aha/sound/pci/ens1370.c

2497 lines
79 KiB
C
Raw Normal View History

/*
* Driver for Ensoniq ES1370/ES1371 AudioPCI soundcard
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>,
* Thomas Sailer <sailer@ife.ee.ethz.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* Power-Management-Code ( CONFIG_PM )
* for ens1371 only ( FIXME )
* derived from cs4281.c, atiixp.c and via82xx.c
* using http://www.alsa-project.org/~iwai/writing-an-alsa-driver/c1540.htm
* by Kurt J. Bosch
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#ifdef CHIP1371
#include <sound/ac97_codec.h>
#else
#include <sound/ak4531_codec.h>
#endif
#include <sound/initval.h>
#include <sound/asoundef.h>
#ifndef CHIP1371
#undef CHIP1370
#define CHIP1370
#endif
#ifdef CHIP1370
#define DRIVER_NAME "ENS1370"
#else
#define DRIVER_NAME "ENS1371"
#endif
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Thomas Sailer <sailer@ife.ee.ethz.ch>");
MODULE_LICENSE("GPL");
#ifdef CHIP1370
MODULE_DESCRIPTION("Ensoniq AudioPCI ES1370");
MODULE_SUPPORTED_DEVICE("{{Ensoniq,AudioPCI-97 ES1370},"
"{Creative Labs,SB PCI64/128 (ES1370)}}");
#endif
#ifdef CHIP1371
MODULE_DESCRIPTION("Ensoniq/Creative AudioPCI ES1371+");
MODULE_SUPPORTED_DEVICE("{{Ensoniq,AudioPCI ES1371/73},"
"{Ensoniq,AudioPCI ES1373},"
"{Creative Labs,Ectiva EV1938},"
"{Creative Labs,SB PCI64/128 (ES1371/73)},"
"{Creative Labs,Vibra PCI128},"
"{Ectiva,EV1938}}");
#endif
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK
#endif
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
#ifdef SUPPORT_JOYSTICK
#ifdef CHIP1371
static int joystick_port[SNDRV_CARDS];
#else
static int joystick[SNDRV_CARDS];
#endif
#endif
#ifdef CHIP1371
static int spdif[SNDRV_CARDS];
static int lineio[SNDRV_CARDS];
#endif
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Ensoniq AudioPCI soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Ensoniq AudioPCI soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Ensoniq AudioPCI soundcard.");
#ifdef SUPPORT_JOYSTICK
#ifdef CHIP1371
module_param_array(joystick_port, int, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address.");
#else
module_param_array(joystick, bool, NULL, 0444);
MODULE_PARM_DESC(joystick, "Enable joystick.");
#endif
#endif /* SUPPORT_JOYSTICK */
#ifdef CHIP1371
module_param_array(spdif, int, NULL, 0444);
MODULE_PARM_DESC(spdif, "S/PDIF output (-1 = none, 0 = auto, 1 = force).");
module_param_array(lineio, int, NULL, 0444);
MODULE_PARM_DESC(lineio, "Line In to Rear Out (0 = auto, 1 = force).");
#endif
/* ES1371 chip ID */
/* This is a little confusing because all ES1371 compatible chips have the
same DEVICE_ID, the only thing differentiating them is the REV_ID field.
This is only significant if you want to enable features on the later parts.
Yes, I know it's stupid and why didn't we use the sub IDs?
*/
#define ES1371REV_ES1373_A 0x04
#define ES1371REV_ES1373_B 0x06
#define ES1371REV_CT5880_A 0x07
#define CT5880REV_CT5880_C 0x02
#define CT5880REV_CT5880_D 0x03 /* ??? -jk */
#define CT5880REV_CT5880_E 0x04 /* mw */
#define ES1371REV_ES1371_B 0x09
#define EV1938REV_EV1938_A 0x00
#define ES1371REV_ES1373_8 0x08
/*
* Direct registers
*/
#define ES_REG(ensoniq, x) ((ensoniq)->port + ES_REG_##x)
#define ES_REG_CONTROL 0x00 /* R/W: Interrupt/Chip select control register */
#define ES_1370_ADC_STOP (1<<31) /* disable capture buffer transfers */
#define ES_1370_XCTL1 (1<<30) /* general purpose output bit */
#define ES_1373_BYPASS_P1 (1<<31) /* bypass SRC for PB1 */
#define ES_1373_BYPASS_P2 (1<<30) /* bypass SRC for PB2 */
#define ES_1373_BYPASS_R (1<<29) /* bypass SRC for REC */
#define ES_1373_TEST_BIT (1<<28) /* should be set to 0 for normal operation */
#define ES_1373_RECEN_B (1<<27) /* mix record with playback for I2S/SPDIF out */
#define ES_1373_SPDIF_THRU (1<<26) /* 0 = SPDIF thru mode, 1 = SPDIF == dig out */
#define ES_1371_JOY_ASEL(o) (((o)&0x03)<<24)/* joystick port mapping */
#define ES_1371_JOY_ASELM (0x03<<24) /* mask for above */
#define ES_1371_JOY_ASELI(i) (((i)>>24)&0x03)
#define ES_1371_GPIO_IN(i) (((i)>>20)&0x0f)/* GPIO in [3:0] pins - R/O */
#define ES_1370_PCLKDIVO(o) (((o)&0x1fff)<<16)/* clock divide ratio for DAC2 */
#define ES_1370_PCLKDIVM ((0x1fff)<<16) /* mask for above */
#define ES_1370_PCLKDIVI(i) (((i)>>16)&0x1fff)/* clock divide ratio for DAC2 */
#define ES_1371_GPIO_OUT(o) (((o)&0x0f)<<16)/* GPIO out [3:0] pins - W/R */
#define ES_1371_GPIO_OUTM (0x0f<<16) /* mask for above */
#define ES_MSFMTSEL (1<<15) /* MPEG serial data format; 0 = SONY, 1 = I2S */
#define ES_1370_M_SBB (1<<14) /* clock source for DAC - 0 = clock generator; 1 = MPEG clocks */
#define ES_1371_SYNC_RES (1<<14) /* Warm AC97 reset */
#define ES_1370_WTSRSEL(o) (((o)&0x03)<<12)/* fixed frequency clock for DAC1 */
#define ES_1370_WTSRSELM (0x03<<12) /* mask for above */
#define ES_1371_ADC_STOP (1<<13) /* disable CCB transfer capture information */
#define ES_1371_PWR_INTRM (1<<12) /* power level change interrupts enable */
#define ES_1370_DAC_SYNC (1<<11) /* DAC's are synchronous */
#define ES_1371_M_CB (1<<11) /* capture clock source; 0 = AC'97 ADC; 1 = I2S */
#define ES_CCB_INTRM (1<<10) /* CCB voice interrupts enable */
#define ES_1370_M_CB (1<<9) /* capture clock source; 0 = ADC; 1 = MPEG */
#define ES_1370_XCTL0 (1<<8) /* generap purpose output bit */
#define ES_1371_PDLEV(o) (((o)&0x03)<<8) /* current power down level */
#define ES_1371_PDLEVM (0x03<<8) /* mask for above */
#define ES_BREQ (1<<7) /* memory bus request enable */
#define ES_DAC1_EN (1<<6) /* DAC1 playback channel enable */
#define ES_DAC2_EN (1<<5) /* DAC2 playback channel enable */
#define ES_ADC_EN (1<<4) /* ADC capture channel enable */
#define ES_UART_EN (1<<3) /* UART enable */
#define ES_JYSTK_EN (1<<2) /* Joystick module enable */
#define ES_1370_CDC_EN (1<<1) /* Codec interface enable */
#define ES_1371_XTALCKDIS (1<<1) /* Xtal clock disable */
#define ES_1370_SERR_DISABLE (1<<0) /* PCI serr signal disable */
#define ES_1371_PCICLKDIS (1<<0) /* PCI clock disable */
#define ES_REG_STATUS 0x04 /* R/O: Interrupt/Chip select status register */
#define ES_INTR (1<<31) /* Interrupt is pending */
#define ES_1371_ST_AC97_RST (1<<29) /* CT5880 AC'97 Reset bit */
#define ES_1373_REAR_BIT27 (1<<27) /* rear bits: 000 - front, 010 - mirror, 101 - separate */
#define ES_1373_REAR_BIT26 (1<<26)
#define ES_1373_REAR_BIT24 (1<<24)
#define ES_1373_GPIO_INT_EN(o)(((o)&0x0f)<<20)/* GPIO [3:0] pins - interrupt enable */
#define ES_1373_SPDIF_EN (1<<18) /* SPDIF enable */
#define ES_1373_SPDIF_TEST (1<<17) /* SPDIF test */
#define ES_1371_TEST (1<<16) /* test ASIC */
#define ES_1373_GPIO_INT(i) (((i)&0x0f)>>12)/* GPIO [3:0] pins - interrupt pending */
#define ES_1370_CSTAT (1<<10) /* CODEC is busy or register write in progress */
#define ES_1370_CBUSY (1<<9) /* CODEC is busy */
#define ES_1370_CWRIP (1<<8) /* CODEC register write in progress */
#define ES_1371_SYNC_ERR (1<<8) /* CODEC synchronization error occurred */
#define ES_1371_VC(i) (((i)>>6)&0x03) /* voice code from CCB module */
#define ES_1370_VC(i) (((i)>>5)&0x03) /* voice code from CCB module */
#define ES_1371_MPWR (1<<5) /* power level interrupt pending */
#define ES_MCCB (1<<4) /* CCB interrupt pending */
#define ES_UART (1<<3) /* UART interrupt pending */
#define ES_DAC1 (1<<2) /* DAC1 channel interrupt pending */
#define ES_DAC2 (1<<1) /* DAC2 channel interrupt pending */
#define ES_ADC (1<<0) /* ADC channel interrupt pending */
#define ES_REG_UART_DATA 0x08 /* R/W: UART data register */
#define ES_REG_UART_STATUS 0x09 /* R/O: UART status register */
#define ES_RXINT (1<<7) /* RX interrupt occurred */
#define ES_TXINT (1<<2) /* TX interrupt occurred */
#define ES_TXRDY (1<<1) /* transmitter ready */
#define ES_RXRDY (1<<0) /* receiver ready */
#define ES_REG_UART_CONTROL 0x09 /* W/O: UART control register */
#define ES_RXINTEN (1<<7) /* RX interrupt enable */
#define ES_TXINTENO(o) (((o)&0x03)<<5) /* TX interrupt enable */
#define ES_TXINTENM (0x03<<5) /* mask for above */
#define ES_TXINTENI(i) (((i)>>5)&0x03)
#define ES_CNTRL(o) (((o)&0x03)<<0) /* control */
#define ES_CNTRLM (0x03<<0) /* mask for above */
#define ES_REG_UART_RES 0x0a /* R/W: UART reserver register */
#define ES_TEST_MODE (1<<0) /* test mode enabled */
#define ES_REG_MEM_PAGE 0x0c /* R/W: Memory page register */
#define ES_MEM_PAGEO(o) (((o)&0x0f)<<0) /* memory page select - out */
#define ES_MEM_PAGEM (0x0f<<0) /* mask for above */
#define ES_MEM_PAGEI(i) (((i)>>0)&0x0f) /* memory page select - in */
#define ES_REG_1370_CODEC 0x10 /* W/O: Codec write register address */
#define ES_1370_CODEC_WRITE(a,d) ((((a)&0xff)<<8)|(((d)&0xff)<<0))
#define ES_REG_1371_CODEC 0x14 /* W/R: Codec Read/Write register address */
#define ES_1371_CODEC_RDY (1<<31) /* codec ready */
#define ES_1371_CODEC_WIP (1<<30) /* codec register access in progress */
#define ES_1371_CODEC_PIRD (1<<23) /* codec read/write select register */
