aha/include/linux/sysctl.h

1036 lines
29 KiB
C
Raw Normal View History

/*
* sysctl.h: General linux system control interface
*
* Begun 24 March 1995, Stephen Tweedie
*
****************************************************************
****************************************************************
**
** WARNING:
** The values in this file are exported to user space via
** the sysctl() binary interface. Do *NOT* change the
** numbering of any existing values here, and do not change
** any numbers within any one set of values. If you have to
** have to redefine an existing interface, use a new number for it.
** The kernel will then return -ENOTDIR to any application using
** the old binary interface.
**
** For new interfaces unless you really need a binary number
** please use CTL_UNNUMBERED.
**
****************************************************************
****************************************************************
*/
#ifndef _LINUX_SYSCTL_H
#define _LINUX_SYSCTL_H
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/compiler.h>
struct file;
struct completion;
#define CTL_MAXNAME 10 /* how many path components do we allow in a
call to sysctl? In other words, what is
the largest acceptable value for the nlen
member of a struct __sysctl_args to have? */
struct __sysctl_args {
int __user *name;
int nlen;
void __user *oldval;
size_t __user *oldlenp;
void __user *newval;
size_t newlen;
unsigned long __unused[4];
};
/* Define sysctl names first */
/* Top-level names: */
/* For internal pattern-matching use only: */
#ifdef __KERNEL__
#define CTL_ANY -1 /* Matches any name */
#define CTL_NONE 0
#define CTL_UNNUMBERED CTL_NONE /* sysctl without a binary number */
#endif
enum
{
CTL_KERN=1, /* General kernel info and control */
CTL_VM=2, /* VM management */
CTL_NET=3, /* Networking */
/* was CTL_PROC */
CTL_FS=5, /* Filesystems */
CTL_DEBUG=6, /* Debugging */
CTL_DEV=7, /* Devices */
CTL_BUS=8, /* Busses */
CTL_ABI=9, /* Binary emulation */
CTL_CPU=10 /* CPU stuff (speed scaling, etc) */
};
/* CTL_BUS names: */
enum
{
CTL_BUS_ISA=1 /* ISA */
};
/* /proc/sys/fs/inotify/ */
enum
{
INOTIFY_MAX_USER_INSTANCES=1, /* max instances per user */
INOTIFY_MAX_USER_WATCHES=2, /* max watches per user */
INOTIFY_MAX_QUEUED_EVENTS=3 /* max queued events per instance */
};
/* CTL_KERN names: */
enum
{
KERN_OSTYPE=1, /* string: system version */
KERN_OSRELEASE=2, /* string: system release */
KERN_OSREV=3, /* int: system revision */
KERN_VERSION=4, /* string: compile time info */
KERN_SECUREMASK=5, /* struct: maximum rights mask */
KERN_PROF=6, /* table: profiling information */
KERN_NODENAME=7,
KERN_DOMAINNAME=8,
KERN_CAP_BSET=14, /* int: capability bounding set */
KERN_PANIC=15, /* int: panic timeout */
KERN_REALROOTDEV=16, /* real root device to mount after initrd */
KERN_SPARC_REBOOT=21, /* reboot command on Sparc */
KERN_CTLALTDEL=22, /* int: allow ctl-alt-del to reboot */
KERN_PRINTK=23, /* struct: control printk logging parameters */
KERN_NAMETRANS=24, /* Name translation */
KERN_PPC_HTABRECLAIM=25, /* turn htab reclaimation on/off on PPC */
KERN_PPC_ZEROPAGED=26, /* turn idle page zeroing on/off on PPC */
KERN_PPC_POWERSAVE_NAP=27, /* use nap mode for power saving */
KERN_MODPROBE=28,
KERN_SG_BIG_BUFF=29,
KERN_ACCT=30, /* BSD process accounting parameters */
KERN_PPC_L2CR=31, /* l2cr register on PPC */
KERN_RTSIGNR=32, /* Number of rt sigs queued */
KERN_RTSIGMAX=33, /* Max queuable */
KERN_SHMMAX=34, /* long: Maximum shared memory segment */
KERN_MSGMAX=35, /* int: Maximum size of a messege */
KERN_MSGMNB=36, /* int: Maximum message queue size */
KERN_MSGPOOL=37, /* int: Maximum system message pool size */
KERN_SYSRQ=38, /* int: Sysreq enable */
KERN_MAX_THREADS=39, /* int: Maximum nr of threads in the system */
KERN_RANDOM=40, /* Random driver */
KERN_SHMALL=41, /* int: Maximum size of shared memory */
KERN_MSGMNI=42, /* int: msg queue identifiers */
KERN_SEM=43, /* struct: sysv semaphore limits */
KERN_SPARC_STOP_A=44, /* int: Sparc Stop-A enable */
KERN_SHMMNI=45, /* int: shm array identifiers */
KERN_OVERFLOWUID=46, /* int: overflow UID */
KERN_OVERFLOWGID=47, /* int: overflow GID */
KERN_SHMPATH=48, /* string: path to shm fs */
KERN_HOTPLUG=49, /* string: path to uevent helper (deprecated) */
