aha/Documentation/cachetlb.txt

385 lines
16 KiB
Text
Raw Normal View History

Cache and TLB Flushing
Under Linux
David S. Miller <davem@redhat.com>
This document describes the cache/tlb flushing interfaces called
by the Linux VM subsystem. It enumerates over each interface,
describes it's intended purpose, and what side effect is expected
after the interface is invoked.
The side effects described below are stated for a uniprocessor
implementation, and what is to happen on that single processor. The
SMP cases are a simple extension, in that you just extend the
definition such that the side effect for a particular interface occurs
on all processors in the system. Don't let this scare you into
thinking SMP cache/tlb flushing must be so inefficient, this is in
fact an area where many optimizations are possible. For example,
if it can be proven that a user address space has never executed
on a cpu (see vma->cpu_vm_mask), one need not perform a flush
for this address space on that cpu.
First, the TLB flushing interfaces, since they are the simplest. The
"TLB" is abstracted under Linux as something the cpu uses to cache
virtual-->physical address translations obtained from the software
page tables. Meaning that if the software page tables change, it is
possible for stale translations to exist in this "TLB" cache.
Therefore when software page table changes occur, the kernel will
invoke one of the following flush methods _after_ the page table
changes occur:
1) void flush_tlb_all(void)
The most severe flush of all. After this interface runs,
any previous page table modification whatsoever will be
visible to the cpu.
This is usually invoked when the kernel page tables are
changed, since such translations are "global" in nature.
2) void flush_tlb_mm(struct mm_struct *mm)
This interface flushes an entire user address space from
the TLB. After running, this interface must make sure that
any previous page table modifications for the address space
'mm' will be visible to the cpu. That is, after running,
there will be no entries in the TLB for 'mm'.
This interface is used to handle whole address space
page table operations such as what happens during
fork, and exec.
Platform developers note that generic code will always
invoke this interface without mm->page_table_lock held.
3) void flush_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
Here we are flushing a specific range of (user) virtual
address translations from the TLB. After running, this
interface must make sure that any previous page table
modifications for the address space 'vma->vm_mm' in the range
'start' to 'end-1' will be visible to the cpu. That is, after
running, here will be no entries in the TLB for 'mm' for
virtual addresses in the range 'start' to 'end-1'.
The "vma" is the backing store being used for the region.
Primarily, this is used for munmap() type operations.
The interface is provided in hopes that the port can find
a suitably efficient method for removing multiple page
sized translations from the TLB, instead of having the kernel
call flush_tlb_page (see below) for each entry which may be
modified.
Platform developers note that generic code will always
invoke this interface with mm->page_table_lock held.
4) void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
This time we need to remove the PAGE_SIZE sized translation
from the TLB. The 'vma' is the backing structure used by
Linux to keep track of mmap'd regions for a process, the
address space is available via vma->vm_mm. Also, one may
test (vma->vm_flags & VM_EXEC) to see if this region is
executable (and thus could be in the 'instruction TLB' in
split-tlb type setups).
After running, this interface must make sure that any previous
page table modification for address space 'vma->vm_mm' for
user virtual address 'addr' will be visible to the cpu. That
is, after running, there will be no entries in the TLB for
'vma->vm_mm' for virtual address 'addr'.
This is used primarily during fault processing.
Platform developers note that generic code will always
invoke this interface with mm->page_table_lock held.
5) void flush_tlb_pgtables(struct mm_struct *mm,
unsigned long start, unsigned long end)
The software page tables for address space 'mm' for virtual
addresses in the range 'start' to 'end-1' are being torn down.
Some platforms cache the lowest level of the software page tables
in a linear virtually mapped array, to make TLB miss processing
more efficient. On such platforms, since the TLB is caching the
software page table structure, it needs to be flushed when parts
of the software page table tree are unlinked/freed.
Sparc64 is one example of a platform which does this.
Usually, when munmap()'ing an area of user virtual address
space, the kernel leaves the page table parts around and just
marks the individual pte's as invalid. However, if very large
portions of the address space are unmapped, the kernel frees up
those portions of the software page tables to prevent potential
excessive kernel memory usage caused by erratic mmap/mmunmap
sequences. It is at these times that flush_tlb_pgtables will
be invoked.
6) void update_mmu_cache(struct vm_area_struct *vma,
unsigned long address, pte_t pte)
At the end of every page fault, this routine is invoked to
tell the architecture specific code that a translation
described by "pte" now exists at virtual address "address"
for address space "vma->vm_mm", in the software page tables.