#define ES_1371_CODEC_WRITE(a,d) ((((a)&0x7f)<<16)|(((d)&0xffff)<<0))
#define ES_1371_CODEC_READS(a) ((((a)&0x7f)<<16)|ES_1371_CODEC_PIRD)
#define ES_1371_CODEC_READ(i) (((i)>>0)&0xffff)
#define ES_REG_1371_SMPRATE 0x10 /* W/R: Codec rate converter interface register */
#define ES_1371_SRC_RAM_ADDRO(o) (((o)&0x7f)<<25)/* address of the sample rate converter */
#define ES_1371_SRC_RAM_ADDRM (0x7f<<25) /* mask for above */
#define ES_1371_SRC_RAM_ADDRI(i) (((i)>>25)&0x7f)/* address of the sample rate converter */
#define ES_1371_SRC_RAM_WE (1<<24) /* R/W: read/write control for sample rate converter */
#define ES_1371_SRC_RAM_BUSY (1<<23) /* R/O: sample rate memory is busy */
#define ES_1371_SRC_DISABLE (1<<22) /* sample rate converter disable */
#define ES_1371_DIS_P1 (1<<21) /* playback channel 1 accumulator update disable */
#define ES_1371_DIS_P2 (1<<20) /* playback channel 1 accumulator update disable */
#define ES_1371_DIS_R1 (1<<19) /* capture channel accumulator update disable */
#define ES_1371_SRC_RAM_DATAO(o) (((o)&0xffff)<<0)/* current value of the sample rate converter */
#define ES_1371_SRC_RAM_DATAM (0xffff<<0) /* mask for above */
#define ES_1371_SRC_RAM_DATAI(i) (((i)>>0)&0xffff)/* current value of the sample rate converter */
#define ES_REG_1371_LEGACY 0x18 /* W/R: Legacy control/status register */
#define ES_1371_JFAST (1<<31) /* fast joystick timing */
#define ES_1371_HIB (1<<30) /* host interrupt blocking enable */
#define ES_1371_VSB (1<<29) /* SB; 0 = addr 0x220xH, 1 = 0x22FxH */
#define ES_1371_VMPUO(o) (((o)&0x03)<<27)/* base register address; 0 = 0x320xH; 1 = 0x330xH; 2 = 0x340xH; 3 = 0x350xH */
#define ES_1371_VMPUM (0x03<<27) /* mask for above */
#define ES_1371_VMPUI(i) (((i)>>27)&0x03)/* base register address */
#define ES_1371_VCDCO(o) (((o)&0x03)<<25)/* CODEC; 0 = 0x530xH; 1 = undefined; 2 = 0xe80xH; 3 = 0xF40xH */
#define ES_1371_VCDCM (0x03<<25) /* mask for above */
#define ES_1371_VCDCI(i) (((i)>>25)&0x03)/* CODEC address */
#define ES_1371_FIRQ (1<<24) /* force an interrupt */
#define ES_1371_SDMACAP (1<<23) /* enable event capture for slave DMA controller */
#define ES_1371_SPICAP (1<<22) /* enable event capture for slave IRQ controller */
#define ES_1371_MDMACAP (1<<21) /* enable event capture for master DMA controller */
#define ES_1371_MPICAP (1<<20) /* enable event capture for master IRQ controller */
#define ES_1371_ADCAP (1<<19) /* enable event capture for ADLIB register; 0x388xH */
#define ES_1371_SVCAP (1<<18) /* enable event capture for SB registers */
#define ES_1371_CDCCAP (1<<17) /* enable event capture for CODEC registers */
#define ES_1371_BACAP (1<<16) /* enable event capture for SoundScape base address */
#define ES_1371_EXI(i) (((i)>>8)&0x07) /* event number */
#define ES_1371_AI(i) (((i)>>3)&0x1f) /* event significant I/O address */
#define ES_1371_WR (1<<2) /* event capture; 0 = read; 1 = write */
#define ES_1371_LEGINT (1<<0) /* interrupt for legacy events; 0 = interrupt did occur */
#define ES_REG_CHANNEL_STATUS 0x1c /* R/W: first 32-bits from S/PDIF channel status block, es1373 */
#define ES_REG_SERIAL 0x20 /* R/W: Serial interface control register */
#define ES_1371_DAC_TEST (1<<22) /* DAC test mode enable */
#define ES_P2_END_INCO(o) (((o)&0x07)<<19)/* binary offset value to increment / loop end */
#define ES_P2_END_INCM (0x07<<19) /* mask for above */
#define ES_P2_END_INCI(i) (((i)>>16)&0x07)/* binary offset value to increment / loop end */
#define ES_P2_ST_INCO(o) (((o)&0x07)<<16)/* binary offset value to increment / start */
#define ES_P2_ST_INCM (0x07<<16) /* mask for above */
#define ES_P2_ST_INCI(i) (((i)<<16)&0x07)/* binary offset value to increment / start */
#define ES_R1_LOOP_SEL (1<<15) /* ADC; 0 - loop mode; 1 = stop mode */
#define ES_P2_LOOP_SEL (1<<14) /* DAC2; 0 - loop mode; 1 = stop mode */
#define ES_P1_LOOP_SEL (1<<13) /* DAC1; 0 - loop mode; 1 = stop mode */
#define ES_P2_PAUSE (1<<12) /* DAC2; 0 - play mode; 1 = pause mode */
#define ES_P1_PAUSE (1<<11) /* DAC1; 0 - play mode; 1 = pause mode */
#define ES_R1_INT_EN (1<<10) /* ADC interrupt enable */
#define ES_P2_INT_EN (1<<9) /* DAC2 interrupt enable */
#define ES_P1_INT_EN (1<<8) /* DAC1 interrupt enable */
#define ES_P1_SCT_RLD (1<<7) /* force sample counter reload for DAC1 */
#define ES_P2_DAC_SEN (1<<6) /* when stop mode: 0 - DAC2 play back zeros; 1 = DAC2 play back last sample */
#define ES_R1_MODEO(o) (((o)&0x03)<<4) /* ADC mode; 0 = 8-bit mono; 1 = 8-bit stereo; 2 = 16-bit mono; 3 = 16-bit stereo */
#define ES_R1_MODEM (0x03<<4) /* mask for above */
#define ES_R1_MODEI(i) (((i)>>4)&0x03)
#define ES_P2_MODEO(o) (((o)&0x03)<<2) /* DAC2 mode; -- '' -- */
#define ES_P2_MODEM (0x03<<2) /* mask for above */
#define ES_P2_MODEI(i) (((i)>>2)&0x03)
#define ES_P1_MODEO(o) (((o)&0x03)<<0) /* DAC1 mode; -- '' -- */
#define ES_P1_MODEM (0x03<<0) /* mask for above */
#define ES_P1_MODEI(i) (((i)>>0)&0x03)
#define ES_REG_DAC1_COUNT 0x24 /* R/W: DAC1 sample count register */
#define ES_REG_DAC2_COUNT 0x28 /* R/W: DAC2 sample count register */
#define ES_REG_ADC_COUNT 0x2c /* R/W: ADC sample count register */
#define ES_REG_CURR_COUNT(i) (((i)>>16)&0xffff)
#define ES_REG_COUNTO(o) (((o)&0xffff)<<0)
#define ES_REG_COUNTM (0xffff<<0)
#define ES_REG_COUNTI(i) (((i)>>0)&0xffff)
#define ES_REG_DAC1_FRAME 0x30 /* R/W: PAGE 0x0c; DAC1 frame address */
#define ES_REG_DAC1_SIZE 0x34 /* R/W: PAGE 0x0c; DAC1 frame size */
#define ES_REG_DAC2_FRAME 0x38 /* R/W: PAGE 0x0c; DAC2 frame address */
#define ES_REG_DAC2_SIZE 0x3c /* R/W: PAGE 0x0c; DAC2 frame size */
#define ES_REG_ADC_FRAME 0x30 /* R/W: PAGE 0x0d; ADC frame address */
#define ES_REG_ADC_SIZE 0x34 /* R/W: PAGE 0x0d; ADC frame size */
#define ES_REG_FCURR_COUNTO(o) (((o)&0xffff)<<16)
#define ES_REG_FCURR_COUNTM (0xffff<<16)
#define ES_REG_FCURR_COUNTI(i) (((i)>>14)&0x3fffc)
#define ES_REG_FSIZEO(o) (((o)&0xffff)<<0)
#define ES_REG_FSIZEM (0xffff<<0)
#define ES_REG_FSIZEI(i) (((i)>>0)&0xffff)
#define ES_REG_PHANTOM_FRAME 0x38 /* R/W: PAGE 0x0d: phantom frame address */
#define ES_REG_PHANTOM_COUNT 0x3c /* R/W: PAGE 0x0d: phantom frame count */
#define ES_REG_UART_FIFO 0x30 /* R/W: PAGE 0x0e; UART FIFO register */
#define ES_REG_UF_VALID (1<<8)
#define ES_REG_UF_BYTEO(o) (((o)&0xff)<<0)
#define ES_REG_UF_BYTEM (0xff<<0)
#define ES_REG_UF_BYTEI(i) (((i)>>0)&0xff)
/*
* Pages
*/
#define ES_PAGE_DAC 0x0c
#define ES_PAGE_ADC 0x0d
#define ES_PAGE_UART 0x0e
#define ES_PAGE_UART1 0x0f
/*
* Sample rate converter addresses
*/
#define ES_SMPREG_DAC1 0x70
#define ES_SMPREG_DAC2 0x74
#define ES_SMPREG_ADC 0x78
#define ES_SMPREG_VOL_ADC 0x6c
#define ES_SMPREG_VOL_DAC1 0x7c
#define ES_SMPREG_VOL_DAC2 0x7e
#define ES_SMPREG_TRUNC_N 0x00
#define ES_SMPREG_INT_REGS 0x01
#define ES_SMPREG_ACCUM_FRAC 0x02
#define ES_SMPREG_VFREQ_FRAC 0x03
/*
* Some contants
*/
#define ES_1370_SRCLOCK 1411200
#define ES_1370_SRTODIV(x) (ES_1370_SRCLOCK/(x)-2)
/*
* Open modes
*/
#define ES_MODE_PLAY1 0x0001
#define ES_MODE_PLAY2 0x0002
#define ES_MODE_CAPTURE 0x0004
#define ES_MODE_OUTPUT 0x0001 /* for MIDI */
#define ES_MODE_INPUT 0x0002 /* for MIDI */
/*
*/
struct ensoniq {
spinlock_t reg_lock;
struct mutex src_mutex;
int irq;
unsigned long playback1size;
unsigned long playback2size;
unsigned long capture3size;
unsigned long port;
unsigned int mode;
unsigned int uartm; /* UART mode */
unsigned int ctrl; /* control register */
unsigned int sctrl; /* serial control register */
unsigned int cssr; /* control status register */
unsigned int uartc; /* uart control register */
unsigned int rev; /* chip revision */
union {
#ifdef CHIP1371
struct {
struct snd_ac97 *ac97;
} es1371;
#else
struct {
int pclkdiv_lock;
struct snd_ak4531 *ak4531;
} es1370;
#endif
} u;
struct pci_dev *pci;
struct snd_card *card;
struct snd_pcm *pcm1; /* DAC1/ADC PCM */
struct snd_pcm *pcm2; /* DAC2 PCM */
struct snd_pcm_substream *playback1_substream;
struct snd_pcm_substream *playback2_substream;
struct snd_pcm_substream *capture_substream;
unsigned int p1_dma_size;
unsigned int p2_dma_size;
unsigned int c_dma_size;
unsigned int p1_period_size;
unsigned int p2_period_size;
unsigned int c_period_size;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *midi_input;
struct snd_rawmidi_substream *midi_output;
unsigned int spdif;
unsigned int spdif_default;
unsigned int spdif_stream;
#ifdef CHIP1370
struct snd_dma_buffer dma_bug;
#endif
#ifdef SUPPORT_JOYSTICK
struct gameport *gameport;
#endif
};
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id);
static struct pci_device_id snd_audiopci_ids[] = {
#ifdef CHIP1370
{ 0x1274, 0x5000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ES1370 */
#endif
#ifdef CHIP1371
{ 0x1274, 0x1371, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ES1371 */
{ 0x1274, 0x5880, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ES1373 - CT5880 */
{ 0x1102, 0x8938, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* Ectiva EV1938 */