KERN_IEEE_EMULATION_WARNINGS=50, /* int: unimplemented ieee instructions */
KERN_S390_USER_DEBUG_LOGGING=51, /* int: dumps of user faults */
KERN_CORE_USES_PID=52, /* int: use core or core.%pid */
KERN_TAINTED=53, /* int: various kernel tainted flags */
KERN_CADPID=54, /* int: PID of the process to notify on CAD */
KERN_PIDMAX=55, /* int: PID # limit */
KERN_CORE_PATTERN=56, /* string: pattern for core-file names */
KERN_PANIC_ON_OOPS=57, /* int: whether we will panic on an oops */
KERN_HPPA_PWRSW=58, /* int: hppa soft-power enable */
KERN_HPPA_UNALIGNED=59, /* int: hppa unaligned-trap enable */
KERN_PRINTK_RATELIMIT=60, /* int: tune printk ratelimiting */
KERN_PRINTK_RATELIMIT_BURST=61, /* int: tune printk ratelimiting */
KERN_PTY=62, /* dir: pty driver */
KERN_NGROUPS_MAX=63, /* int: NGROUPS_MAX */
KERN_SPARC_SCONS_PWROFF=64, /* int: serial console power-off halt */
KERN_HZ_TIMER=65, /* int: hz timer on or off */
KERN_UNKNOWN_NMI_PANIC=66, /* int: unknown nmi panic flag */
KERN_BOOTLOADER_TYPE=67, /* int: boot loader type */
KERN_RANDOMIZE=68, /* int: randomize virtual address space */
[PATCH] setuid core dump Add a new `suid_dumpable' sysctl: This value can be used to query and set the core dump mode for setuid or otherwise protected/tainted binaries. The modes are 0 - (default) - traditional behaviour. Any process which has changed privilege levels or is execute only will not be dumped 1 - (debug) - all processes dump core when possible. The core dump is owned by the current user and no security is applied. This is intended for system debugging situations only. Ptrace is unchecked. 2 - (suidsafe) - any binary which normally would not be dumped is dumped readable by root only. This allows the end user to remove such a dump but not access it directly. For security reasons core dumps in this mode will not overwrite one another or other files. This mode is appropriate when adminstrators are attempting to debug problems in a normal environment. (akpm: > > +EXPORT_SYMBOL(suid_dumpable); > > EXPORT_SYMBOL_GPL? No problem to me. > > if (current->euid == current->uid && current->egid == current->gid) > > current->mm->dumpable = 1; > > Should this be SUID_DUMP_USER? Actually the feedback I had from last time was that the SUID_ defines should go because its clearer to follow the numbers. They can go everywhere (and there are lots of places where dumpable is tested/used as a bool in untouched code) > Maybe this should be renamed to `dump_policy' or something. Doing that > would help us catch any code which isn't using the #defines, too. Fair comment. The patch was designed to be easy to maintain for Red Hat rather than for merging. Changing that field would create a gigantic diff because it is used all over the place. ) Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:09:43 +00:00
KERN_SETUID_DUMPABLE=69, /* int: behaviour of dumps for setuid core */
KERN_SPIN_RETRY=70, /* int: number of spinlock retries */
KERN_ACPI_VIDEO_FLAGS=71, /* int: flags for setting up video after ACPI sleep */
KERN_IA64_UNALIGNED=72, /* int: ia64 unaligned userland trap enable */
KERN_COMPAT_LOG=73, /* int: print compat layer messages */
KERN_MAX_LOCK_DEPTH=74,
KERN_NMI_WATCHDOG=75, /* int: enable/disable nmi watchdog */
KERN_PANIC_ON_NMI=76, /* int: whether we will panic on an unrecovered */
};
/* CTL_VM names: */
enum
{
VM_UNUSED1=1, /* was: struct: Set vm swapping control */
VM_UNUSED2=2, /* was; int: Linear or sqrt() swapout for hogs */
VM_UNUSED3=3, /* was: struct: Set free page thresholds */
VM_UNUSED4=4, /* Spare */
VM_OVERCOMMIT_MEMORY=5, /* Turn off the virtual memory safety limit */
VM_UNUSED5=6, /* was: struct: Set buffer memory thresholds */
VM_UNUSED7=7, /* was: struct: Set cache memory thresholds */
VM_UNUSED8=8, /* was: struct: Control kswapd behaviour */
VM_UNUSED9=9, /* was: struct: Set page table cache parameters */
VM_PAGE_CLUSTER=10, /* int: set number of pages to swap together */
VM_DIRTY_BACKGROUND=11, /* dirty_background_ratio */
VM_DIRTY_RATIO=12, /* dirty_ratio */
VM_DIRTY_WB_CS=13, /* dirty_writeback_centisecs */
VM_DIRTY_EXPIRE_CS=14, /* dirty_expire_centisecs */
VM_NR_PDFLUSH_THREADS=15, /* nr_pdflush_threads */
VM_OVERCOMMIT_RATIO=16, /* percent of RAM to allow overcommit in */
