
s->open_mode &= ~((file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE));
spin_lock_irqsave(&s->lock, flags);
if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
outb(inb(s->ioenh + SV_CODEC_INTMASK) & ~SV_CINTMASK_MIDI, s->ioenh + SV_CODEC_INTMASK);
del_timer(&s->midi.timer);
}
spin_unlock_irqrestore(&s->lock, flags);
wake_up(&s->open_wait);
mutex_unlock(&s->open_mutex);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations sv_midi_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = sv_midi_read,
.write = sv_midi_write,
.poll = sv_midi_poll,
.open = sv_midi_open,
.release = sv_midi_release,
};
/* --------------------------------------------------------------------- */
static int sv_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
static const unsigned char op_offset[18] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15
};
struct sv_state *s = (struct sv_state *)file->private_data;
struct dm_fm_voice v;
struct dm_fm_note n;
struct dm_fm_params p;
unsigned int io;
unsigned int regb;
switch (cmd) {
case FM_IOCTL_RESET:
for (regb = 0xb0; regb < 0xb9; regb++) {
outb(regb, s->iosynth);
outb(0, s->iosynth+1);
outb(regb, s->iosynth+2);
outb(0, s->iosynth+3);
}
return 0;
case FM_IOCTL_PLAY_NOTE:
if (copy_from_user(&n, (void __user *)arg, sizeof(n)))
return -EFAULT;
if (n.voice >= 18)
return -EINVAL;
if (n.voice >= 9) {
regb = n.voice - 9;
io = s->iosynth+2;
} else {
regb = n.voice;
io = s->iosynth;
}
outb(0xa0 + regb, io);
outb(n.fnum & 0xff, io+1);
outb(0xb0 + regb, io);
outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1);
return 0;
case FM_IOCTL_SET_VOICE:
if (copy_from_user(&v, (void __user *)arg, sizeof(v)))
return -EFAULT;
if (v.voice >= 18)
return -EINVAL;
regb = op_offset[v.voice];
io = s->iosynth + ((v.op & 1) << 1);
outb(0x20 + regb, io);
outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) |
((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1);
outb(0x40 + regb, io);
outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1);
outb(0x60 + regb, io);
outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1);
outb(0x80 + regb, io);
outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1);
outb(0xe0 + regb, io);
outb(v.waveform & 0x7, io+1);
if (n.voice >= 9) {
regb = n.voice - 9;
io = s->iosynth+2;
} else {
regb = n.voice;
io = s->iosynth;
}
outb(0xc0 + regb, io);
outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) |
(v.connection & 1), io+1);
return 0;
case FM_IOCTL_SET_PARAMS:
if (copy_from_user(&p, (void *__user )arg, sizeof(p)))
return -EFAULT;
outb(0x08, s->iosynth);
outb((p.kbd_split & 1) << 6, s->iosynth+1);
outb(0xbd, s->iosynth);
outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) |
((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->iosynth+1);
return 0;
case FM_IOCTL_SET_OPL:
outb(4, s->iosynth+2);
outb(arg, s->iosynth+3);
return 0;
case FM_IOCTL_SET_MODE:
outb(5, s->iosynth+2);
outb(arg & 1, s->iosynth+3);
return 0;
default:
return -EINVAL;
}
}
static int sv_dmfm_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
struct list_head *list;
struct sv_state *s;
for (list = devs.next; ; list = list->next) {