#endif
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_audiopci_ids);
/*
* constants
*/
#define POLL_COUNT 0xa000
#ifdef CHIP1370
static unsigned int snd_es1370_fixed_rates[] =
{5512, 11025, 22050, 44100};
static struct snd_pcm_hw_constraint_list snd_es1370_hw_constraints_rates = {
.count = 4,
.list = snd_es1370_fixed_rates,
.mask = 0,
};
static struct snd_ratnum es1370_clock = {
.num = ES_1370_SRCLOCK,
.den_min = 29,
.den_max = 353,
.den_step = 1,
};
static struct snd_pcm_hw_constraint_ratnums snd_es1370_hw_constraints_clock = {
.nrats = 1,
.rats = &es1370_clock,
};
#else
static struct snd_ratden es1371_dac_clock = {
.num_min = 3000 * (1 << 15),
.num_max = 48000 * (1 << 15),
.num_step = 3000,
.den = 1 << 15,
};
static struct snd_pcm_hw_constraint_ratdens snd_es1371_hw_constraints_dac_clock = {
.nrats = 1,
.rats = &es1371_dac_clock,
};
static struct snd_ratnum es1371_adc_clock = {
.num = 48000 << 15,
.den_min = 32768,
.den_max = 393216,
.den_step = 1,
};
static struct snd_pcm_hw_constraint_ratnums snd_es1371_hw_constraints_adc_clock = {
.nrats = 1,
.rats = &es1371_adc_clock,
};
#endif
static const unsigned int snd_ensoniq_sample_shift[] =
{0, 1, 1, 2};
/*
* common I/O routines
*/
#ifdef CHIP1371
static unsigned int snd_es1371_wait_src_ready(struct ensoniq * ensoniq)
{
unsigned int t, r = 0;
for (t = 0; t < POLL_COUNT; t++) {
r = inl(ES_REG(ensoniq, 1371_SMPRATE));
if ((r & ES_1371_SRC_RAM_BUSY) == 0)
return r;
cond_resched();
}
snd_printk(KERN_ERR "wait source ready timeout 0x%lx [0x%x]\n",
ES_REG(ensoniq, 1371_SMPRATE), r);
return 0;
}
static unsigned int snd_es1371_src_read(struct ensoniq * ensoniq, unsigned short reg)
{
unsigned int temp, i, orig, r;
/* wait for ready */
temp = orig = snd_es1371_wait_src_ready(ensoniq);
/* expose the SRC state bits */
r = temp & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 |
ES_1371_DIS_P2 | ES_1371_DIS_R1);
r |= ES_1371_SRC_RAM_ADDRO(reg) | 0x10000;
outl(r, ES_REG(ensoniq, 1371_SMPRATE));
/* now, wait for busy and the correct time to read */
temp = snd_es1371_wait_src_ready(ensoniq);
if ((temp & 0x00870000) != 0x00010000) {
/* wait for the right state */
for (i = 0; i < POLL_COUNT; i++) {
temp = inl(ES_REG(ensoniq, 1371_SMPRATE));
if ((temp & 0x00870000) == 0x00010000)
break;
}
}
/* hide the state bits */
r = orig & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 |
ES_1371_DIS_P2 | ES_1371_DIS_R1);
r |= ES_1371_SRC_RAM_ADDRO(reg);
outl(r, ES_REG(ensoniq, 1371_SMPRATE));
return temp;
}
static void snd_es1371_src_write(struct ensoniq * ensoniq,
unsigned short reg, unsigned short data)
{
unsigned int r;
r = snd_es1371_wait_src_ready(ensoniq) &
(ES_1371_SRC_DISABLE | ES_1371_DIS_P1 |
ES_1371_DIS_P2 | ES_1371_DIS_R1);
r |= ES_1371_SRC_RAM_ADDRO(reg) | ES_1371_SRC_RAM_DATAO(data);
outl(r | ES_1371_SRC_RAM_WE, ES_REG(ensoniq, 1371_SMPRATE));
}
#endif /* CHIP1371 */
#ifdef CHIP1370
static void snd_es1370_codec_write(struct snd_ak4531 *ak4531,
unsigned short reg, unsigned short val)
{
struct ensoniq *ensoniq = ak4531->private_data;
unsigned long end_time = jiffies + HZ / 10;
#if 0
printk("CODEC WRITE: reg = 0x%x, val = 0x%x (0x%x), creg = 0x%x\n",
reg, val, ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC));
#endif
do {
if (!(inl(ES_REG(ensoniq, STATUS)) & ES_1370_CSTAT)) {
outw(ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC));
return;
}
schedule_timeout_uninterruptible(1);
} while (time_after(end_time, jiffies));
snd_printk(KERN_ERR "codec write timeout, status = 0x%x\n",
inl(ES_REG(ensoniq, STATUS)));
}
#endif /* CHIP1370 */
#ifdef CHIP1371
static void snd_es1371_codec_write(struct snd_ac97 *ac97,
unsigned short reg, unsigned short val)
{
struct ensoniq *ensoniq = ac97->private_data;
unsigned int t, x;
mutex_lock(&ensoniq->src_mutex);
for (t = 0; t < POLL_COUNT; t++) {
if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) {
/* save the current state for latter */
x = snd_es1371_wait_src_ready(ensoniq);
outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 |
ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000,
ES_REG(ensoniq, 1371_SMPRATE));
/* wait for not busy (state 0) first to avoid
transition states */
for (t = 0; t < POLL_COUNT; t++) {
if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) ==
0x00000000)
break;
}
/* wait for a SAFE time to write addr/data and then do it, dammit */
for (t = 0; t < POLL_COUNT; t++) {
if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) ==
0x00010000)
break;
}
outl(ES_1371_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1371_CODEC));
/* restore SRC reg */
snd_es1371_wait_src_ready(ensoniq);
outl(x, ES_REG(ensoniq, 1371_SMPRATE));
mutex_unlock(&ensoniq->src_mutex);
return;
}
}
mutex_unlock(&ensoniq->src_mutex);
snd_printk(KERN_ERR "codec write timeout at 0x%lx [0x%x]\n",
ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC)));
}
static unsigned short snd_es1371_codec_read(struct snd_ac97 *ac97,
unsigned short reg)
{
struct ensoniq *ensoniq = ac97->private_data;
unsigned int t, x, fail = 0;
__again:
mutex_lock(&ensoniq->src_mutex);
for (t = 0; t < POLL_COUNT; t++) {
if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) {
/* save the current state for latter */
x = snd_es1371_wait_src_ready(ensoniq);
outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 |
ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000,
ES_REG(ensoniq, 1371_SMPRATE));
/* wait for not busy (state 0) first to avoid
transition states */
for (t = 0; t < POLL_COUNT; t++) {
if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) ==
0x00000000)
break;
}
/* wait for a SAFE time to write addr/data and then do it, dammit */
for (t = 0; t < POLL_COUNT; t++) {
if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) ==
0x00010000)
break;
}
outl(ES_1371_CODEC_READS(reg), ES_REG(ensoniq, 1371_CODEC));
/* restore SRC reg */
snd_es1371_wait_src_ready(ensoniq);
outl(x, ES_REG(ensoniq, 1371_SMPRATE));
/* wait for WIP again */
for (t = 0; t < POLL_COUNT; t++) {
if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP))
break;
}
/* now wait for the stinkin' data (RDY) */
for (t = 0; t < POLL_COUNT; t++) {
if ((x = inl(ES_REG(ensoniq, 1371_CODEC))) & ES_1371_CODEC_RDY) {
mutex_unlock(&ensoniq->src_mutex);
return ES_1371_CODEC_READ(x);
}
}
mutex_unlock(&ensoniq->src_mutex);
if (++fail > 10) {
snd_printk(KERN_ERR "codec read timeout (final) "
"at 0x%lx, reg = 0x%x [0x%x]\n",
ES_REG(ensoniq, 1371_CODEC), reg,
inl(ES_REG(ensoniq, 1371_CODEC)));
return 0;
}
goto __again;
}
}
mutex_unlock(&ensoniq->src_mutex);
snd_printk(KERN_ERR "es1371: codec read timeout at 0x%lx [0x%x]\n",
ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC)));
return 0;
}
static void snd_es1371_codec_wait(struct snd_ac97 *ac97)
{
msleep(750);
snd_es1371_codec_read(ac97, AC97_RESET);
snd_es1371_codec_read(ac97, AC97_VENDOR_ID1);
snd_es1371_codec_read(ac97, AC97_VENDOR_ID2);
msleep(50);
}
static void snd_es1371_adc_rate(struct ensoniq * ensoniq, unsigned int rate)
{
unsigned int n, truncm, freq, result;
mutex_lock(&ensoniq->src_mutex);
n = rate / 3000;
if ((1 << n) & ((1 << 15) | (1 << 13) | (1 << 11) | (1 << 9)))
n--;
truncm = (21 * n - 1) | 1;
freq = ((48000UL << 15) / rate) * n;
result = (48000UL << 15) / (freq / n);
if (rate >= 24000) {
if (truncm > 239)
truncm = 239;
snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N,
(((239 - truncm) >> 1) << 9) | (n << 4));
} else {
if (truncm > 119)
truncm = 119;
snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N,
0x8000 | (((119 - truncm) >> 1) << 9) | (n << 4));
}
snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_INT_REGS,
(snd_es1371_src_read(ensoniq, ES_SMPREG_ADC +
ES_SMPREG_INT_REGS) & 0x00ff) |
((freq >> 5) & 0xfc00));
snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, n << 8);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, n << 8);
mutex_unlock(&ensoniq->src_mutex);
}
static void snd_es1371_dac1_rate(struct ensoniq * ensoniq, unsigned int rate)
{
unsigned int freq, r;
mutex_lock(&ensoniq->src_mutex);
freq = ((rate << 15) + 1500) / 3000;
r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE |
ES_1371_DIS_P2 | ES_1371_DIS_R1)) |
ES_1371_DIS_P1;
outl(r, ES_REG(ensoniq, 1371_SMPRATE));
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS,
(snd_es1371_src_read(ensoniq, ES_SMPREG_DAC1 +
ES_SMPREG_INT_REGS) & 0x00ff) |
((freq >> 5) & 0xfc00));
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff);
r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE |
ES_1371_DIS_P2 | ES_1371_DIS_R1));
outl(r, ES_REG(ensoniq, 1371_SMPRATE));
mutex_unlock(&ensoniq->src_mutex);
}
static void snd_es1371_dac2_rate(struct ensoniq * ensoniq, unsigned int rate)
{
unsigned int freq, r;
mutex_lock(&ensoniq->src_mutex);
freq = ((rate << 15) + 1500) / 3000;
r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE |
ES_1371_DIS_P1 | ES_1371_DIS_R1)) |
ES_1371_DIS_P2;
outl(r, ES_REG(ensoniq, 1371_SMPRATE));