VM_PAGEBUF=17, /* struct: Control pagebuf parameters */
VM_HUGETLB_PAGES=18, /* int: Number of available Huge Pages */
VM_SWAPPINESS=19, /* Tendency to steal mapped memory */
VM_LOWMEM_RESERVE_RATIO=20,/* reservation ratio for lower memory zones */
VM_MIN_FREE_KBYTES=21, /* Minimum free kilobytes to maintain */
VM_MAX_MAP_COUNT=22, /* int: Maximum number of mmaps/address-space */
VM_LAPTOP_MODE=23, /* vm laptop mode */
VM_BLOCK_DUMP=24, /* block dump mode */
VM_HUGETLB_GROUP=25, /* permitted hugetlb group */
VM_VFS_CACHE_PRESSURE=26, /* dcache/icache reclaim pressure */
VM_LEGACY_VA_LAYOUT=27, /* legacy/compatibility virtual address space layout */
VM_SWAP_TOKEN_TIMEOUT=28, /* default time for token time out */
VM_DROP_PAGECACHE=29, /* int: nuke lots of pagecache */
VM_PERCPU_PAGELIST_FRACTION=30,/* int: fraction of pages in each percpu_pagelist */
VM_ZONE_RECLAIM_MODE=31, /* reclaim local zone memory before going off node */
VM_MIN_UNMAPPED=32, /* Set min percent of unmapped pages */
VM_PANIC_ON_OOM=33, /* panic at out-of-memory */
[PATCH] vdso: randomize the i386 vDSO by moving it into a vma Move the i386 VDSO down into a vma and thus randomize it. Besides the security implications, this feature also helps debuggers, which can COW a vma-backed VDSO just like a normal DSO and can thus do single-stepping and other debugging features. It's good for hypervisors (Xen, VMWare) too, which typically live in the same high-mapped address space as the VDSO, hence whenever the VDSO is used, they get lots of guest pagefaults and have to fix such guest accesses up - which slows things down instead of speeding things up (the primary purpose of the VDSO). There's a new CONFIG_COMPAT_VDSO (default=y) option, which provides support for older glibcs that still rely on a prelinked high-mapped VDSO. Newer distributions (using glibc 2.3.3 or later) can turn this option off. Turning it off is also recommended for security reasons: attackers cannot use the predictable high-mapped VDSO page as syscall trampoline anymore. There is a new vdso=[0|1] boot option as well, and a runtime /proc/sys/vm/vdso_enabled sysctl switch, that allows the VDSO to be turned on/off. (This version of the VDSO-randomization patch also has working ELF coredumping, the previous patch crashed in the coredumping code.) This code is a combined work of the exec-shield VDSO randomization code and Gerd Hoffmann's hypervisor-centric VDSO patch. Rusty Russell started this patch and i completed it. [akpm@osdl.org: cleanups] [akpm@osdl.org: compile fix] [akpm@osdl.org: compile fix 2] [akpm@osdl.org: compile fix 3] [akpm@osdl.org: revernt MAXMEM change] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Cc: Gerd Hoffmann <kraxel@suse.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Zachary Amsden <zach@vmware.com> Cc: Andi Kleen <ak@muc.de> Cc: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 09:53:50 +00:00
VM_VDSO_ENABLED=34, /* map VDSO into new processes? */
[PATCH] zone_reclaim: dynamic slab reclaim Currently one can enable slab reclaim by setting an explicit option in /proc/sys/vm/zone_reclaim_mode. Slab reclaim is then used as a final option if the freeing of unmapped file backed pages is not enough to free enough pages to allow a local allocation. However, that means that the slab can grow excessively and that most memory of a node may be used by slabs. We have had a case where a machine with 46GB of memory was using 40-42GB for slab. Zone reclaim was effective in dealing with pagecache pages. However, slab reclaim was only done during global reclaim (which is a bit rare on NUMA systems). This patch implements slab reclaim during zone reclaim. Zone reclaim occurs if there is a danger of an off node allocation. At that point we 1. Shrink the per node page cache if the number of pagecache pages is more than min_unmapped_ratio percent of pages in a zone. 2. Shrink the slab cache if the number of the nodes reclaimable slab pages (patch depends on earlier one that implements that counter) are more than min_slab_ratio (a new /proc/sys/vm tunable). The shrinking of the slab cache is a bit problematic since it is not node specific. So we simply calculate what point in the slab we want to reach (current per node slab use minus the number of pages that neeed to be allocated) and then repeately run the global reclaim until that is unsuccessful or we have reached the limit. I hope we will have zone based slab reclaim at some point which will make that easier. The default for the min_slab_ratio is 5% Also remove the slab option from /proc/sys/vm/zone_reclaim_mode. [akpm@osdl.org: cleanups] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:31:52 +00:00