if (list == &devs)
return -ENODEV;
s = list_entry(list, struct sv_state, devs);
if (s->dev_dmfm == minor)
break;
}
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
mutex_lock(&s->open_mutex);
while (s->open_mode & FMODE_DMFM) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_mutex);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
mutex_unlock(&s->open_mutex);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&s->open_mutex);
}
/* init the stuff */
outb(1, s->iosynth);
outb(0x20, s->iosynth+1); /* enable waveforms */
outb(4, s->iosynth+2);
outb(0, s->iosynth+3); /* no 4op enabled */
outb(5, s->iosynth+2);
outb(1, s->iosynth+3); /* enable OPL3 */
s->open_mode |= FMODE_DMFM;
mutex_unlock(&s->open_mutex);
return nonseekable_open(inode, file);
}
static int sv_dmfm_release(struct inode *inode, struct file *file)
{
struct sv_state *s = (struct sv_state *)file->private_data;
unsigned int regb;
VALIDATE_STATE(s);
lock_kernel();
mutex_lock(&s->open_mutex);
s->open_mode &= ~FMODE_DMFM;
for (regb = 0xb0; regb < 0xb9; regb++) {
outb(regb, s->iosynth);
outb(0, s->iosynth+1);
outb(regb, s->iosynth+2);
outb(0, s->iosynth+3);
}
wake_up(&s->open_wait);
mutex_unlock(&s->open_mutex);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations sv_dmfm_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = sv_dmfm_ioctl,
.open = sv_dmfm_open,
.release = sv_dmfm_release,
};
/* --------------------------------------------------------------------- */
/* maximum number of devices; only used for command line params */
#define NR_DEVICE 5
static int reverb[NR_DEVICE];
#if 0
static int wavetable[NR_DEVICE];
#endif
static unsigned int devindex;
module_param_array(reverb, bool, NULL, 0);
MODULE_PARM_DESC(reverb, "if 1 enables the reverb circuitry. NOTE: your card must have the reverb RAM");
#if 0
MODULE_PARM(wavetable, "1-" __MODULE_STRING(NR_DEVICE) "i");
MODULE_PARM_DESC(wavetable, "if 1 the wavetable synth is enabled");
#endif
MODULE_AUTHOR("Thomas M. Sailer, sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu");
MODULE_DESCRIPTION("S3 SonicVibes Driver");
MODULE_LICENSE("GPL");
/* --------------------------------------------------------------------- */
static struct initvol {
int mixch;
int vol;
} initvol[] __devinitdata = {
{ SOUND_MIXER_WRITE_RECLEV, 0x4040 },
{ SOUND_MIXER_WRITE_LINE1, 0x4040 },
{ SOUND_MIXER_WRITE_CD, 0x4040 },
{ SOUND_MIXER_WRITE_LINE, 0x4040 },
{ SOUND_MIXER_WRITE_MIC, 0x4040 },
{ SOUND_MIXER_WRITE_SYNTH, 0x4040 },
{ SOUND_MIXER_WRITE_LINE2, 0x4040 },
{ SOUND_MIXER_WRITE_VOLUME, 0x4040 },
{ SOUND_MIXER_WRITE_PCM, 0x4040 }
};
#define RSRCISIOREGION(dev,num) (pci_resource_start((dev), (num)) != 0 && \
(pci_resource_flags((dev), (num)) & IORESOURCE_IO))
#ifdef SUPPORT_JOYSTICK
static int __devinit sv_register_gameport(struct sv_state *s, int io_port)
{
struct gameport *gp;
if (!request_region(io_port, SV_EXTENT_GAME, "S3 SonicVibes Gameport")) {
printk(KERN_ERR "sv: gameport io ports are in use\n");
return -EBUSY;
}
s->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "sv: can not allocate memory for gameport\n");
release_region(io_port, SV_EXTENT_GAME);
return -ENOMEM;