A port may use this information in any way it so chooses.
For example, it could use this event to pre-load TLB
translations for software managed TLB configurations.
The sparc64 port currently does this.
7) void tlb_migrate_finish(struct mm_struct *mm)
This interface is called at the end of an explicit
process migration. This interface provides a hook
to allow a platform to update TLB or context-specific
information for the address space.
The ia64 sn2 platform is one example of a platform
that uses this interface.
8) void lazy_mmu_prot_update(pte_t pte)
This interface is called whenever the protection on
any user PTEs change. This interface provides a notification
to architecture specific code to take appropiate action.
Next, we have the cache flushing interfaces. In general, when Linux
is changing an existing virtual-->physical mapping to a new value,
the sequence will be in one of the following forms:
1) flush_cache_mm(mm);
change_all_page_tables_of(mm);
flush_tlb_mm(mm);
2) flush_cache_range(vma, start, end);
change_range_of_page_tables(mm, start, end);
flush_tlb_range(vma, start, end);
3) flush_cache_page(vma, addr, pfn);
set_pte(pte_pointer, new_pte_val);
flush_tlb_page(vma, addr);
The cache level flush will always be first, because this allows
us to properly handle systems whose caches are strict and require
a virtual-->physical translation to exist for a virtual address
when that virtual address is flushed from the cache. The HyperSparc
cpu is one such cpu with this attribute.
The cache flushing routines below need only deal with cache flushing
to the extent that it is necessary for a particular cpu. Mostly,
these routines must be implemented for cpus which have virtually
indexed caches which must be flushed when virtual-->physical
translations are changed or removed. So, for example, the physically
indexed physically tagged caches of IA32 processors have no need to
implement these interfaces since the caches are fully synchronized
and have no dependency on translation information.
Here are the routines, one by one:
1) void flush_cache_mm(struct mm_struct *mm)
This interface flushes an entire user address space from
the caches. That is, after running, there will be no cache
lines associated with 'mm'.
This interface is used to handle whole address space
page table operations such as what happens during
fork, exit, and exec.
2) void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
Here we are flushing a specific range of (user) virtual
addresses from the cache. After running, there will be no
entries in the cache for 'vma->vm_mm' for virtual addresses in
the range 'start' to 'end-1'.
The "vma" is the backing store being used for the region.
Primarily, this is used for munmap() type operations.
The interface is provided in hopes that the port can find
a suitably efficient method for removing multiple page
sized regions from the cache, instead of having the kernel
call flush_cache_page (see below) for each entry which may be
modified.
3) void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
This time we need to remove a PAGE_SIZE sized range
from the cache. The 'vma' is the backing structure used by
Linux to keep track of mmap'd regions for a process, the
address space is available via vma->vm_mm. Also, one may
test (vma->vm_flags & VM_EXEC) to see if this region is
executable (and thus could be in the 'instruction cache' in
"Harvard" type cache layouts).
The 'pfn' indicates the physical page frame (shift this value
left by PAGE_SHIFT to get the physical address) that 'addr'
translates to. It is this mapping which should be removed from
the cache.
After running, there will be no entries in the cache for
'vma->vm_mm' for virtual address 'addr' which translates
to 'pfn'.
This is used primarily during fault processing.
4) void flush_cache_kmaps(void)
This routine need only be implemented if the platform utilizes
highmem. It will be called right before all of the kmaps
are invalidated.
After running, there will be no entries in the cache for
the kernel virtual address range PKMAP_ADDR(0) to
PKMAP_ADDR(LAST_PKMAP).
This routing should be implemented in asm/highmem.h
5) void flush_cache_vmap(unsigned long start, unsigned long end)
void flush_cache_vunmap(unsigned long start, unsigned long end)
Here in these two interfaces we are flushing a specific range
of (kernel) virtual addresses from the cache. After running,
there will be no entries in the cache for the kernel address
space for virtual addresses in the range 'start' to 'end-1'.
The first of these two routines is invoked after map_vm_area()
has installed the page table entries. The second is invoked
before unmap_vm_area() deletes the page table entries.
There exists another whole class of cpu cache issues which currently
require a whole different set of interfaces to handle properly.
The biggest problem is that of virtual aliasing in the data cache
of a processor.
Is your port susceptible to virtual aliasing in it's D-cache?
Well, if your D-cache is virtually indexed, is larger in size than
PAGE_SIZE, and does not prevent multiple cache lines for the same
physical address from existing at once, you have this problem.
