mirror of
https://github.com/adulau/aha.git
synced 2024-12-29 20:26:25 +00:00
265 lines
5.6 KiB
C
265 lines
5.6 KiB
C
|
/*
|
||
|
* lib/kernel_lock.c
|
||
|
*
|
||
|
* This is the traditional BKL - big kernel lock. Largely
|
||
|
* relegated to obsolescense, but used by various less
|
||
|
* important (or lazy) subsystems.
|
||
|
*/
|
||
|
#include <linux/smp_lock.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kallsyms.h>
|
||
|
|
||
|
#if defined(CONFIG_PREEMPT) && defined(__smp_processor_id) && \
|
||
|
defined(CONFIG_DEBUG_PREEMPT)
|
||
|
|
||
|
/*
|
||
|
* Debugging check.
|
||
|
*/
|
||
|
unsigned int smp_processor_id(void)
|
||
|
{
|
||
|
unsigned long preempt_count = preempt_count();
|
||
|
int this_cpu = __smp_processor_id();
|
||
|
cpumask_t this_mask;
|
||
|
|
||
|
if (likely(preempt_count))
|
||
|
goto out;
|
||
|
|
||
|
if (irqs_disabled())
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Kernel threads bound to a single CPU can safely use
|
||
|
* smp_processor_id():
|
||
|
*/
|
||
|
this_mask = cpumask_of_cpu(this_cpu);
|
||
|
|
||
|
if (cpus_equal(current->cpus_allowed, this_mask))
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* It is valid to assume CPU-locality during early bootup:
|
||
|
*/
|
||
|
if (system_state != SYSTEM_RUNNING)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Avoid recursion:
|
||
|
*/
|
||
|
preempt_disable();
|
||
|
|
||
|
if (!printk_ratelimit())
|
||
|
goto out_enable;
|
||
|
|
||
|
printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x] code: %s/%d\n", preempt_count(), current->comm, current->pid);
|
||
|
print_symbol("caller is %s\n", (long)__builtin_return_address(0));
|
||
|
dump_stack();
|
||
|
|
||
|
out_enable:
|
||
|
preempt_enable_no_resched();
|
||
|
out:
|
||
|
return this_cpu;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(smp_processor_id);
|
||
|
|
||
|
#endif /* PREEMPT && __smp_processor_id && DEBUG_PREEMPT */
|
||
|
|
||
|
#ifdef CONFIG_PREEMPT_BKL
|
||
|
/*
|
||
|
* The 'big kernel semaphore'
|
||
|
*
|
||
|
* This mutex is taken and released recursively by lock_kernel()
|
||
|
* and unlock_kernel(). It is transparently dropped and reaquired
|
||
|
* over schedule(). It is used to protect legacy code that hasn't
|
||
|
* been migrated to a proper locking design yet.
|
||
|
*
|
||
|
* Note: code locked by this semaphore will only be serialized against
|
||
|
* other code using the same locking facility. The code guarantees that
|
||
|
* the task remains on the same CPU.
|
||
|
*
|
||
|
* Don't use in new code.
|
||
|
*/
|
||
|
static DECLARE_MUTEX(kernel_sem);
|
||
|
|
||
|
/*
|
||
|
* Re-acquire the kernel semaphore.
|
||
|
*
|
||
|
* This function is called with preemption off.
|
||
|
*
|
||
|
* We are executing in schedule() so the code must be extremely careful
|
||
|
* about recursion, both due to the down() and due to the enabling of
|
||
|
* preemption. schedule() will re-check the preemption flag after
|
||
|
* reacquiring the semaphore.
|
||
|
*/
|
||
|
int __lockfunc __reacquire_kernel_lock(void)
|
||
|
{
|
||
|
struct task_struct *task = current;
|
||
|
int saved_lock_depth = task->lock_depth;
|
||
|
|
||
|
BUG_ON(saved_lock_depth < 0);
|
||
|
|
||
|
task->lock_depth = -1;
|
||
|
preempt_enable_no_resched();
|
||
|
|
||
|
down(&kernel_sem);
|
||
|
|
||
|
preempt_disable();
|
||
|
task->lock_depth = saved_lock_depth;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __lockfunc __release_kernel_lock(void)
|
||
|
{
|
||
|
up(&kernel_sem);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Getting the big kernel semaphore.