}
gameport_set_name(gp, "S3 SonicVibes Gameport");
gameport_set_phys(gp, "isa%04x/gameport0", io_port);
gp->dev.parent = &s->dev->dev;
gp->io = io_port;
gameport_register_port(gp);
return 0;
}
static inline void sv_unregister_gameport(struct sv_state *s)
{
if (s->gameport) {
int gpio = s->gameport->io;
gameport_unregister_port(s->gameport);
release_region(gpio, SV_EXTENT_GAME);
}
}
#else
static inline int sv_register_gameport(struct sv_state *s, int io_port) { return -ENOSYS; }
static inline void sv_unregister_gameport(struct sv_state *s) { }
#endif /* SUPPORT_JOYSTICK */
static int __devinit sv_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
{
static char __devinitdata sv_ddma_name[] = "S3 Inc. SonicVibes DDMA Controller";
struct sv_state *s;
mm_segment_t fs;
int i, val, ret;
int gpio;
char *ddmaname;
unsigned ddmanamelen;
if ((ret=pci_enable_device(pcidev)))
return ret;
if (!RSRCISIOREGION(pcidev, RESOURCE_SB) ||
!RSRCISIOREGION(pcidev, RESOURCE_ENH) ||
!RSRCISIOREGION(pcidev, RESOURCE_SYNTH) ||
!RSRCISIOREGION(pcidev, RESOURCE_MIDI) ||
!RSRCISIOREGION(pcidev, RESOURCE_GAME))
return -ENODEV;
if (pcidev->irq == 0)
return -ENODEV;
if (pci_set_dma_mask(pcidev, DMA_24BIT_MASK)) {
printk(KERN_WARNING "sonicvibes: architecture does not support 24bit PCI busmaster DMA\n");
return -ENODEV;
}
/* try to allocate a DDMA resource if not already available */
if (!RSRCISIOREGION(pcidev, RESOURCE_DDMA)) {
pcidev->resource[RESOURCE_DDMA].start = 0;
pcidev->resource[RESOURCE_DDMA].end = 2*SV_EXTENT_DMA-1;
pcidev->resource[RESOURCE_DDMA].flags = PCI_BASE_ADDRESS_SPACE_IO | IORESOURCE_IO;
ddmanamelen = strlen(sv_ddma_name)+1;
if (!(ddmaname = kmalloc(ddmanamelen, GFP_KERNEL)))
return -1;
memcpy(ddmaname, sv_ddma_name, ddmanamelen);
pcidev->resource[RESOURCE_DDMA].name = ddmaname;
if (pci_assign_resource(pcidev, RESOURCE_DDMA)) {
pcidev->resource[RESOURCE_DDMA].name = NULL;
kfree(ddmaname);
printk(KERN_ERR "sv: cannot allocate DDMA controller io ports\n");
return -EBUSY;
}
}
if (!(s = kmalloc(sizeof(struct sv_state), GFP_KERNEL))) {
printk(KERN_WARNING "sv: out of memory\n");
return -ENOMEM;
}
memset(s, 0, sizeof(struct sv_state));
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->open_wait);
init_waitqueue_head(&s->midi.iwait);
init_waitqueue_head(&s->midi.owait);
mutex_init(&s->open_mutex);
spin_lock_init(&s->lock);
s->magic = SV_MAGIC;
s->dev = pcidev;
s->iosb = pci_resource_start(pcidev, RESOURCE_SB);
s->ioenh = pci_resource_start(pcidev, RESOURCE_ENH);
s->iosynth = pci_resource_start(pcidev, RESOURCE_SYNTH);
s->iomidi = pci_resource_start(pcidev, RESOURCE_MIDI);
s->iodmaa = pci_resource_start(pcidev, RESOURCE_DDMA);
s->iodmac = pci_resource_start(pcidev, RESOURCE_DDMA) + SV_EXTENT_DMA;
gpio = pci_resource_start(pcidev, RESOURCE_GAME);
pci_write_config_dword(pcidev, 0x40, s->iodmaa | 9); /* enable and use extended mode */
pci_write_config_dword(pcidev, 0x48, s->iodmac | 9); /* enable */
printk(KERN_DEBUG "sv: io ports: %#lx %#lx %#lx %#lx %#x %#x %#x\n",
s->iosb, s->ioenh, s->iosynth, s->iomidi, gpio, s->iodmaa, s->iodmac);
s->irq = pcidev->irq;
/* hack */