If your D-cache has this problem, first define asm/shmparam.h SHMLBA
properly, it should essentially be the size of your virtually
addressed D-cache (or if the size is variable, the largest possible
size). This setting will force the SYSv IPC layer to only allow user
processes to mmap shared memory at address which are a multiple of
this value.
NOTE: This does not fix shared mmaps, check out the sparc64 port for
one way to solve this (in particular SPARC_FLAG_MMAPSHARED).
Next, you have to solve the D-cache aliasing issue for all
other cases. Please keep in mind that fact that, for a given page
mapped into some user address space, there is always at least one more
mapping, that of the kernel in it's linear mapping starting at
PAGE_OFFSET. So immediately, once the first user maps a given
physical page into its address space, by implication the D-cache
aliasing problem has the potential to exist since the kernel already
maps this page at its virtual address.
void copy_user_page(void *to, void *from, unsigned long addr, struct page *page)
void clear_user_page(void *to, unsigned long addr, struct page *page)
These two routines store data in user anonymous or COW
pages. It allows a port to efficiently avoid D-cache alias
issues between userspace and the kernel.
For example, a port may temporarily map 'from' and 'to' to
kernel virtual addresses during the copy. The virtual address
for these two pages is chosen in such a way that the kernel
load/store instructions happen to virtual addresses which are
of the same "color" as the user mapping of the page. Sparc64
for example, uses this technique.
The 'addr' parameter tells the virtual address where the
user will ultimately have this page mapped, and the 'page'
parameter gives a pointer to the struct page of the target.
If D-cache aliasing is not an issue, these two routines may
simply call memcpy/memset directly and do nothing more.
void flush_dcache_page(struct page *page)
Any time the kernel writes to a page cache page, _OR_
the kernel is about to read from a page cache page and
user space shared/writable mappings of this page potentially
exist, this routine is called.
NOTE: This routine need only be called for page cache pages
which can potentially ever be mapped into the address
space of a user process. So for example, VFS layer code
handling vfs symlinks in the page cache need not call
this interface at all.
The phrase "kernel writes to a page cache page" means,
specifically, that the kernel executes store instructions
that dirty data in that page at the page->virtual mapping
of that page. It is important to flush here to handle
D-cache aliasing, to make sure these kernel stores are
visible to user space mappings of that page.
The corollary case is just as important, if there are users
which have shared+writable mappings of this file, we must make
sure that kernel reads of these pages will see the most recent
stores done by the user.
If D-cache aliasing is not an issue, this routine may
simply be defined as a nop on that architecture.
There is a bit set aside in page->flags (PG_arch_1) as
"architecture private". The kernel guarantees that,
for pagecache pages, it will clear this bit when such
a page first enters the pagecache.
This allows these interfaces to be implemented much more
efficiently. It allows one to "defer" (perhaps indefinitely)
the actual flush if there are currently no user processes
mapping this page. See sparc64's flush_dcache_page and
update_mmu_cache implementations for an example of how to go
about doing this.
The idea is, first at flush_dcache_page() time, if
page->mapping->i_mmap is an empty tree and ->i_mmap_nonlinear
an empty list, just mark the architecture private page flag bit.
Later, in update_mmu_cache(), a check is made of this flag bit,
and if set the flush is done and the flag bit is cleared.
IMPORTANT NOTE: It is often important, if you defer the flush,
that the actual flush occurs on the same CPU
as did the cpu stores into the page to make it
dirty. Again, see sparc64 for examples of how
to deal with this.
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long user_vaddr,
void *dst, void *src, int len)
void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long user_vaddr,
void *dst, void *src, int len)
When the kernel needs to copy arbitrary data in and out
of arbitrary user pages (f.e. for ptrace()) it will use
these two routines.
Any necessary cache flushing or other coherency operations
that need to occur should happen here. If the processor's
instruction cache does not snoop cpu stores, it is very
likely that you will need to flush the instruction cache
for copy_to_user_page().
void flush_icache_range(unsigned long start, unsigned long end)
When the kernel stores into addresses that it will execute
out of (eg when loading modules), this function is called.
If the icache does not snoop stores then this routine will need
to flush it.
void flush_icache_page(struct vm_area_struct *vma, struct page *page)
All the functionality of flush_icache_page can be implemented in
flush_dcache_page and update_mmu_cache. In 2.7 the hope is to
remove this interface completely.