|
||
|
*/
|
||
|
void __lockfunc lock_kernel(void)
|
||
|
{
|
||
|
struct task_struct *task = current;
|
||
|
int depth = task->lock_depth + 1;
|
||
|
|
||
|
if (likely(!depth))
|
||
|
/*
|
||
|
* No recursion worries - we set up lock_depth _after_
|
||
|
*/
|
||
|
down(&kernel_sem);
|
||
|
|
||
|
task->lock_depth = depth;
|
||
|
}
|
||
|
|
||
|
void __lockfunc unlock_kernel(void)
|
||
|
{
|
||
|
struct task_struct *task = current;
|
||
|
|
||
|
BUG_ON(task->lock_depth < 0);
|
||
|
|
||
|
if (likely(--task->lock_depth < 0))
|
||
|
up(&kernel_sem);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/*
|
||
|
* The 'big kernel lock'
|
||
|
*
|
||
|
* This spinlock is taken and released recursively by lock_kernel()
|
||
|
* and unlock_kernel(). It is transparently dropped and reaquired
|
||
|
* over schedule(). It is used to protect legacy code that hasn't
|
||
|
* been migrated to a proper locking design yet.
|
||
|
*
|
||
|
* Don't use in new code.
|
||
|
*/
|
||
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Acquire/release the underlying lock from the scheduler.
|
||
|
*
|
||
|
* This is called with preemption disabled, and should
|
||
|
* return an error value if it cannot get the lock and
|
||
|
* TIF_NEED_RESCHED gets set.
|
||
|
*
|
||
|
* If it successfully gets the lock, it should increment
|
||
|
* the preemption count like any spinlock does.
|
||
|
*
|
||
|
* (This works on UP too - _raw_spin_trylock will never
|
||
|
* return false in that case)
|
||
|
*/
|
||
|
int __lockfunc __reacquire_kernel_lock(void)
|
||
|
{
|
||
|
while (!_raw_spin_trylock(&kernel_flag)) {
|
||
|
if (test_thread_flag(TIF_NEED_RESCHED))
|
||
|
return -EAGAIN;
|
||
|
cpu_relax();
|
||
|
}
|
||
|
preempt_disable();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __lockfunc __release_kernel_lock(void)
|
||
|
{
|
||
|
_raw_spin_unlock(&kernel_flag);
|
||
|
preempt_enable_no_resched();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These are the BKL spinlocks - we try to be polite about preemption.
|
||
|
* If SMP is not on (ie UP preemption), this all goes away because the
|
||
|
* _raw_spin_trylock() will always succeed.
|
||
|
*/
|
||
|
#ifdef CONFIG_PREEMPT
|
||
|
static inline void __lock_kernel(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
if (unlikely(!_raw_spin_trylock(&kernel_flag))) {
|
||
|
/*
|
||
|
* If preemption was disabled even before this
|
||
|
* was called, there's nothing we can be polite
|
||
|
* about - just spin.
|
||
|
*/
|
||
|
if (preempt_count() > 1) {
|
||
|
_raw_spin_lock(&kernel_flag);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Otherwise, let's wait for the kernel lock
|
||
|
* with preemption enabled..
|
||
|
*/
|
||
|
do {
|
||
|
preempt_enable();
|
||
|
while (spin_is_locked(&kernel_flag))
|
||
|
cpu_relax();
|
||
|
preempt_disable();
|
||
|
} while (!_raw_spin_trylock(&kernel_flag));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/*
|
||
|
* Non-preemption case - just get the spinlock
|
||
|
*/
|
||
|
static inline void __lock_kernel(void)
|
||
|
{
|
||
|
_raw_spin_lock(&kernel_flag);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static inline void __unlock_kernel(void)
|
||
|
{
|
||
|
_raw_spin_unlock(&kernel_flag);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Getting the big kernel lock.
|
||
|
*
|
||
|
* This cannot happen asynchronously, so we only need to
|
||
|
* worry about other CPU's.
|
||
|
*/
|
||
|
void __lockfunc lock_kernel(void)
|
||
|
{
|
||
|
int depth = current->lock_depth+1;
|
||
|
if (likely(!depth))
|
||
|
__lock_kernel();
|
||
|
current->lock_depth = depth;
|
||
|
}
|
||
|
|
||
|
void __lockfunc unlock_kernel(void)
|
||
|
{
|
||
|
BUG_ON(current->lock_depth < 0);
|
||
|
if (likely(--current->lock_depth < 0))
|
||
|
__unlock_kernel();
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
EXPORT_SYMBOL(lock_kernel);
|
||
|
EXPORT_SYMBOL(unlock_kernel);
|
||
|
|