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS,
(snd_es1371_src_read(ensoniq, ES_SMPREG_DAC2 +
ES_SMPREG_INT_REGS) & 0x00ff) |
((freq >> 5) & 0xfc00));
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_VFREQ_FRAC,
freq & 0x7fff);
r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE |
ES_1371_DIS_P1 | ES_1371_DIS_R1));
outl(r, ES_REG(ensoniq, 1371_SMPRATE));
mutex_unlock(&ensoniq->src_mutex);
}
#endif /* CHIP1371 */
static int snd_ensoniq_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
{
unsigned int what = 0;
struct snd_pcm_substream *s;
snd_pcm_group_for_each_entry(s, substream) {
if (s == ensoniq->playback1_substream) {
what |= ES_P1_PAUSE;
snd_pcm_trigger_done(s, substream);
} else if (s == ensoniq->playback2_substream) {
what |= ES_P2_PAUSE;
snd_pcm_trigger_done(s, substream);
} else if (s == ensoniq->capture_substream)
return -EINVAL;
}
spin_lock(&ensoniq->reg_lock);
if (cmd == SNDRV_PCM_TRIGGER_PAUSE_PUSH)
ensoniq->sctrl |= what;
else
ensoniq->sctrl &= ~what;
outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL));
spin_unlock(&ensoniq->reg_lock);
break;
}
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_STOP:
{
unsigned int what = 0;
struct snd_pcm_substream *s;
snd_pcm_group_for_each_entry(s, substream) {
if (s == ensoniq->playback1_substream) {
what |= ES_DAC1_EN;
snd_pcm_trigger_done(s, substream);
} else if (s == ensoniq->playback2_substream) {
what |= ES_DAC2_EN;
snd_pcm_trigger_done(s, substream);
} else if (s == ensoniq->capture_substream) {
what |= ES_ADC_EN;
snd_pcm_trigger_done(s, substream);
}
}
spin_lock(&ensoniq->reg_lock);
if (cmd == SNDRV_PCM_TRIGGER_START)
ensoniq->ctrl |= what;
else
ensoniq->ctrl &= ~what;
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
spin_unlock(&ensoniq->reg_lock);
break;
}
default:
return -EINVAL;
}
return 0;
}
/*
* PCM part
*/
static int snd_ensoniq_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_ensoniq_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int snd_ensoniq_playback1_prepare(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int mode = 0;
ensoniq->p1_dma_size = snd_pcm_lib_buffer_bytes(substream);
ensoniq->p1_period_size = snd_pcm_lib_period_bytes(substream);
if (snd_pcm_format_width(runtime->format) == 16)
mode |= 0x02;
if (runtime->channels > 1)
mode |= 0x01;
spin_lock_irq(&ensoniq->reg_lock);
ensoniq->ctrl &= ~ES_DAC1_EN;
#ifdef CHIP1371
/* 48k doesn't need SRC (it breaks AC3-passthru) */
if (runtime->rate == 48000)
ensoniq->ctrl |= ES_1373_BYPASS_P1;
else
ensoniq->ctrl &= ~ES_1373_BYPASS_P1;
#endif
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE));
outl(runtime->dma_addr, ES_REG(ensoniq, DAC1_FRAME));
outl((ensoniq->p1_dma_size >> 2) - 1, ES_REG(ensoniq, DAC1_SIZE));
ensoniq->sctrl &= ~(ES_P1_LOOP_SEL | ES_P1_PAUSE | ES_P1_SCT_RLD | ES_P1_MODEM);
ensoniq->sctrl |= ES_P1_INT_EN | ES_P1_MODEO(mode);
outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL));
outl((ensoniq->p1_period_size >> snd_ensoniq_sample_shift[mode]) - 1,
ES_REG(ensoniq, DAC1_COUNT));
#ifdef CHIP1370
ensoniq->ctrl &= ~ES_1370_WTSRSELM;
switch (runtime->rate) {
case 5512: ensoniq->ctrl |= ES_1370_WTSRSEL(0); break;
case 11025: ensoniq->ctrl |= ES_1370_WTSRSEL(1); break;
case 22050: ensoniq->ctrl |= ES_1370_WTSRSEL(2); break;
case 44100: ensoniq->ctrl |= ES_1370_WTSRSEL(3); break;
default: snd_BUG();
}
#endif
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
spin_unlock_irq(&ensoniq->reg_lock);
#ifndef CHIP1370
snd_es1371_dac1_rate(ensoniq, runtime->rate);
#endif
return 0;
}
static int snd_ensoniq_playback2_prepare(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int mode = 0;
ensoniq->p2_dma_size = snd_pcm_lib_buffer_bytes(substream);
ensoniq->p2_period_size = snd_pcm_lib_period_bytes(substream);
if (snd_pcm_format_width(runtime->format) == 16)
mode |= 0x02;
if (runtime->channels > 1)
mode |= 0x01;
spin_lock_irq(&ensoniq->reg_lock);
ensoniq->ctrl &= ~ES_DAC2_EN;
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE));
outl(runtime->dma_addr, ES_REG(ensoniq, DAC2_FRAME));
outl((ensoniq->p2_dma_size >> 2) - 1, ES_REG(ensoniq, DAC2_SIZE));
ensoniq->sctrl &= ~(ES_P2_LOOP_SEL | ES_P2_PAUSE | ES_P2_DAC_SEN |
ES_P2_END_INCM | ES_P2_ST_INCM | ES_P2_MODEM);
ensoniq->sctrl |= ES_P2_INT_EN | ES_P2_MODEO(mode) |
ES_P2_END_INCO(mode & 2 ? 2 : 1) | ES_P2_ST_INCO(0);
outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL));
outl((ensoniq->p2_period_size >> snd_ensoniq_sample_shift[mode]) - 1,
ES_REG(ensoniq, DAC2_COUNT));
#ifdef CHIP1370
if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_CAPTURE)) {
ensoniq->ctrl &= ~ES_1370_PCLKDIVM;
ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate));
ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_PLAY2;
}
#endif
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
spin_unlock_irq(&ensoniq->reg_lock);
#ifndef CHIP1370
snd_es1371_dac2_rate(ensoniq, runtime->rate);
#endif
return 0;
}
static int snd_ensoniq_capture_prepare(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int mode = 0;
ensoniq->c_dma_size = snd_pcm_lib_buffer_bytes(substream);
ensoniq->c_period_size = snd_pcm_lib_period_bytes(substream);
if (snd_pcm_format_width(runtime->format) == 16)
mode |= 0x02;
if (runtime->channels > 1)
mode |= 0x01;
spin_lock_irq(&ensoniq->reg_lock);
ensoniq->ctrl &= ~ES_ADC_EN;
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE));
outl(runtime->dma_addr, ES_REG(ensoniq, ADC_FRAME));
outl((ensoniq->c_dma_size >> 2) - 1, ES_REG(ensoniq, ADC_SIZE));
ensoniq->sctrl &= ~(ES_R1_LOOP_SEL | ES_R1_MODEM);
ensoniq->sctrl |= ES_R1_INT_EN | ES_R1_MODEO(mode);
outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL));
outl((ensoniq->c_period_size >> snd_ensoniq_sample_shift[mode]) - 1,
ES_REG(ensoniq, ADC_COUNT));
#ifdef CHIP1370
if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_PLAY2)) {
ensoniq->ctrl &= ~ES_1370_PCLKDIVM;
ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate));
ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_CAPTURE;
}
#endif
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
spin_unlock_irq(&ensoniq->reg_lock);
#ifndef CHIP1370
snd_es1371_adc_rate(ensoniq, runtime->rate);
#endif
return 0;
}
static snd_pcm_uframes_t snd_ensoniq_playback1_pointer(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
size_t ptr;
spin_lock(&ensoniq->reg_lock);
if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC1_EN) {
outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE));
ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC1_SIZE)));
ptr = bytes_to_frames(substream->runtime, ptr);
} else {
ptr = 0;
}
spin_unlock(&ensoniq->reg_lock);
return ptr;
}
static snd_pcm_uframes_t snd_ensoniq_playback2_pointer(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
size_t ptr;
spin_lock(&ensoniq->reg_lock);
if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC2_EN) {
outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE));
ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC2_SIZE)));
ptr = bytes_to_frames(substream->runtime, ptr);
} else {
ptr = 0;
}
spin_unlock(&ensoniq->reg_lock);
return ptr;
}
static snd_pcm_uframes_t snd_ensoniq_capture_pointer(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
size_t ptr;
spin_lock(&ensoniq->reg_lock);
if (inl(ES_REG(ensoniq, CONTROL)) & ES_ADC_EN) {
outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE));
ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, ADC_SIZE)));
ptr = bytes_to_frames(substream->runtime, ptr);
} else {
ptr = 0;
}
spin_unlock(&ensoniq->reg_lock);
return ptr;
}
static struct snd_pcm_hardware snd_ensoniq_playback1 =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates =
#ifndef CHIP1370
SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
#else
(SNDRV_PCM_RATE_KNOT | /* 5512Hz rate */
SNDRV_PCM_RATE_11025 | SNDRV_PCM_RATE_22050 |
SNDRV_PCM_RATE_44100),
#endif
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_ensoniq_playback2 =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_START),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_ensoniq_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static int snd_ensoniq_playback1_open(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
ensoniq->mode |= ES_MODE_PLAY1;
ensoniq->playback1_substream = substream;
runtime->hw = snd_ensoniq_playback1;
snd_pcm_set_sync(substream);
spin_lock_irq(&ensoniq->reg_lock);
if (ensoniq->spdif && ensoniq->playback2_substream == NULL)
ensoniq->spdif_stream = ensoniq->spdif_default;
spin_unlock_irq(&ensoniq->reg_lock);
#ifdef CHIP1370
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&snd_es1370_hw_constraints_rates);
#else
snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&snd_es1371_hw_constraints_dac_clock);
#endif
return 0;
}
static int snd_ensoniq_playback2_open(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
ensoniq->mode |= ES_MODE_PLAY2;
ensoniq->playback2_substream = substream;
runtime->hw = snd_ensoniq_playback2;