pci_write_config_dword(pcidev, 0x60, wavetable_mem >> 12); /* wavetable base address */
ret = -EBUSY;
if (!request_region(s->ioenh, SV_EXTENT_ENH, "S3 SonicVibes PCM")) {
printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->ioenh, s->ioenh+SV_EXTENT_ENH-1);
goto err_region5;
}
if (!request_region(s->iodmaa, SV_EXTENT_DMA, "S3 SonicVibes DMAA")) {
printk(KERN_ERR "sv: io ports %#x-%#x in use\n", s->iodmaa, s->iodmaa+SV_EXTENT_DMA-1);
goto err_region4;
}
if (!request_region(s->iodmac, SV_EXTENT_DMA, "S3 SonicVibes DMAC")) {
printk(KERN_ERR "sv: io ports %#x-%#x in use\n", s->iodmac, s->iodmac+SV_EXTENT_DMA-1);
goto err_region3;
}
if (!request_region(s->iomidi, SV_EXTENT_MIDI, "S3 SonicVibes Midi")) {
printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->iomidi, s->iomidi+SV_EXTENT_MIDI-1);
goto err_region2;
}
if (!request_region(s->iosynth, SV_EXTENT_SYNTH, "S3 SonicVibes Synth")) {
printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->iosynth, s->iosynth+SV_EXTENT_SYNTH-1);
goto err_region1;
}
/* initialize codec registers */
outb(0x80, s->ioenh + SV_CODEC_CONTROL); /* assert reset */
udelay(50);
outb(0x00, s->ioenh + SV_CODEC_CONTROL); /* deassert reset */
udelay(50);
outb(SV_CCTRL_INTADRIVE | SV_CCTRL_ENHANCED /*| SV_CCTRL_WAVETABLE */
| (reverb[devindex] ? SV_CCTRL_REVERB : 0), s->ioenh + SV_CODEC_CONTROL);
inb(s->ioenh + SV_CODEC_STATUS); /* clear ints */
wrindir(s, SV_CIDRIVECONTROL, 0); /* drive current 16mA */
wrindir(s, SV_CIENABLE, s->enable = 0); /* disable DMAA and DMAC */
outb(~(SV_CINTMASK_DMAA | SV_CINTMASK_DMAC), s->ioenh + SV_CODEC_INTMASK);
/* outb(0xff, s->iodmaa + SV_DMA_RESET); */
/* outb(0xff, s->iodmac + SV_DMA_RESET); */
inb(s->ioenh + SV_CODEC_STATUS); /* ack interrupts */
wrindir(s, SV_CIADCCLKSOURCE, 0); /* use pll as ADC clock source */
wrindir(s, SV_CIANALOGPWRDOWN, 0); /* power up the analog parts of the device */
wrindir(s, SV_CIDIGITALPWRDOWN, 0); /* power up the digital parts of the device */
setpll(s, SV_CIADCPLLM, 8000);
wrindir(s, SV_CISRSSPACE, 0x80); /* SRS off */
wrindir(s, SV_CIPCMSR0, (8000 * 65536 / FULLRATE) & 0xff);
wrindir(s, SV_CIPCMSR1, ((8000 * 65536 / FULLRATE) >> 8) & 0xff);
wrindir(s, SV_CIADCOUTPUT, 0);
/* request irq */
if ((ret=request_irq(s->irq,sv_interrupt,SA_SHIRQ,"S3 SonicVibes",s))) {
printk(KERN_ERR "sv: irq %u in use\n", s->irq);
goto err_irq;
}
printk(KERN_INFO "sv: found adapter at io %#lx irq %u dmaa %#06x dmac %#06x revision %u\n",
s->ioenh, s->irq, s->iodmaa, s->iodmac, rdindir(s, SV_CIREVISION));
/* register devices */
if ((s->dev_audio = register_sound_dsp(&sv_audio_fops, -1)) < 0) {
ret = s->dev_audio;
goto err_dev1;
}
if ((s->dev_mixer = register_sound_mixer(&sv_mixer_fops, -1)) < 0) {
ret = s->dev_mixer;
goto err_dev2;
}
if ((s->dev_midi = register_sound_midi(&sv_midi_fops, -1)) < 0) {
ret = s->dev_midi;
goto err_dev3;
}
if ((s->dev_dmfm = register_sound_special(&sv_dmfm_fops, 15 /* ?? */)) < 0) {
ret = s->dev_dmfm;
goto err_dev4;
}
pci_set_master(pcidev); /* enable bus mastering */
/* initialize the chips */
fs = get_fs();
set_fs(KERNEL_DS);
val = SOUND_MASK_LINE|SOUND_MASK_SYNTH;
mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