VM_MIN_SLAB=35, /* Percent pages ignored by zone reclaim */
};
/* CTL_NET names: */
enum
{
NET_CORE=1,
NET_ETHER=2,
NET_802=3,
NET_UNIX=4,
NET_IPV4=5,
NET_IPX=6,
NET_ATALK=7,
NET_NETROM=8,
NET_AX25=9,
NET_BRIDGE=10,
NET_ROSE=11,
NET_IPV6=12,
NET_X25=13,
NET_TR=14,
NET_DECNET=15,
NET_ECONET=16,
NET_SCTP=17,
NET_LLC=18,
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
NET_NETFILTER=19,
NET_DCCP=20,
};
/* /proc/sys/kernel/random */
enum
{
RANDOM_POOLSIZE=1,
RANDOM_ENTROPY_COUNT=2,
RANDOM_READ_THRESH=3,
RANDOM_WRITE_THRESH=4,
RANDOM_BOOT_ID=5,
RANDOM_UUID=6
};
/* /proc/sys/kernel/pty */
enum
{
PTY_MAX=1,
PTY_NR=2
};
/* /proc/sys/bus/isa */
enum
{
BUS_ISA_MEM_BASE=1,
BUS_ISA_PORT_BASE=2,
BUS_ISA_PORT_SHIFT=3
};
/* /proc/sys/net/core */
enum
{
NET_CORE_WMEM_MAX=1,
NET_CORE_RMEM_MAX=2,
NET_CORE_WMEM_DEFAULT=3,
NET_CORE_RMEM_DEFAULT=4,
/* was NET_CORE_DESTROY_DELAY */
NET_CORE_MAX_BACKLOG=6,
NET_CORE_FASTROUTE=7,
NET_CORE_MSG_COST=8,
NET_CORE_MSG_BURST=9,
NET_CORE_OPTMEM_MAX=10,
NET_CORE_HOT_LIST_LENGTH=11,
NET_CORE_DIVERT_VERSION=12,
NET_CORE_NO_CONG_THRESH=13,
NET_CORE_NO_CONG=14,
NET_CORE_LO_CONG=15,
NET_CORE_MOD_CONG=16,
NET_CORE_DEV_WEIGHT=17,
NET_CORE_SOMAXCONN=18,
NET_CORE_BUDGET=19,
NET_CORE_AEVENT_ETIME=20,
NET_CORE_AEVENT_RSEQTH=21,
};
/* /proc/sys/net/ethernet */
/* /proc/sys/net/802 */
/* /proc/sys/net/unix */
enum
{
NET_UNIX_DESTROY_DELAY=1,
NET_UNIX_DELETE_DELAY=2,
NET_UNIX_MAX_DGRAM_QLEN=3,
};
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* /proc/sys/net/netfilter */
enum
{
NET_NF_CONNTRACK_MAX=1,
NET_NF_CONNTRACK_TCP_TIMEOUT_SYN_SENT=2,
NET_NF_CONNTRACK_TCP_TIMEOUT_SYN_RECV=3,
NET_NF_CONNTRACK_TCP_TIMEOUT_ESTABLISHED=4,
NET_NF_CONNTRACK_TCP_TIMEOUT_FIN_WAIT=5,
NET_NF_CONNTRACK_TCP_TIMEOUT_CLOSE_WAIT=6,
NET_NF_CONNTRACK_TCP_TIMEOUT_LAST_ACK=7,
NET_NF_CONNTRACK_TCP_TIMEOUT_TIME_WAIT=8,
NET_NF_CONNTRACK_TCP_TIMEOUT_CLOSE=9,
NET_NF_CONNTRACK_UDP_TIMEOUT=10,
NET_NF_CONNTRACK_UDP_TIMEOUT_STREAM=11,
NET_NF_CONNTRACK_ICMP_TIMEOUT=12,
NET_NF_CONNTRACK_GENERIC_TIMEOUT=13,
NET_NF_CONNTRACK_BUCKETS=14,
NET_NF_CONNTRACK_LOG_INVALID=15,
NET_NF_CONNTRACK_TCP_TIMEOUT_MAX_RETRANS=16,
NET_NF_CONNTRACK_TCP_LOOSE=17,
NET_NF_CONNTRACK_TCP_BE_LIBERAL=18,
NET_NF_CONNTRACK_TCP_MAX_RETRANS=19,
NET_NF_CONNTRACK_SCTP_TIMEOUT_CLOSED=20,
NET_NF_CONNTRACK_SCTP_TIMEOUT_COOKIE_WAIT=21,
NET_NF_CONNTRACK_SCTP_TIMEOUT_COOKIE_ECHOED=22,
NET_NF_CONNTRACK_SCTP_TIMEOUT_ESTABLISHED=23,
NET_NF_CONNTRACK_SCTP_TIMEOUT_SHUTDOWN_SENT=24,
NET_NF_CONNTRACK_SCTP_TIMEOUT_SHUTDOWN_RECD=25,
NET_NF_CONNTRACK_SCTP_TIMEOUT_SHUTDOWN_ACK_SENT=26,
NET_NF_CONNTRACK_COUNT=27,
NET_NF_CONNTRACK_ICMPV6_TIMEOUT=28,
NET_NF_CONNTRACK_FRAG6_TIMEOUT=29,
NET_NF_CONNTRACK_FRAG6_LOW_THRESH=30,
NET_NF_CONNTRACK_FRAG6_HIGH_THRESH=31,
NET_NF_CONNTRACK_CHECKSUM=32,
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
};
/* /proc/sys/net/ipv4 */
enum
{
/* v2.0 compatibile variables */
NET_IPV4_FORWARD=8,
NET_IPV4_DYNADDR=9,
NET_IPV4_CONF=16,
NET_IPV4_NEIGH=17,
NET_IPV4_ROUTE=18,
NET_IPV4_FIB_HASH=19,
NET_IPV4_NETFILTER=20,
NET_IPV4_TCP_TIMESTAMPS=33,
NET_IPV4_TCP_WINDOW_SCALING=34,
NET_IPV4_TCP_SACK=35,
NET_IPV4_TCP_RETRANS_COLLAPSE=36,
NET_IPV4_DEFAULT_TTL=37,
NET_IPV4_AUTOCONFIG=38,
NET_IPV4_NO_PMTU_DISC=39,
NET_IPV4_TCP_SYN_RETRIES=40,
NET_IPV4_IPFRAG_HIGH_THRESH=41,
NET_IPV4_IPFRAG_LOW_THRESH=42,
NET_IPV4_IPFRAG_TIME=43,
NET_IPV4_TCP_MAX_KA_PROBES=44,
NET_IPV4_TCP_KEEPALIVE_TIME=45,
NET_IPV4_TCP_KEEPALIVE_PROBES=46,
NET_IPV4_TCP_RETRIES1=47,
NET_IPV4_TCP_RETRIES2=48,
NET_IPV4_TCP_FIN_TIMEOUT=49,
NET_IPV4_IP_MASQ_DEBUG=50,
NET_TCP_SYNCOOKIES=51,
NET_TCP_STDURG=52,
NET_TCP_RFC1337=53,
NET_TCP_SYN_TAILDROP=54,
NET_TCP_MAX_SYN_BACKLOG=55,
NET_IPV4_LOCAL_PORT_RANGE=56,
NET_IPV4_ICMP_ECHO_IGNORE_ALL=57,
NET_IPV4_ICMP_ECHO_IGNORE_BROADCASTS=58,
NET_IPV4_ICMP_SOURCEQUENCH_RATE=59,
NET_IPV4_ICMP_DESTUNREACH_RATE=60,