snd_pcm_set_sync(substream);
spin_lock_irq(&ensoniq->reg_lock);
if (ensoniq->spdif && ensoniq->playback1_substream == NULL)
ensoniq->spdif_stream = ensoniq->spdif_default;
spin_unlock_irq(&ensoniq->reg_lock);
#ifdef CHIP1370
snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&snd_es1370_hw_constraints_clock);
#else
snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&snd_es1371_hw_constraints_dac_clock);
#endif
return 0;
}
static int snd_ensoniq_capture_open(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
ensoniq->mode |= ES_MODE_CAPTURE;
ensoniq->capture_substream = substream;
runtime->hw = snd_ensoniq_capture;
snd_pcm_set_sync(substream);
#ifdef CHIP1370
snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&snd_es1370_hw_constraints_clock);
#else
snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&snd_es1371_hw_constraints_adc_clock);
#endif
return 0;
}
static int snd_ensoniq_playback1_close(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
ensoniq->playback1_substream = NULL;
ensoniq->mode &= ~ES_MODE_PLAY1;
return 0;
}
static int snd_ensoniq_playback2_close(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
ensoniq->playback2_substream = NULL;
spin_lock_irq(&ensoniq->reg_lock);
#ifdef CHIP1370
ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_PLAY2;
#endif
ensoniq->mode &= ~ES_MODE_PLAY2;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_ensoniq_capture_close(struct snd_pcm_substream *substream)
{
struct ensoniq *ensoniq = snd_pcm_substream_chip(substream);
ensoniq->capture_substream = NULL;
spin_lock_irq(&ensoniq->reg_lock);
#ifdef CHIP1370
ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_CAPTURE;
#endif
ensoniq->mode &= ~ES_MODE_CAPTURE;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static struct snd_pcm_ops snd_ensoniq_playback1_ops = {
.open = snd_ensoniq_playback1_open,
.close = snd_ensoniq_playback1_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ensoniq_hw_params,
.hw_free = snd_ensoniq_hw_free,
.prepare = snd_ensoniq_playback1_prepare,
.trigger = snd_ensoniq_trigger,
.pointer = snd_ensoniq_playback1_pointer,
};
static struct snd_pcm_ops snd_ensoniq_playback2_ops = {
.open = snd_ensoniq_playback2_open,
.close = snd_ensoniq_playback2_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ensoniq_hw_params,
.hw_free = snd_ensoniq_hw_free,
.prepare = snd_ensoniq_playback2_prepare,
.trigger = snd_ensoniq_trigger,
.pointer = snd_ensoniq_playback2_pointer,
};
static struct snd_pcm_ops snd_ensoniq_capture_ops = {
.open = snd_ensoniq_capture_open,
.close = snd_ensoniq_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ensoniq_hw_params,
.hw_free = snd_ensoniq_hw_free,
.prepare = snd_ensoniq_capture_prepare,
.trigger = snd_ensoniq_trigger,
.pointer = snd_ensoniq_capture_pointer,
};
static int __devinit snd_ensoniq_pcm(struct ensoniq * ensoniq, int device,
struct snd_pcm ** rpcm)
{
struct snd_pcm *pcm;
int err;
if (rpcm)
*rpcm = NULL;
#ifdef CHIP1370
err = snd_pcm_new(ensoniq->card, "ES1370/1", device, 1, 1, &pcm);
#else
err = snd_pcm_new(ensoniq->card, "ES1371/1", device, 1, 1, &pcm);
#endif
if (err < 0)
return err;
#ifdef CHIP1370
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops);
#else
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops);
#endif
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ensoniq_capture_ops);
pcm->private_data = ensoniq;
pcm->info_flags = 0;
#ifdef CHIP1370
strcpy(pcm->name, "ES1370 DAC2/ADC");
#else
strcpy(pcm->name, "ES1371 DAC2/ADC");
#endif
ensoniq->pcm1 = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(ensoniq->pci), 64*1024, 128*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
static int __devinit snd_ensoniq_pcm2(struct ensoniq * ensoniq, int device,
struct snd_pcm ** rpcm)
{
struct snd_pcm *pcm;
int err;
if (rpcm)
*rpcm = NULL;
#ifdef CHIP1370
err = snd_pcm_new(ensoniq->card, "ES1370/2", device, 1, 0, &pcm);
#else
err = snd_pcm_new(ensoniq->card, "ES1371/2", device, 1, 0, &pcm);
#endif
if (err < 0)
return err;
#ifdef CHIP1370
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops);
#else
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops);
#endif
pcm->private_data = ensoniq;
pcm->info_flags = 0;
#ifdef CHIP1370
strcpy(pcm->name, "ES1370 DAC1");
#else
strcpy(pcm->name, "ES1371 DAC1");
#endif
ensoniq->pcm2 = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(ensoniq->pci), 64*1024, 128*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
/*
* Mixer section
*/
/*
* ENS1371 mixer (including SPDIF interface)
*/
#ifdef CHIP1371
static int snd_ens1373_spdif_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ens1373_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&ensoniq->reg_lock);
ucontrol->value.iec958.status[0] = (ensoniq->spdif_default >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (ensoniq->spdif_default >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (ensoniq->spdif_default >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (ensoniq->spdif_default >> 24) & 0xff;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_ens1373_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ((u32)ucontrol->value.iec958.status[0] << 0) |
((u32)ucontrol->value.iec958.status[1] << 8) |
((u32)ucontrol->value.iec958.status[2] << 16) |
((u32)ucontrol->value.iec958.status[3] << 24);
spin_lock_irq(&ensoniq->reg_lock);
change = ensoniq->spdif_default != val;
ensoniq->spdif_default = val;
if (change && ensoniq->playback1_substream == NULL &&
ensoniq->playback2_substream == NULL)
outl(val, ES_REG(ensoniq, CHANNEL_STATUS));
spin_unlock_irq(&ensoniq->reg_lock);
return change;
}
static int snd_ens1373_spdif_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static int snd_ens1373_spdif_stream_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&ensoniq->reg_lock);
ucontrol->value.iec958.status[0] = (ensoniq->spdif_stream >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (ensoniq->spdif_stream >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (ensoniq->spdif_stream >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (ensoniq->spdif_stream >> 24) & 0xff;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_ens1373_spdif_stream_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ((u32)ucontrol->value.iec958.status[0] << 0) |
((u32)ucontrol->value.iec958.status[1] << 8) |
((u32)ucontrol->value.iec958.status[2] << 16) |
((u32)ucontrol->value.iec958.status[3] << 24);
spin_lock_irq(&ensoniq->reg_lock);
change = ensoniq->spdif_stream != val;
ensoniq->spdif_stream = val;
if (change && (ensoniq->playback1_substream != NULL ||
ensoniq->playback2_substream != NULL))
outl(val, ES_REG(ensoniq, CHANNEL_STATUS));
spin_unlock_irq(&ensoniq->reg_lock);
return change;
}
#define ES1371_SPDIF(xname) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_es1371_spdif_info, \
.get = snd_es1371_spdif_get, .put = snd_es1371_spdif_put }
#define snd_es1371_spdif_info snd_ctl_boolean_mono_info
static int snd_es1371_spdif_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&ensoniq->reg_lock);
ucontrol->value.integer.value[0] = ensoniq->ctrl & ES_1373_SPDIF_THRU ? 1 : 0;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_es1371_spdif_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
unsigned int nval1, nval2;
int change;
nval1 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_THRU : 0;
nval2 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_EN : 0;
spin_lock_irq(&ensoniq->reg_lock);
change = (ensoniq->ctrl & ES_1373_SPDIF_THRU) != nval1;
ensoniq->ctrl &= ~ES_1373_SPDIF_THRU;
ensoniq->ctrl |= nval1;
ensoniq->cssr &= ~ES_1373_SPDIF_EN;
ensoniq->cssr |= nval2;
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
outl(ensoniq->cssr, ES_REG(ensoniq, STATUS));
spin_unlock_irq(&ensoniq->reg_lock);
return change;
}
/* spdif controls */
static struct snd_kcontrol_new snd_es1371_mixer_spdif[] __devinitdata = {
ES1371_SPDIF(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH)),
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_ens1373_spdif_info,
.get = snd_ens1373_spdif_default_get,
.put = snd_ens1373_spdif_default_put,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
.info = snd_ens1373_spdif_info,
.get = snd_ens1373_spdif_mask_get
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
.info = snd_ens1373_spdif_info,
.get = snd_ens1373_spdif_stream_get,
.put = snd_ens1373_spdif_stream_put
},
};
#define snd_es1373_rear_info snd_ctl_boolean_mono_info
static int snd_es1373_rear_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
int val = 0;
spin_lock_irq(&ensoniq->reg_lock);
if ((ensoniq->cssr & (ES_1373_REAR_BIT27|ES_1373_REAR_BIT26|
ES_1373_REAR_BIT24)) == ES_1373_REAR_BIT26)
val = 1;
ucontrol->value.integer.value[0] = val;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_es1373_rear_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
unsigned int nval1;
int change;
nval1 = ucontrol->value.integer.value[0] ?