val = initvol[i].vol;
mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
}
set_fs(fs);
/* register gameport */
sv_register_gameport(s, gpio);
/* store it in the driver field */
pci_set_drvdata(pcidev, s);
/* put it into driver list */
list_add_tail(&s->devs, &devs);
/* increment devindex */
if (devindex < NR_DEVICE-1)
devindex++;
return 0;
err_dev4:
unregister_sound_midi(s->dev_midi);
err_dev3:
unregister_sound_mixer(s->dev_mixer);
err_dev2:
unregister_sound_dsp(s->dev_audio);
err_dev1:
printk(KERN_ERR "sv: cannot register misc device\n");
free_irq(s->irq, s);
err_irq:
release_region(s->iosynth, SV_EXTENT_SYNTH);
err_region1:
release_region(s->iomidi, SV_EXTENT_MIDI);
err_region2:
release_region(s->iodmac, SV_EXTENT_DMA);
err_region3:
release_region(s->iodmaa, SV_EXTENT_DMA);
err_region4:
release_region(s->ioenh, SV_EXTENT_ENH);
err_region5:
kfree(s);
return ret;
}
static void __devexit sv_remove(struct pci_dev *dev)
{
struct sv_state *s = pci_get_drvdata(dev);
if (!s)
return;
list_del(&s->devs);
outb(~0, s->ioenh + SV_CODEC_INTMASK); /* disable ints */
synchronize_irq(s->irq);
inb(s->ioenh + SV_CODEC_STATUS); /* ack interrupts */
wrindir(s, SV_CIENABLE, 0); /* disable DMAA and DMAC */
/*outb(0, s->iodmaa + SV_DMA_RESET);*/
/*outb(0, s->iodmac + SV_DMA_RESET);*/
free_irq(s->irq, s);
sv_unregister_gameport(s);
release_region(s->iodmac, SV_EXTENT_DMA);
release_region(s->iodmaa, SV_EXTENT_DMA);
release_region(s->ioenh, SV_EXTENT_ENH);
release_region(s->iomidi, SV_EXTENT_MIDI);
release_region(s->iosynth, SV_EXTENT_SYNTH);
unregister_sound_dsp(s->dev_audio);
unregister_sound_mixer(s->dev_mixer);
unregister_sound_midi(s->dev_midi);
unregister_sound_special(s->dev_dmfm);
kfree(s);
pci_set_drvdata(dev, NULL);
}
static struct pci_device_id id_table[] = {
{ PCI_VENDOR_ID_S3, PCI_DEVICE_ID_S3_SONICVIBES, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, id_table);
static struct pci_driver sv_driver = {
.name = "sonicvibes",
.id_table = id_table,
.probe = sv_probe,
.remove = __devexit_p(sv_remove),
};
static int __init init_sonicvibes(void)
{
printk(KERN_INFO "sv: version v0.31 time " __TIME__ " " __DATE__ "\n");
#if 0
if (!(wavetable_mem = __get_free_pages(GFP_KERNEL, 20-PAGE_SHIFT)))
printk(KERN_INFO "sv: cannot allocate 1MB of contiguous nonpageable memory for wavetable data\n");
#endif
return pci_register_driver(&sv_driver);
}
static void __exit cleanup_sonicvibes(void)
{
printk(KERN_INFO "sv: unloading\n");
pci_unregister_driver(&sv_driver);
if (wavetable_mem)
free_pages(wavetable_mem, 20-PAGE_SHIFT);
}
module_init(init_sonicvibes);
module_exit(cleanup_sonicvibes);
/* --------------------------------------------------------------------- */
#ifndef MODULE
/* format is: sonicvibes=[reverb] sonicvibesdmaio=dmaioaddr */
static int __init sonicvibes_setup(char *str)
{
static unsigned __initdata nr_dev = 0;
if (nr_dev >= NR_DEVICE)
return 0;
#if 0
if (get_option(&str, &reverb[nr_dev]) == 2)
(void)get_option(&str, &wavetable[nr_dev]);
#else
(void)get_option(&str, &reverb[nr_dev]);
#endif
nr_dev++;
return 1;
}
__setup("sonicvibes=", sonicvibes_setup);
#endif /* MODULE */