NET_IPV4_ICMP_TIMEEXCEED_RATE=61,
NET_IPV4_ICMP_PARAMPROB_RATE=62,
NET_IPV4_ICMP_ECHOREPLY_RATE=63,
NET_IPV4_ICMP_IGNORE_BOGUS_ERROR_RESPONSES=64,
NET_IPV4_IGMP_MAX_MEMBERSHIPS=65,
NET_TCP_TW_RECYCLE=66,
NET_IPV4_ALWAYS_DEFRAG=67,
NET_IPV4_TCP_KEEPALIVE_INTVL=68,
NET_IPV4_INET_PEER_THRESHOLD=69,
NET_IPV4_INET_PEER_MINTTL=70,
NET_IPV4_INET_PEER_MAXTTL=71,
NET_IPV4_INET_PEER_GC_MINTIME=72,
NET_IPV4_INET_PEER_GC_MAXTIME=73,
NET_TCP_ORPHAN_RETRIES=74,
NET_TCP_ABORT_ON_OVERFLOW=75,
NET_TCP_SYNACK_RETRIES=76,
NET_TCP_MAX_ORPHANS=77,
NET_TCP_MAX_TW_BUCKETS=78,
NET_TCP_FACK=79,
NET_TCP_REORDERING=80,
NET_TCP_ECN=81,
NET_TCP_DSACK=82,
NET_TCP_MEM=83,
NET_TCP_WMEM=84,
NET_TCP_RMEM=85,
NET_TCP_APP_WIN=86,
NET_TCP_ADV_WIN_SCALE=87,
NET_IPV4_NONLOCAL_BIND=88,
NET_IPV4_ICMP_RATELIMIT=89,
NET_IPV4_ICMP_RATEMASK=90,
NET_TCP_TW_REUSE=91,
NET_TCP_FRTO=92,
NET_TCP_LOW_LATENCY=93,
NET_IPV4_IPFRAG_SECRET_INTERVAL=94,
NET_IPV4_IGMP_MAX_MSF=96,
NET_TCP_NO_METRICS_SAVE=97,
NET_TCP_DEFAULT_WIN_SCALE=105,
NET_TCP_MODERATE_RCVBUF=106,
NET_TCP_TSO_WIN_DIVISOR=107,
NET_TCP_BIC_BETA=108,
NET_IPV4_ICMP_ERRORS_USE_INBOUND_IFADDR=109,
NET_TCP_CONG_CONTROL=110,
NET_TCP_ABC=111,
NET_IPV4_IPFRAG_MAX_DIST=112,
NET_TCP_MTU_PROBING=113,
NET_TCP_BASE_MSS=114,
NET_IPV4_TCP_WORKAROUND_SIGNED_WINDOWS=115,
NET_TCP_DMA_COPYBREAK=116,
NET_TCP_SLOW_START_AFTER_IDLE=117,
NET_CIPSOV4_CACHE_ENABLE=118,
NET_CIPSOV4_CACHE_BUCKET_SIZE=119,
NET_CIPSOV4_RBM_OPTFMT=120,
NET_CIPSOV4_RBM_STRICTVALID=121,
NET_TCP_AVAIL_CONG_CONTROL=122,
NET_TCP_ALLOWED_CONG_CONTROL=123,
};
enum {
NET_IPV4_ROUTE_FLUSH=1,
NET_IPV4_ROUTE_MIN_DELAY=2,
NET_IPV4_ROUTE_MAX_DELAY=3,
NET_IPV4_ROUTE_GC_THRESH=4,
NET_IPV4_ROUTE_MAX_SIZE=5,
NET_IPV4_ROUTE_GC_MIN_INTERVAL=6,
NET_IPV4_ROUTE_GC_TIMEOUT=7,
NET_IPV4_ROUTE_GC_INTERVAL=8,
NET_IPV4_ROUTE_REDIRECT_LOAD=9,
NET_IPV4_ROUTE_REDIRECT_NUMBER=10,
NET_IPV4_ROUTE_REDIRECT_SILENCE=11,
NET_IPV4_ROUTE_ERROR_COST=12,
NET_IPV4_ROUTE_ERROR_BURST=13,
NET_IPV4_ROUTE_GC_ELASTICITY=14,
NET_IPV4_ROUTE_MTU_EXPIRES=15,
NET_IPV4_ROUTE_MIN_PMTU=16,
NET_IPV4_ROUTE_MIN_ADVMSS=17,
NET_IPV4_ROUTE_SECRET_INTERVAL=18,
NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS=19,
};
enum
{
NET_PROTO_CONF_ALL=-2,
NET_PROTO_CONF_DEFAULT=-3
/* And device ifindices ... */
};
enum
{
NET_IPV4_CONF_FORWARDING=1,
NET_IPV4_CONF_MC_FORWARDING=2,
NET_IPV4_CONF_PROXY_ARP=3,
NET_IPV4_CONF_ACCEPT_REDIRECTS=4,
NET_IPV4_CONF_SECURE_REDIRECTS=5,
NET_IPV4_CONF_SEND_REDIRECTS=6,
NET_IPV4_CONF_SHARED_MEDIA=7,
NET_IPV4_CONF_RP_FILTER=8,
NET_IPV4_CONF_ACCEPT_SOURCE_ROUTE=9,
NET_IPV4_CONF_BOOTP_RELAY=10,
NET_IPV4_CONF_LOG_MARTIANS=11,
NET_IPV4_CONF_TAG=12,
NET_IPV4_CONF_ARPFILTER=13,
NET_IPV4_CONF_MEDIUM_ID=14,
NET_IPV4_CONF_NOXFRM=15,
NET_IPV4_CONF_NOPOLICY=16,
NET_IPV4_CONF_FORCE_IGMP_VERSION=17,
NET_IPV4_CONF_ARP_ANNOUNCE=18,
NET_IPV4_CONF_ARP_IGNORE=19,
NET_IPV4_CONF_PROMOTE_SECONDARIES=20,
NET_IPV4_CONF_ARP_ACCEPT=21,
__NET_IPV4_CONF_MAX
};
/* /proc/sys/net/ipv4/netfilter */
enum
{
NET_IPV4_NF_CONNTRACK_MAX=1,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_SYN_SENT=2,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_SYN_RECV=3,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_ESTABLISHED=4,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_FIN_WAIT=5,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_CLOSE_WAIT=6,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_LAST_ACK=7,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_TIME_WAIT=8,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_CLOSE=9,
NET_IPV4_NF_CONNTRACK_UDP_TIMEOUT=10,
NET_IPV4_NF_CONNTRACK_UDP_TIMEOUT_STREAM=11,
NET_IPV4_NF_CONNTRACK_ICMP_TIMEOUT=12,
NET_IPV4_NF_CONNTRACK_GENERIC_TIMEOUT=13,
NET_IPV4_NF_CONNTRACK_BUCKETS=14,
NET_IPV4_NF_CONNTRACK_LOG_INVALID=15,
NET_IPV4_NF_CONNTRACK_TCP_TIMEOUT_MAX_RETRANS=16,
NET_IPV4_NF_CONNTRACK_TCP_LOOSE=17,
NET_IPV4_NF_CONNTRACK_TCP_BE_LIBERAL=18,
NET_IPV4_NF_CONNTRACK_TCP_MAX_RETRANS=19,
NET_IPV4_NF_CONNTRACK_SCTP_TIMEOUT_CLOSED=20,
NET_IPV4_NF_CONNTRACK_SCTP_TIMEOUT_COOKIE_WAIT=21,
NET_IPV4_NF_CONNTRACK_SCTP_TIMEOUT_COOKIE_ECHOED=22,
NET_IPV4_NF_CONNTRACK_SCTP_TIMEOUT_ESTABLISHED=23,
NET_IPV4_NF_CONNTRACK_SCTP_TIMEOUT_SHUTDOWN_SENT=24,
NET_IPV4_NF_CONNTRACK_SCTP_TIMEOUT_SHUTDOWN_RECD=25,
NET_IPV4_NF_CONNTRACK_SCTP_TIMEOUT_SHUTDOWN_ACK_SENT=26,