ES_1373_REAR_BIT26 : (ES_1373_REAR_BIT27|ES_1373_REAR_BIT24);
spin_lock_irq(&ensoniq->reg_lock);
change = (ensoniq->cssr & (ES_1373_REAR_BIT27|
ES_1373_REAR_BIT26|ES_1373_REAR_BIT24)) != nval1;
ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT26|ES_1373_REAR_BIT24);
ensoniq->cssr |= nval1;
outl(ensoniq->cssr, ES_REG(ensoniq, STATUS));
spin_unlock_irq(&ensoniq->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_ens1373_rear __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "AC97 2ch->4ch Copy Switch",
.info = snd_es1373_rear_info,
.get = snd_es1373_rear_get,
.put = snd_es1373_rear_put,
};
#define snd_es1373_line_info snd_ctl_boolean_mono_info
static int snd_es1373_line_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
int val = 0;
spin_lock_irq(&ensoniq->reg_lock);
if ((ensoniq->ctrl & ES_1371_GPIO_OUTM) >= 4)
val = 1;
ucontrol->value.integer.value[0] = val;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_es1373_line_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
int changed;
unsigned int ctrl;
spin_lock_irq(&ensoniq->reg_lock);
ctrl = ensoniq->ctrl;
if (ucontrol->value.integer.value[0])
ensoniq->ctrl |= ES_1371_GPIO_OUT(4); /* switch line-in -> rear out */
else
ensoniq->ctrl &= ~ES_1371_GPIO_OUT(4);
changed = (ctrl != ensoniq->ctrl);
if (changed)
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
spin_unlock_irq(&ensoniq->reg_lock);
return changed;
}
static struct snd_kcontrol_new snd_ens1373_line __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Line In->Rear Out Switch",
.info = snd_es1373_line_info,
.get = snd_es1373_line_get,
.put = snd_es1373_line_put,
};
static void snd_ensoniq_mixer_free_ac97(struct snd_ac97 *ac97)
{
struct ensoniq *ensoniq = ac97->private_data;
ensoniq->u.es1371.ac97 = NULL;
}
struct es1371_quirk {
unsigned short vid; /* vendor ID */
unsigned short did; /* device ID */
unsigned char rev; /* revision */
};
static int es1371_quirk_lookup(struct ensoniq *ensoniq,
struct es1371_quirk *list)
{
while (list->vid != (unsigned short)PCI_ANY_ID) {
if (ensoniq->pci->vendor == list->vid &&
ensoniq->pci->device == list->did &&
ensoniq->rev == list->rev)
return 1;
list++;
}
return 0;
}
static struct es1371_quirk es1371_spdif_present[] __devinitdata = {
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 },
{ .vid = PCI_ANY_ID, .did = PCI_ANY_ID }
};
static struct snd_pci_quirk ens1373_line_quirk[] __devinitdata = {
SND_PCI_QUIRK_ID(0x1274, 0x2000), /* GA-7DXR */
SND_PCI_QUIRK_ID(0x1458, 0xa000), /* GA-8IEXP */
{ } /* end */
};
static int __devinit snd_ensoniq_1371_mixer(struct ensoniq *ensoniq,
int has_spdif, int has_line)
{
struct snd_card *card = ensoniq->card;
struct snd_ac97_bus *pbus;
struct snd_ac97_template ac97;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_es1371_codec_write,
.read = snd_es1371_codec_read,
.wait = snd_es1371_codec_wait,
};
if ((err = snd_ac97_bus(card, 0, &ops, NULL, &pbus)) < 0)
return err;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = ensoniq;
ac97.private_free = snd_ensoniq_mixer_free_ac97;
ac97.scaps = AC97_SCAP_AUDIO;
if ((err = snd_ac97_mixer(pbus, &ac97, &ensoniq->u.es1371.ac97)) < 0)
return err;
if (has_spdif > 0 ||
(!has_spdif && es1371_quirk_lookup(ensoniq, es1371_spdif_present))) {
struct snd_kcontrol *kctl;
int i, index = 0;
ensoniq->spdif_default = ensoniq->spdif_stream =
SNDRV_PCM_DEFAULT_CON_SPDIF;
outl(ensoniq->spdif_default, ES_REG(ensoniq, CHANNEL_STATUS));
if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SPDIF)
index++;
for (i = 0; i < ARRAY_SIZE(snd_es1371_mixer_spdif); i++) {
kctl = snd_ctl_new1(&snd_es1371_mixer_spdif[i], ensoniq);
if (!kctl)
return -ENOMEM;
kctl->id.index = index;
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
}
}
if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SDAC) {
/* mirror rear to front speakers */
ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT24);
ensoniq->cssr |= ES_1373_REAR_BIT26;
err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_rear, ensoniq));
if (err < 0)
return err;
}
if (has_line > 0 ||
snd_pci_quirk_lookup(ensoniq->pci, ens1373_line_quirk)) {
err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_line,
ensoniq));
if (err < 0)
return err;
}
return 0;
}
#endif /* CHIP1371 */
/* generic control callbacks for ens1370 */
#ifdef CHIP1370
#define ENSONIQ_CONTROL(xname, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = xname, .info = snd_ensoniq_control_info, \
.get = snd_ensoniq_control_get, .put = snd_ensoniq_control_put, \
.private_value = mask }
#define snd_ensoniq_control_info snd_ctl_boolean_mono_info
static int snd_ensoniq_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
int mask = kcontrol->private_value;
spin_lock_irq(&ensoniq->reg_lock);
ucontrol->value.integer.value[0] = ensoniq->ctrl & mask ? 1 : 0;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_ensoniq_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol);
int mask = kcontrol->private_value;
unsigned int nval;
int change;
nval = ucontrol->value.integer.value[0] ? mask : 0;
spin_lock_irq(&ensoniq->reg_lock);
change = (ensoniq->ctrl & mask) != nval;
ensoniq->ctrl &= ~mask;
ensoniq->ctrl |= nval;
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
spin_unlock_irq(&ensoniq->reg_lock);
return change;
}
/*
* ENS1370 mixer
*/
static struct snd_kcontrol_new snd_es1370_controls[2] __devinitdata = {
ENSONIQ_CONTROL("PCM 0 Output also on Line-In Jack", ES_1370_XCTL0),
ENSONIQ_CONTROL("Mic +5V bias", ES_1370_XCTL1)
};
#define ES1370_CONTROLS ARRAY_SIZE(snd_es1370_controls)
static void snd_ensoniq_mixer_free_ak4531(struct snd_ak4531 *ak4531)
{
struct ensoniq *ensoniq = ak4531->private_data;
ensoniq->u.es1370.ak4531 = NULL;
}
static int __devinit snd_ensoniq_1370_mixer(struct ensoniq * ensoniq)
{
struct snd_card *card = ensoniq->card;
struct snd_ak4531 ak4531;
unsigned int idx;
int err;
/* try reset AK4531 */
outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC));
inw(ES_REG(ensoniq, 1370_CODEC));
udelay(100);
outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC));
inw(ES_REG(ensoniq, 1370_CODEC));
udelay(100);
memset(&ak4531, 0, sizeof(ak4531));
ak4531.write = snd_es1370_codec_write;
ak4531.private_data = ensoniq;
ak4531.private_free = snd_ensoniq_mixer_free_ak4531;
if ((err = snd_ak4531_mixer(card, &ak4531, &ensoniq->u.es1370.ak4531)) < 0)
return err;
for (idx = 0; idx < ES1370_CONTROLS; idx++) {
err = snd_ctl_add(card, snd_ctl_new1(&snd_es1370_controls[idx], ensoniq));
if (err < 0)
return err;
}
return 0;
}
#endif /* CHIP1370 */
#ifdef SUPPORT_JOYSTICK
#ifdef CHIP1371
static int __devinit snd_ensoniq_get_joystick_port(int dev)
{
switch (joystick_port[dev]) {
case 0: /* disabled */
case 1: /* auto-detect */
case 0x200:
case 0x208:
case 0x210:
case 0x218:
return joystick_port[dev];
default:
printk(KERN_ERR "ens1371: invalid joystick port %#x", joystick_port[dev]);
return 0;
}
}
#else
static inline int snd_ensoniq_get_joystick_port(int dev)
{
return joystick[dev] ? 0x200 : 0;
}
#endif
static int __devinit snd_ensoniq_create_gameport(struct ensoniq *ensoniq, int dev)
{
struct gameport *gp;
int io_port;
io_port = snd_ensoniq_get_joystick_port(dev);
switch (io_port) {
case 0:
return -ENOSYS;
case 1: /* auto_detect */
for (io_port = 0x200; io_port <= 0x218; io_port += 8)
if (request_region(io_port, 8, "ens137x: gameport"))
break;
if (io_port > 0x218) {
printk(KERN_WARNING "ens137x: no gameport ports available\n");
return -EBUSY;
}
break;
default:
if (!request_region(io_port, 8, "ens137x: gameport")) {
printk(KERN_WARNING "ens137x: gameport io port 0x%#x in use\n",
io_port);
return -EBUSY;
}
break;
}
ensoniq->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "ens137x: cannot allocate memory for gameport\n");
release_region(io_port, 8);
return -ENOMEM;
}
gameport_set_name(gp, "ES137x");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(ensoniq->pci));
gameport_set_dev_parent(gp, &ensoniq->pci->dev);
gp->io = io_port;
ensoniq->ctrl |= ES_JYSTK_EN;
#ifdef CHIP1371
ensoniq->ctrl &= ~ES_1371_JOY_ASELM;
ensoniq->ctrl |= ES_1371_JOY_ASEL((io_port - 0x200) / 8);
#endif
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
gameport_register_port(ensoniq->gameport);
return 0;
}
static void snd_ensoniq_free_gameport(struct ensoniq *ensoniq)
{
if (ensoniq->gameport) {
int port = ensoniq->gameport->io;
gameport_unregister_port(ensoniq->gameport);
ensoniq->gameport = NULL;