NET_IPV4_NF_CONNTRACK_COUNT=27,
NET_IPV4_NF_CONNTRACK_CHECKSUM=28,
};
/* /proc/sys/net/ipv6 */
enum {
NET_IPV6_CONF=16,
NET_IPV6_NEIGH=17,
NET_IPV6_ROUTE=18,
NET_IPV6_ICMP=19,
NET_IPV6_BINDV6ONLY=20,
NET_IPV6_IP6FRAG_HIGH_THRESH=21,
NET_IPV6_IP6FRAG_LOW_THRESH=22,
NET_IPV6_IP6FRAG_TIME=23,
NET_IPV6_IP6FRAG_SECRET_INTERVAL=24,
NET_IPV6_MLD_MAX_MSF=25,
};
enum {
NET_IPV6_ROUTE_FLUSH=1,
NET_IPV6_ROUTE_GC_THRESH=2,
NET_IPV6_ROUTE_MAX_SIZE=3,
NET_IPV6_ROUTE_GC_MIN_INTERVAL=4,
NET_IPV6_ROUTE_GC_TIMEOUT=5,
NET_IPV6_ROUTE_GC_INTERVAL=6,
NET_IPV6_ROUTE_GC_ELASTICITY=7,
NET_IPV6_ROUTE_MTU_EXPIRES=8,
NET_IPV6_ROUTE_MIN_ADVMSS=9,
NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS=10
};
enum {
NET_IPV6_FORWARDING=1,
NET_IPV6_HOP_LIMIT=2,
NET_IPV6_MTU=3,
NET_IPV6_ACCEPT_RA=4,
NET_IPV6_ACCEPT_REDIRECTS=5,
NET_IPV6_AUTOCONF=6,
NET_IPV6_DAD_TRANSMITS=7,
NET_IPV6_RTR_SOLICITS=8,
NET_IPV6_RTR_SOLICIT_INTERVAL=9,
NET_IPV6_RTR_SOLICIT_DELAY=10,
NET_IPV6_USE_TEMPADDR=11,
NET_IPV6_TEMP_VALID_LFT=12,
NET_IPV6_TEMP_PREFERED_LFT=13,
NET_IPV6_REGEN_MAX_RETRY=14,
NET_IPV6_MAX_DESYNC_FACTOR=15,
NET_IPV6_MAX_ADDRESSES=16,
NET_IPV6_FORCE_MLD_VERSION=17,
NET_IPV6_ACCEPT_RA_DEFRTR=18,
NET_IPV6_ACCEPT_RA_PINFO=19,
NET_IPV6_ACCEPT_RA_RTR_PREF=20,
NET_IPV6_RTR_PROBE_INTERVAL=21,
NET_IPV6_ACCEPT_RA_RT_INFO_MAX_PLEN=22,
NET_IPV6_PROXY_NDP=23,
__NET_IPV6_MAX
};
/* /proc/sys/net/ipv6/icmp */
enum {
NET_IPV6_ICMP_RATELIMIT=1
};
/* /proc/sys/net/<protocol>/neigh/<dev> */
enum {
NET_NEIGH_MCAST_SOLICIT=1,
NET_NEIGH_UCAST_SOLICIT=2,
NET_NEIGH_APP_SOLICIT=3,
NET_NEIGH_RETRANS_TIME=4,
NET_NEIGH_REACHABLE_TIME=5,
NET_NEIGH_DELAY_PROBE_TIME=6,
NET_NEIGH_GC_STALE_TIME=7,
NET_NEIGH_UNRES_QLEN=8,
NET_NEIGH_PROXY_QLEN=9,
NET_NEIGH_ANYCAST_DELAY=10,
NET_NEIGH_PROXY_DELAY=11,
NET_NEIGH_LOCKTIME=12,
NET_NEIGH_GC_INTERVAL=13,
NET_NEIGH_GC_THRESH1=14,
NET_NEIGH_GC_THRESH2=15,
NET_NEIGH_GC_THRESH3=16,
NET_NEIGH_RETRANS_TIME_MS=17,
NET_NEIGH_REACHABLE_TIME_MS=18,
__NET_NEIGH_MAX
};
/* /proc/sys/net/dccp */
enum {
NET_DCCP_DEFAULT=1,
};
/* /proc/sys/net/ipx */
enum {
NET_IPX_PPROP_BROADCASTING=1,
NET_IPX_FORWARDING=2
};
/* /proc/sys/net/llc */
enum {
NET_LLC2=1,
NET_LLC_STATION=2,
};
/* /proc/sys/net/llc/llc2 */
enum {
NET_LLC2_TIMEOUT=1,
};
/* /proc/sys/net/llc/station */
enum {
NET_LLC_STATION_ACK_TIMEOUT=1,
};
/* /proc/sys/net/llc/llc2/timeout */
enum {
NET_LLC2_ACK_TIMEOUT=1,
NET_LLC2_P_TIMEOUT=2,
NET_LLC2_REJ_TIMEOUT=3,
NET_LLC2_BUSY_TIMEOUT=4,
};
/* /proc/sys/net/appletalk */
enum {
NET_ATALK_AARP_EXPIRY_TIME=1,
NET_ATALK_AARP_TICK_TIME=2,
NET_ATALK_AARP_RETRANSMIT_LIMIT=3,
NET_ATALK_AARP_RESOLVE_TIME=4
};
/* /proc/sys/net/netrom */
enum {
NET_NETROM_DEFAULT_PATH_QUALITY=1,
NET_NETROM_OBSOLESCENCE_COUNT_INITIALISER=2,
NET_NETROM_NETWORK_TTL_INITIALISER=3,
NET_NETROM_TRANSPORT_TIMEOUT=4,
NET_NETROM_TRANSPORT_MAXIMUM_TRIES=5,
NET_NETROM_TRANSPORT_ACKNOWLEDGE_DELAY=6,
NET_NETROM_TRANSPORT_BUSY_DELAY=7,
NET_NETROM_TRANSPORT_REQUESTED_WINDOW_SIZE=8,
NET_NETROM_TRANSPORT_NO_ACTIVITY_TIMEOUT=9,
NET_NETROM_ROUTING_CONTROL=10,
NET_NETROM_LINK_FAILS_COUNT=11,
NET_NETROM_RESET=12
};
/* /proc/sys/net/ax25 */
enum {
NET_AX25_IP_DEFAULT_MODE=1,
NET_AX25_DEFAULT_MODE=2,
NET_AX25_BACKOFF_TYPE=3,
NET_AX25_CONNECT_MODE=4,
NET_AX25_STANDARD_WINDOW=5,
NET_AX25_EXTENDED_WINDOW=6,
NET_AX25_T1_TIMEOUT=7,
NET_AX25_T2_TIMEOUT=8,
NET_AX25_T3_TIMEOUT=9,
NET_AX25_IDLE_TIMEOUT=10,
NET_AX25_N2=11,
NET_AX25_PACLEN=12,
NET_AX25_PROTOCOL=13,
NET_AX25_DAMA_SLAVE_TIMEOUT=14
};
/* /proc/sys/net/rose */
enum {
NET_ROSE_RESTART_REQUEST_TIMEOUT=1,
NET_ROSE_CALL_REQUEST_TIMEOUT=2,
NET_ROSE_RESET_REQUEST_TIMEOUT=3,
NET_ROSE_CLEAR_REQUEST_TIMEOUT=4,
NET_ROSE_ACK_HOLD_BACK_TIMEOUT=5,
NET_ROSE_ROUTING_CONTROL=6,
NET_ROSE_LINK_FAIL_TIMEOUT=7,
NET_ROSE_MAX_VCS=8,
NET_ROSE_WINDOW_SIZE=9,
NET_ROSE_NO_ACTIVITY_TIMEOUT=10
};
/* /proc/sys/net/x25 */
enum {
NET_X25_RESTART_REQUEST_TIMEOUT=1,
NET_X25_CALL_REQUEST_TIMEOUT=2,
NET_X25_RESET_REQUEST_TIMEOUT=3,
NET_X25_CLEAR_REQUEST_TIMEOUT=4,
NET_X25_ACK_HOLD_BACK_TIMEOUT=5
};
/* /proc/sys/net/token-ring */
enum
{
NET_TR_RIF_TIMEOUT=1
};
/* /proc/sys/net/decnet/ */
enum {
NET_DECNET_NODE_TYPE = 1,
NET_DECNET_NODE_ADDRESS = 2,
NET_DECNET_NODE_NAME = 3,
NET_DECNET_DEFAULT_DEVICE = 4,
NET_DECNET_TIME_WAIT = 5,
NET_DECNET_DN_COUNT = 6,