ensoniq->ctrl &= ~ES_JYSTK_EN;
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
release_region(port, 8);
}
}
#else
static inline int snd_ensoniq_create_gameport(struct ensoniq *ensoniq, long port) { return -ENOSYS; }
static inline void snd_ensoniq_free_gameport(struct ensoniq *ensoniq) { }
#endif /* SUPPORT_JOYSTICK */
/*
*/
static void snd_ensoniq_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct ensoniq *ensoniq = entry->private_data;
#ifdef CHIP1370
snd_iprintf(buffer, "Ensoniq AudioPCI ES1370\n\n");
#else
snd_iprintf(buffer, "Ensoniq AudioPCI ES1371\n\n");
#endif
snd_iprintf(buffer, "Joystick enable : %s\n",
ensoniq->ctrl & ES_JYSTK_EN ? "on" : "off");
#ifdef CHIP1370
snd_iprintf(buffer, "MIC +5V bias : %s\n",
ensoniq->ctrl & ES_1370_XCTL1 ? "on" : "off");
snd_iprintf(buffer, "Line In to AOUT : %s\n",
ensoniq->ctrl & ES_1370_XCTL0 ? "on" : "off");
#else
snd_iprintf(buffer, "Joystick port : 0x%x\n",
(ES_1371_JOY_ASELI(ensoniq->ctrl) * 8) + 0x200);
#endif
}
static void __devinit snd_ensoniq_proc_init(struct ensoniq * ensoniq)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(ensoniq->card, "audiopci", &entry))
snd_info_set_text_ops(entry, ensoniq, snd_ensoniq_proc_read);
}
/*
*/
static int snd_ensoniq_free(struct ensoniq *ensoniq)
{
snd_ensoniq_free_gameport(ensoniq);
if (ensoniq->irq < 0)
goto __hw_end;
#ifdef CHIP1370
outl(ES_1370_SERR_DISABLE, ES_REG(ensoniq, CONTROL)); /* switch everything off */
outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */
#else
outl(0, ES_REG(ensoniq, CONTROL)); /* switch everything off */
outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */
#endif
synchronize_irq(ensoniq->irq);
pci_set_power_state(ensoniq->pci, 3);
__hw_end:
#ifdef CHIP1370
if (ensoniq->dma_bug.area)
snd_dma_free_pages(&ensoniq->dma_bug);
#endif
if (ensoniq->irq >= 0)
free_irq(ensoniq->irq, ensoniq);
pci_release_regions(ensoniq->pci);
pci_disable_device(ensoniq->pci);
kfree(ensoniq);
return 0;
}
static int snd_ensoniq_dev_free(struct snd_device *device)
{
struct ensoniq *ensoniq = device->device_data;
return snd_ensoniq_free(ensoniq);
}
#ifdef CHIP1371
static struct snd_pci_quirk es1371_amplifier_hack[] __devinitdata = {
SND_PCI_QUIRK_ID(0x107b, 0x2150), /* Gateway Solo 2150 */
SND_PCI_QUIRK_ID(0x13bd, 0x100c), /* EV1938 on Mebius PC-MJ100V */
SND_PCI_QUIRK_ID(0x1102, 0x5938), /* Targa Xtender300 */
SND_PCI_QUIRK_ID(0x1102, 0x8938), /* IPC Topnote G notebook */
{ } /* end */
};
static struct es1371_quirk es1371_ac97_reset_hack[] = {
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A },
{ .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 },
{ .vid = PCI_ANY_ID, .did = PCI_ANY_ID }
};
#endif
static void snd_ensoniq_chip_init(struct ensoniq *ensoniq)
{
#ifdef CHIP1371
int idx;
#endif
/* this code was part of snd_ensoniq_create before intruduction
* of suspend/resume
*/
#ifdef CHIP1370
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL));
outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE));
outl(ensoniq->dma_bug.addr, ES_REG(ensoniq, PHANTOM_FRAME));
outl(0, ES_REG(ensoniq, PHANTOM_COUNT));
#else
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL));
outl(0, ES_REG(ensoniq, 1371_LEGACY));
if (es1371_quirk_lookup(ensoniq, es1371_ac97_reset_hack)) {
outl(ensoniq->cssr, ES_REG(ensoniq, STATUS));
/* need to delay around 20ms(bleech) to give
some CODECs enough time to wakeup */
msleep(20);
}
/* AC'97 warm reset to start the bitclk */
outl(ensoniq->ctrl | ES_1371_SYNC_RES, ES_REG(ensoniq, CONTROL));
inl(ES_REG(ensoniq, CONTROL));
udelay(20);
outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL));
/* Init the sample rate converter */
snd_es1371_wait_src_ready(ensoniq);
outl(ES_1371_SRC_DISABLE, ES_REG(ensoniq, 1371_SMPRATE));
for (idx = 0; idx < 0x80; idx++)
snd_es1371_src_write(ensoniq, idx, 0);
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_TRUNC_N, 16 << 4);
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS, 16 << 10);
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_TRUNC_N, 16 << 4);
snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS, 16 << 10);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, 1 << 12);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, 1 << 12);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1, 1 << 12);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1 + 1, 1 << 12);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2, 1 << 12);
snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2 + 1, 1 << 12);
snd_es1371_adc_rate(ensoniq, 22050);
snd_es1371_dac1_rate(ensoniq, 22050);
snd_es1371_dac2_rate(ensoniq, 22050);
/* WARNING:
* enabling the sample rate converter without properly programming
* its parameters causes the chip to lock up (the SRC busy bit will
* be stuck high, and I've found no way to rectify this other than
* power cycle) - Thomas Sailer
*/
snd_es1371_wait_src_ready(ensoniq);
outl(0, ES_REG(ensoniq, 1371_SMPRATE));
/* try reset codec directly */
outl(ES_1371_CODEC_WRITE(0, 0), ES_REG(ensoniq, 1371_CODEC));
#endif
outb(ensoniq->uartc = 0x00, ES_REG(ensoniq, UART_CONTROL));
outb(0x00, ES_REG(ensoniq, UART_RES));
outl(ensoniq->cssr, ES_REG(ensoniq, STATUS));
synchronize_irq(ensoniq->irq);
}
#ifdef CONFIG_PM
static int snd_ensoniq_suspend(struct pci_dev *pci, pm_message_t state)
{
struct snd_card *card = pci_get_drvdata(pci);
struct ensoniq *ensoniq = card->private_data;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(ensoniq->pcm1);
snd_pcm_suspend_all(ensoniq->pcm2);
#ifdef CHIP1371
snd_ac97_suspend(ensoniq->u.es1371.ac97);
#else
/* try to reset AK4531 */
outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC));
inw(ES_REG(ensoniq, 1370_CODEC));
udelay(100);
outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC));
inw(ES_REG(ensoniq, 1370_CODEC));
udelay(100);
snd_ak4531_suspend(ensoniq->u.es1370.ak4531);
#endif
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, pci_choose_state(pci, state));
return 0;
}
static int snd_ensoniq_resume(struct pci_dev *pci)
{
struct snd_card *card = pci_get_drvdata(pci);
struct ensoniq *ensoniq = card->private_data;
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
printk(KERN_ERR DRIVER_NAME ": pci_enable_device failed, "
"disabling device\n");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
snd_ensoniq_chip_init(ensoniq);
#ifdef CHIP1371
snd_ac97_resume(ensoniq->u.es1371.ac97);
#else
snd_ak4531_resume(ensoniq->u.es1370.ak4531);
#endif
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
#endif /* CONFIG_PM */
static int __devinit snd_ensoniq_create(struct snd_card *card,
struct pci_dev *pci,
struct ensoniq ** rensoniq)
{
struct ensoniq *ensoniq;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_ensoniq_dev_free,
};
*rensoniq = NULL;
if ((err = pci_enable_device(pci)) < 0)
return err;
ensoniq = kzalloc(sizeof(*ensoniq), GFP_KERNEL);
if (ensoniq == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
spin_lock_init(&ensoniq->reg_lock);
mutex_init(&ensoniq->src_mutex);
ensoniq->card = card;
ensoniq->pci = pci;
ensoniq->irq = -1;
if ((err = pci_request_regions(pci, "Ensoniq AudioPCI")) < 0) {
kfree(ensoniq);
pci_disable_device(pci);
return err;
}
ensoniq->port = pci_resource_start(pci, 0);
if (request_irq(pci->irq, snd_audiopci_interrupt, IRQF_SHARED,
"Ensoniq AudioPCI", ensoniq)) {
snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
snd_ensoniq_free(ensoniq);
return -EBUSY;
}
ensoniq->irq = pci->irq;
#ifdef CHIP1370
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
16, &ensoniq->dma_bug) < 0) {
snd_printk(KERN_ERR "unable to allocate space for phantom area - dma_bug\n");
snd_ensoniq_free(ensoniq);
return -EBUSY;
}
#endif
pci_set_master(pci);
ensoniq->rev = pci->revision;
#ifdef CHIP1370
#if 0
ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_SERR_DISABLE |
ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000));
#else /* get microphone working */
ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000));
#endif
ensoniq->sctrl = 0;
#else
ensoniq->ctrl = 0;
ensoniq->sctrl = 0;
ensoniq->cssr = 0;
if (snd_pci_quirk_lookup(pci, es1371_amplifier_hack))
ensoniq->ctrl |= ES_1371_GPIO_OUT(1); /* turn amplifier on */
if (es1371_quirk_lookup(ensoniq, es1371_ac97_reset_hack))
ensoniq->cssr |= ES_1371_ST_AC97_RST;
#endif
snd_ensoniq_chip_init(ensoniq);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, ensoniq, &ops)) < 0) {
snd_ensoniq_free(ensoniq);
return err;
}
snd_ensoniq_proc_init(ensoniq);
snd_card_set_dev(card, &pci->dev);
*rensoniq = ensoniq;
return 0;
}
/*
* MIDI section
*/
static void snd_ensoniq_midi_interrupt(struct ensoniq * ensoniq)
{
struct snd_rawmidi *rmidi = ensoniq->rmidi;
unsigned char status, mask, byte;
if (rmidi == NULL)
return;
/* do Rx at first */
spin_lock(&ensoniq->reg_lock);
mask = ensoniq->uartm & ES_MODE_INPUT ? ES_RXRDY : 0;
while (mask) {
status = inb(ES_REG(ensoniq, UART_STATUS));
if ((status & mask) == 0)
break;
byte = inb(ES_REG(ensoniq, UART_DATA));
snd_rawmidi_receive(ensoniq->midi_input, &byte, 1);
}
spin_unlock(&ensoniq->reg_lock);
/* do Tx at second */
spin_lock(&ensoniq->reg_lock);
mask = ensoniq->uartm & ES_MODE_OUTPUT ? ES_TXRDY : 0;
while (mask) {
status = inb(ES_REG(ensoniq, UART_STATUS));
if ((status & mask) == 0)
break;
if (snd_rawmidi_transmit(ensoniq->midi_output, &byte, 1) != 1) {
ensoniq->uartc &= ~ES_TXINTENM;
outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL));
mask &= ~ES_TXRDY;
} else {
outb(byte, ES_REG(ensoniq, UART_DATA));
}
}
spin_unlock(&ensoniq->reg_lock);
}
static int snd_ensoniq_midi_input_open(struct snd_rawmidi_substream *substream)
{
struct ensoniq *ensoniq = substream->rmidi->private_data;
spin_lock_irq(&ensoniq->reg_lock);
ensoniq->uartm |= ES_MODE_INPUT;
ensoniq->midi_input = substream;
if (!(ensoniq->uartm & ES_MODE_OUTPUT)) {
outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL));
outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL));
outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL));
}
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_ensoniq_midi_input_close(struct snd_rawmidi_substream *substream)
{
struct ensoniq *ensoniq = substream->rmidi->private_data;
spin_lock_irq(&ensoniq->reg_lock);
if (!(ensoniq->uartm & ES_MODE_OUTPUT)) {
outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL));
outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL));
} else {
outb(ensoniq->uartc &= ~ES_RXINTEN, ES_REG(ensoniq, UART_CONTROL));
}
ensoniq->midi_input = NULL;
ensoniq->uartm &= ~ES_MODE_INPUT;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_ensoniq_midi_output_open(struct snd_rawmidi_substream *substream)
{
struct ensoniq *ensoniq = substream->rmidi->private_data;
spin_lock_irq(&ensoniq->reg_lock);
ensoniq->uartm |= ES_MODE_OUTPUT;
ensoniq->midi_output = substream;
if (!(ensoniq->uartm & ES_MODE_INPUT)) {
outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL));
outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL));
outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL));
}
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static int snd_ensoniq_midi_output_close(struct snd_rawmidi_substream *substream)
{
struct ensoniq *ensoniq = substream->rmidi->private_data;
spin_lock_irq(&ensoniq->reg_lock);
if (!(ensoniq->uartm & ES_MODE_INPUT)) {
outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL));
outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL));
} else {
outb(ensoniq->uartc &= ~ES_TXINTENM, ES_REG(ensoniq, UART_CONTROL));
}
ensoniq->midi_output = NULL;
ensoniq->uartm &= ~ES_MODE_OUTPUT;
spin_unlock_irq(&ensoniq->reg_lock);
return 0;
}
static void snd_ensoniq_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
unsigned long flags;
struct ensoniq *ensoniq = substream->rmidi->private_data;
int idx;
spin_lock_irqsave(&ensoniq->reg_lock, flags);
if (up) {
if ((ensoniq->uartc & ES_RXINTEN) == 0) {
/* empty input FIFO */
for (idx = 0; idx < 32; idx++)
inb(ES_REG(ensoniq, UART_DATA));
ensoniq->uartc |= ES_RXINTEN;
outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL));
}
} else {
if (ensoniq->uartc & ES_RXINTEN) {
ensoniq->uartc &= ~ES_RXINTEN;
outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL));
}
}
spin_unlock_irqrestore(&ensoniq->reg_lock, flags);
}
static void snd_ensoniq_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
unsigned long flags;
struct ensoniq *ensoniq = substream->rmidi->private_data;
unsigned char byte;
spin_lock_irqsave(&ensoniq->reg_lock, flags);
if (up) {
if (ES_TXINTENI(ensoniq->uartc) == 0) {
ensoniq->uartc |= ES_TXINTENO(1);
/* fill UART FIFO buffer at first, and turn Tx interrupts only if necessary */
while (ES_TXINTENI(ensoniq->uartc) == 1 &&
(inb(ES_REG(ensoniq, UART_STATUS)) & ES_TXRDY)) {
if (snd_rawmidi_transmit(substream, &byte, 1) != 1) {
ensoniq->uartc &= ~ES_TXINTENM;
} else {
outb(byte, ES_REG(ensoniq, UART_DATA));
}
}
outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL));
}
} else {
if (ES_TXINTENI(ensoniq->uartc) == 1) {
ensoniq->uartc &= ~ES_TXINTENM;
outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL));
}
}
spin_unlock_irqrestore(&ensoniq->reg_lock, flags);
}
static struct snd_rawmidi_ops snd_ensoniq_midi_output =
{
.open = snd_ensoniq_midi_output_open,
.close = snd_ensoniq_midi_output_close,
.trigger = snd_ensoniq_midi_output_trigger,
};
static struct snd_rawmidi_ops snd_ensoniq_midi_input =
{
.open = snd_ensoniq_midi_input_open,
.close = snd_ensoniq_midi_input_close,
.trigger = snd_ensoniq_midi_input_trigger,
};
static int __devinit snd_ensoniq_midi(struct ensoniq * ensoniq, int device,
struct snd_rawmidi **rrawmidi)
{
struct snd_rawmidi *rmidi;
int err;
if (rrawmidi)
*rrawmidi = NULL;
if ((err = snd_rawmidi_new(ensoniq->card, "ES1370/1", device, 1, 1, &rmidi)) < 0)
return err;
#ifdef CHIP1370
strcpy(rmidi->name, "ES1370");
#else
strcpy(rmidi->name, "ES1371");
#endif
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_ensoniq_midi_output);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_ensoniq_midi_input);
rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = ensoniq;
ensoniq->rmidi = rmidi;
if (rrawmidi)
*rrawmidi = rmidi;
return 0;
}
/*
* Interrupt handler
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id)
{
struct ensoniq *ensoniq = dev_id;
unsigned int status, sctrl;
if (ensoniq == NULL)
return IRQ_NONE;
status = inl(ES_REG(ensoniq, STATUS));
if (!(status & ES_INTR))
return IRQ_NONE;
spin_lock(&ensoniq->reg_lock);
sctrl = ensoniq->sctrl;
if (status & ES_DAC1)
sctrl &= ~ES_P1_INT_EN;
if (status & ES_DAC2)
sctrl &= ~ES_P2_INT_EN;
if (status & ES_ADC)
sctrl &= ~ES_R1_INT_EN;
outl(sctrl, ES_REG(ensoniq, SERIAL));
outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL));
spin_unlock(&ensoniq->reg_lock);
if (status & ES_UART)
snd_ensoniq_midi_interrupt(ensoniq);
if ((status & ES_DAC2) && ensoniq->playback2_substream)
snd_pcm_period_elapsed(ensoniq->playback2_substream);
if ((status & ES_ADC) && ensoniq->capture_substream)
snd_pcm_period_elapsed(ensoniq->capture_substream);
if ((status & ES_DAC1) && ensoniq->playback1_substream)
snd_pcm_period_elapsed(ensoniq->playback1_substream);
return IRQ_HANDLED;
}
static int __devinit snd_audiopci_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct ensoniq *ensoniq;
int err, pcm_devs[2];
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
if (card == NULL)
return -ENOMEM;
if ((err = snd_ensoniq_create(card, pci, &ensoniq)) < 0) {
snd_card_free(card);
return err;
}
card->private_data = ensoniq;
pcm_devs[0] = 0; pcm_devs[1] = 1;
#ifdef CHIP1370
if ((err = snd_ensoniq_1370_mixer(ensoniq)) < 0) {
snd_card_free(card);
return err;
}
#endif
#ifdef CHIP1371
if ((err = snd_ensoniq_1371_mixer(ensoniq, spdif[dev], lineio[dev])) < 0) {
snd_card_free(card);
return err;
}
#endif
if ((err = snd_ensoniq_pcm(ensoniq, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_ensoniq_pcm2(ensoniq, 1, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_ensoniq_midi(ensoniq, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
snd_ensoniq_create_gameport(ensoniq, dev);
strcpy(card->driver, DRIVER_NAME);
strcpy(card->shortname, "Ensoniq AudioPCI");
sprintf(card->longname, "%s %s at 0x%lx, irq %i",
card->shortname,
card->driver,
ensoniq->port,
ensoniq->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void __devexit snd_audiopci_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
static struct pci_driver driver = {
.name = DRIVER_NAME,
.id_table = snd_audiopci_ids,
.probe = snd_audiopci_probe,
.remove = __devexit_p(snd_audiopci_remove),
#ifdef CONFIG_PM
.suspend = snd_ensoniq_suspend,
.resume = snd_ensoniq_resume,
#endif
};
static int __init alsa_card_ens137x_init(void)
{
return pci_register_driver(&driver);
}
static void __exit alsa_card_ens137x_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_ens137x_init)
module_exit(alsa_card_ens137x_exit)