NET_DECNET_DI_COUNT = 7,
NET_DECNET_DR_COUNT = 8,
NET_DECNET_DST_GC_INTERVAL = 9,
NET_DECNET_CONF = 10,
NET_DECNET_NO_FC_MAX_CWND = 11,
NET_DECNET_MEM = 12,
NET_DECNET_RMEM = 13,
NET_DECNET_WMEM = 14,
NET_DECNET_DEBUG_LEVEL = 255
};
/* /proc/sys/net/decnet/conf/<dev> */
enum {
NET_DECNET_CONF_LOOPBACK = -2,
NET_DECNET_CONF_DDCMP = -3,
NET_DECNET_CONF_PPP = -4,
NET_DECNET_CONF_X25 = -5,
NET_DECNET_CONF_GRE = -6,
NET_DECNET_CONF_ETHER = -7
/* ... and ifindex of devices */
};
/* /proc/sys/net/decnet/conf/<dev>/ */
enum {
NET_DECNET_CONF_DEV_PRIORITY = 1,
NET_DECNET_CONF_DEV_T1 = 2,
NET_DECNET_CONF_DEV_T2 = 3,
NET_DECNET_CONF_DEV_T3 = 4,
NET_DECNET_CONF_DEV_FORWARDING = 5,
NET_DECNET_CONF_DEV_BLKSIZE = 6,
NET_DECNET_CONF_DEV_STATE = 7
};
/* /proc/sys/net/sctp */
enum {
NET_SCTP_RTO_INITIAL = 1,
NET_SCTP_RTO_MIN = 2,
NET_SCTP_RTO_MAX = 3,
NET_SCTP_RTO_ALPHA = 4,
NET_SCTP_RTO_BETA = 5,
NET_SCTP_VALID_COOKIE_LIFE = 6,
NET_SCTP_ASSOCIATION_MAX_RETRANS = 7,
NET_SCTP_PATH_MAX_RETRANS = 8,
NET_SCTP_MAX_INIT_RETRANSMITS = 9,
NET_SCTP_HB_INTERVAL = 10,
NET_SCTP_PRESERVE_ENABLE = 11,
NET_SCTP_MAX_BURST = 12,
NET_SCTP_ADDIP_ENABLE = 13,
NET_SCTP_PRSCTP_ENABLE = 14,
NET_SCTP_SNDBUF_POLICY = 15,
NET_SCTP_SACK_TIMEOUT = 16,
NET_SCTP_RCVBUF_POLICY = 17,
};
/* /proc/sys/net/bridge */
enum {
NET_BRIDGE_NF_CALL_ARPTABLES = 1,
NET_BRIDGE_NF_CALL_IPTABLES = 2,
NET_BRIDGE_NF_CALL_IP6TABLES = 3,
NET_BRIDGE_NF_FILTER_VLAN_TAGGED = 4,
};
/* CTL_FS names: */
enum
{
FS_NRINODE=1, /* int:current number of allocated inodes */
FS_STATINODE=2,
FS_MAXINODE=3, /* int:maximum number of inodes that can be allocated */
FS_NRDQUOT=4, /* int:current number of allocated dquots */
FS_MAXDQUOT=5, /* int:maximum number of dquots that can be allocated */
FS_NRFILE=6, /* int:current number of allocated filedescriptors */
FS_MAXFILE=7, /* int:maximum number of filedescriptors that can be allocated */
FS_DENTRY=8,
FS_NRSUPER=9, /* int:current number of allocated super_blocks */
FS_MAXSUPER=10, /* int:maximum number of super_blocks that can be allocated */
FS_OVERFLOWUID=11, /* int: overflow UID */
FS_OVERFLOWGID=12, /* int: overflow GID */
FS_LEASES=13, /* int: leases enabled */
FS_DIR_NOTIFY=14, /* int: directory notification enabled */
FS_LEASE_TIME=15, /* int: maximum time to wait for a lease break */
FS_DQSTATS=16, /* disc quota usage statistics and control */
FS_XFS=17, /* struct: control xfs parameters */
FS_AIO_NR=18, /* current system-wide number of aio requests */
FS_AIO_MAX_NR=19, /* system-wide maximum number of aio requests */
FS_INOTIFY=20, /* inotify submenu */
};
/* /proc/sys/fs/quota/ */
enum {
FS_DQ_LOOKUPS = 1,
FS_DQ_DROPS = 2,
FS_DQ_READS = 3,
FS_DQ_WRITES = 4,
FS_DQ_CACHE_HITS = 5,
FS_DQ_ALLOCATED = 6,
FS_DQ_FREE = 7,
FS_DQ_SYNCS = 8,
FS_DQ_WARNINGS = 9,
};
/* CTL_DEBUG names: */
/* CTL_DEV names: */
enum {
DEV_CDROM=1,
DEV_HWMON=2,
DEV_PARPORT=3,
DEV_RAID=4,
DEV_MAC_HID=5,
DEV_SCSI=6,
DEV_IPMI=7,
};
/* /proc/sys/dev/cdrom */
enum {
DEV_CDROM_INFO=1,
DEV_CDROM_AUTOCLOSE=2,
DEV_CDROM_AUTOEJECT=3,
DEV_CDROM_DEBUG=4,
DEV_CDROM_LOCK=5,
DEV_CDROM_CHECK_MEDIA=6
};
/* /proc/sys/dev/parport */
enum {
DEV_PARPORT_DEFAULT=-3
};
/* /proc/sys/dev/raid */
enum {
DEV_RAID_SPEED_LIMIT_MIN=1,
DEV_RAID_SPEED_LIMIT_MAX=2
};
/* /proc/sys/dev/parport/default */
enum {
DEV_PARPORT_DEFAULT_TIMESLICE=1,
DEV_PARPORT_DEFAULT_SPINTIME=2
};
/* /proc/sys/dev/parport/parport n */
enum {
DEV_PARPORT_SPINTIME=1,
DEV_PARPORT_BASE_ADDR=2,
DEV_PARPORT_IRQ=3,
DEV_PARPORT_DMA=4,
DEV_PARPORT_MODES=5,
DEV_PARPORT_DEVICES=6,
DEV_PARPORT_AUTOPROBE=16
};
/* /proc/sys/dev/parport/parport n/devices/ */
enum {
DEV_PARPORT_DEVICES_ACTIVE=-3,
};
/* /proc/sys/dev/parport/parport n/devices/device n */
enum {
DEV_PARPORT_DEVICE_TIMESLICE=1,
};
/* /proc/sys/dev/mac_hid */
enum {
DEV_MAC_HID_KEYBOARD_SENDS_LINUX_KEYCODES=1,
DEV_MAC_HID_KEYBOARD_LOCK_KEYCODES=2,
DEV_MAC_HID_MOUSE_BUTTON_EMULATION=3,
DEV_MAC_HID_MOUSE_BUTTON2_KEYCODE=4,
DEV_MAC_HID_MOUSE_BUTTON3_KEYCODE=5,
DEV_MAC_HID_ADB_MOUSE_SENDS_KEYCODES=6
};
/* /proc/sys/dev/scsi */
enum {
DEV_SCSI_LOGGING_LEVEL=1,
};
/* /proc/sys/dev/ipmi */
enum {
DEV_IPMI_POWEROFF_POWERCYCLE=1,
};
/* /proc/sys/abi */
enum
{
ABI_DEFHANDLER_COFF=1, /* default handler for coff binaries */
ABI_DEFHANDLER_ELF=2, /* default handler for ELF binaries */
ABI_DEFHANDLER_LCALL7=3,/* default handler for procs using lcall7 */
ABI_DEFHANDLER_LIBCSO=4,/* default handler for an libc.so ELF interp */
ABI_TRACE=5, /* tracing flags */
ABI_FAKE_UTSNAME=6, /* fake target utsname information */
};
#ifdef __KERNEL__
#include <linux/list.h>
extern void sysctl_init(void);
typedef struct ctl_table ctl_table;
typedef int ctl_handler (ctl_table *table, int __user *name, int nlen,
void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen,
void **context);
typedef int proc_handler (ctl_table *ctl, int write, struct file * filp,
void __user *buffer, size_t *lenp, loff_t *ppos);
extern int proc_dostring(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_dointvec(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_dointvec_bset(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_dointvec_minmax(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_dointvec_jiffies(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_dointvec_userhz_jiffies(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_dointvec_ms_jiffies(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_doulongvec_minmax(ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int proc_doulongvec_ms_jiffies_minmax(ctl_table *table, int,
struct file *, void __user *, size_t *, loff_t *);
extern int do_sysctl (int __user *name, int nlen,
void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen);
extern int do_sysctl_strategy (ctl_table *table,
int __user *name, int nlen,
void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen, void ** context);
extern ctl_handler sysctl_string;
extern ctl_handler sysctl_intvec;
extern ctl_handler sysctl_jiffies;
extern ctl_handler sysctl_ms_jiffies;
/*
* Register a set of sysctl names by calling register_sysctl_table
* with an initialised array of ctl_table's. An entry with zero
* ctl_name and NULL procname terminates the table. table->de will be
* set up by the registration and need not be initialised in advance.
*
* sysctl names can be mirrored automatically under /proc/sys. The
* procname supplied controls /proc naming.
*
* The table's mode will be honoured both for sys_sysctl(2) and
* proc-fs access.
*
* Leaf nodes in the sysctl tree will be represented by a single file
* under /proc; non-leaf nodes will be represented by directories. A
* null procname disables /proc mirroring at this node.
*
* sysctl entries with a zero ctl_name will not be available through
* the binary sysctl interface.
*
* sysctl(2) can automatically manage read and write requests through
* the sysctl table. The data and maxlen fields of the ctl_table
* struct enable minimal validation of the values being written to be
* performed, and the mode field allows minimal authentication.
*
* More sophisticated management can be enabled by the provision of a
* strategy routine with the table entry. This will be called before
* any automatic read or write of the data is performed.
*
* The strategy routine may return:
* <0: Error occurred (error is passed to user process)
* 0: OK - proceed with automatic read or write.
* >0: OK - read or write has been done by the strategy routine, so
* return immediately.
*
* There must be a proc_handler routine for any terminal nodes
* mirrored under /proc/sys (non-terminals are handled by a built-in
* directory handler). Several default handlers are available to
* cover common cases.
*/
/* A sysctl table is an array of struct ctl_table: */
struct ctl_table
{
int ctl_name; /* Binary ID */
const char *procname; /* Text ID for /proc/sys, or zero */
void *data;
int maxlen;
mode_t mode;
ctl_table *child;
proc_handler *proc_handler; /* Callback for text formatting */
ctl_handler *strategy; /* Callback function for all r/w */
struct proc_dir_entry *de; /* /proc control block */
void *extra1;
void *extra2;
};
/* struct ctl_table_header is used to maintain dynamic lists of
ctl_table trees. */
struct ctl_table_header
{
ctl_table *ctl_table;
struct list_head ctl_entry;
int used;
struct completion *unregistering;
};
struct ctl_table_header * register_sysctl_table(ctl_table * table,
int insert_at_head);
void unregister_sysctl_table(struct ctl_table_header * table);
#else /* __KERNEL__ */
#endif /* __KERNEL__ */
#endif /* _LINUX_SYSCTL_H */